• 検索結果がありません。

vout in voltsPlot1il in amperesPlot2

N/A
N/A
Protected

Academic year: 2022

シェア "vout in voltsPlot1il in amperesPlot2"

Copied!
62
0
0

読み込み中.... (全文を見る)

全文

(1)

Simulating Power Supplies with

SPICE

(2)

Agenda

‰ Why simulating power supplies?

‰ Average modeling techniques

‰ The PWM switch concept, CCM

‰ The PWM switch concept, DCM

‰ The voltage-mode model at work

‰ Current-mode modeling

‰ The current-mode model at work

‰ Power factor correction

‰ Switching models

‰ EMI filtering

‰ Conclusion

(3)

Agenda

‰ Why simulating power supplies?

‰ Average modeling techniques

‰ The PWM switch concept, CCM

‰ The PWM switch concept, DCM

‰ The voltage-mode model at work

‰ Current-mode modeling

‰ The current-mode model at work

‰ Power factor correction

‰ Switching models

‰ EMI filtering

‰ Conclusion

(4)

‰ Simulation helps feeling how the product behaves before breadboard

‰ Experiment What If? at any level. Power libraries do not blow!

‰ Easily shows impact of parameter variations: ESR, Load etc.

‰ Draw Bode plots without using costly equipments

‰ Avoid trials and errors: compensate the loop on the PC first!

‰ Use SPICE to assess current amplitudes, voltage stresses etc.

‰ Go to the lab. and check if the assumptions were valid.

Why Simulate Switch Mode Power Supplies?

SPICE does NOT NOT replace the breadboard!

SPICE

Calm down!

(5)

‰ An average model is made of equations that are continuous in time

‰ The switching component has disappeared, leading to:

™ a simpler ac analysis of the power supply

™ the study of the stability margins in various conditions

™ the assessment of the ESRs contributions in the loop stability

™ a flashing simulation time!

Why Average Simulations? Average

Average modeling

1

Rload 3

5

Resr 100m

Cout 220uF

2

Vg AC = 0

Vout

4

Duty

V2 AC = 1

3

Vin Vout

Gnd Ctrl AC model

D

RS = 20m FS = 50k VOUT = 5 RL = 3 VIN = 11 X1 RI = 0.33 L = 37.5u

0 0 0

0.458 0

(6)

‰ An switching model is like breadboarding on the PC

‰ The switching component is back in place, leading to:

™ the analysis of current and voltage stresses

™ the study of leakage and stray elements impacts

™ the analysis of the input current signature – EMI

™ a longer simulation time…

Why Switching Simulations? Switching

Switching approach

1vout2il

3.50 4.50 5.50 6.50 7.50

vout in voltsPlot1 1

1.00 1.40 1.80 2.20

il in amperesPlot2

2 7

4

10

1

6

2

14 12

3

8

19

5 15

RESR_C3 0.3702 C2

100U IC = 11.9999

C3 {220u/DIV}

IC = 230

C4 1n

R_X2_SEC 13M D5 DN4934 C5

{0.68u/DIV}

IC = 0

RLOAD 657 D6

MUR130 R4

100K

R5 22K

R8 1.0MEG L_X2_PR 320U

R9 11K R_X2_PR 0.162

R10 0.1 X3 MTP8N50

VCC Vsw VOUT

Zero_CD

CS * Pout

I_LOAD Vdrv

FB CTRL Ct CS ZCD

GND DRV Vcc X1 Config_1

VCTRL

(7)

Agenda

‰ Why simulating power supplies?

‰ Average modeling techniques

‰ The PWM switch concept, CCM

‰ The PWM switch concept, DCM

‰ The voltage-mode model at work

‰ Current-mode modeling

‰ The current-mode model at work

‰ Power factor correction

‰ Switching models

‰ EMI filtering

‰ Conclusion

(8)

Average Modeling, the SSA

‰ State-State-SpaceSpace Averaging (SSA)Averaging

‰ Introduced by Slobodan Ćuk in the 80’

‰ Long and painful process

‰ Fails to predict sub-harmonic oscillations

Lu Lx dt

dx 1

1 2 1= +

. 2 1 1

1

2 x

Cout Rload Coutx

dt

dx =

1 2

1 x

L dt dx =

. 2 1 1

1

2 x

Cout Rload Cout x

dt

dx =

Vout

L

C R

x1

x2 u1

Vout

L

C R

x1

x2 on off

Apply smoothing process Linearize

Pfffff!

/

ON OFF

(9)

Average Modeling, the PWM Switch

‰ The PWM SwitchPWM Switch

‰ Introduced by Vatché Vorpérian in the mid-80’

‰ Easy to derive and fully invariant

‰ No auto-toggling mode models

‰ Can predict sub-harmonic oscillations in CCM

‰ DCM model in current-mode was never published!

c a

p

d d'

Ia(t) Ic(t)

Vap(t) Vcp(t)

a c

PWM switch p

d d'

Vin

L

C R Vout

(10)

The PWM Switch Concept

Vin L

C R Vout

ac PWM switchp

d d'

Linear network

Linear network

off

on

diode + transistor = guilty for non-linearity!

‰ Identify the guilty network: the transistor and the diode

™ Average their voltage and current waveforms: large-signal model

™ Linearize the equations around a dc point: small-signal model

(11)

Agenda

‰ Why simulating power supplies?

‰ Average modeling techniques

‰ The PWM switch concept, CCM

‰ The PWM switch concept, DCM

‰ The voltage-mode model at work

‰ Current-mode modeling

‰ The current-mode model at work

‰ Power factor correction

‰ Switching models

‰ EMI filtering

‰ Conclusion

(12)

The PWM Switch Concept

1

4

2

Q1

5

Rb_upper 1Meg

Rb_lower 100k Vg

Vout

8

3 7

h11 Beta.Ib

Rc 10k

Re 150

Ce 1nF Req

Rb_upper//Rb_lower

b c

e

ib ic

ie

Rc Vin 10k

Re 150

Ce 1nF Vin

Vout

Ve

Remember the bipolars Ebers-Moll model…

Replace Q1 by its small-signal model

‰ The transistor is a highly non-linear device:

™ Replace the transistor with its small-signal model

™ Solve a system of linear equations

(13)

The PWM Switch Concept

a c

PWM switch p d

d'

Vin

L

C R

Vout Vin

L

C R Vout

ac PWM switchp

d d'

Vin

L

C R Vout

ac PWM switchp

d d'

c a

p

d d'

Ia(t) Ic(t)

Vap(t) Vcp(t)

BuckBuck Boost Boost Buck-Buck-

boost boost

‰ The PWM switch model works in all two switch converters:

™ Rotate the model to match the switch and diode connections

™ Solve a system of linear equations

(14)

The PWM Switch Concept

a c

p

d d'

Ia(t) Ic(t)

Vap(t) Vcp(t)

Vin

L

C R

Vout

( ) 1 ( ) ( )

sw

sw sw

T

a T a a c T c

I t I I t dt d I t dI

= =T= = Vcp( )t T Vcp 1 TswVcp( )t dt d Vap( )t T dVap

= =T= =

‰ The keyword with average modeling: waveforms averaging

(15)

The PWM Switch Concept

c a

p

Ia(t) Ic(t)

V=d.V(a,p)

p

I=d.Ic

Large-signal (non-linear) model

‰ The obtained set of equations is that of a transformer

¾ A CCM two-switch DC-DC can be modeled like a 1:D transformer!

V1 V2

I1 I2

1:N

2 1

V = NV

1 2

I = NI

a c

p

Ia(t) Ic(t)

1 d

Vap Vcp

(16)

The PWM Switch Concept

L

d

100uH

Vbias 0.4 AC = 1

C1 100u

R1 10

Vout

Vin 10

a

c p

10.0 10.0

16.7 0.400

Always verify the dc operating point!

‰ SPICE only deals with linear equations

‰ It first computes a bias point then it linearizes the network

1 10 100 1k 10k 100k

-30.0 -10.0 10.0 30.0 50.0

1 2 3 4

d = 40%, Vout= 16.7 V d = 10%, Vout= 11.1 V

dB

( ) ( )

Vout s d s

‰ No equations, result appears in a second!

‰ Make sure the bias point is correct…

(17)

The PWM Switch Concept

‰ We have a set of non-linear equations: can’t derive transfer functions!

‰ We need a small-signal model: linearize the equations by hand

™ two options: perturbation or partial derivatives…

Pertubation Partial derivatives

0 0

0

ˆ ˆ ˆ

a c

a a a

c c c

I dI

I I i

I I i

d d d

=

= +

= +

= +

0

0

ˆ ˆ

cp ap

cp cp cp

V dV

V V v

d d d

=

= +

= +

( ) ( )

0 ˆ 0 ˆ 0 ˆ

a a c c

I + =i d + d I +i

0 0 0

0 ˆ 0

ˆ ˆ

a c

a c c

I d I i d i dI

=

= +

ac and dc equations

ˆ ˆ ˆ

a c

a a

a c

c

I dI

I I

i i d

I d

=

∂ ∂

= +

∂ ∂ ˆ ˆ ˆ

cp ap

cp cp

cp ap

ap

V dV

V V

v v d

V d

=

∂ ∂

= +

∂ ∂

0 ˆ 0

ˆ ˆ

a c c

i = d i + dI

0 0 0

0 ˆ 0

ˆ ˆ

cp ap

cp ap ap

V d V

v d v dV

=

= +

same

0 ˆ 0

ˆcp ˆap ap v = d v + dV

ac equations No dc point

(18)

The PWM Switch Concept

‰ Put the small-signal sources in the large-signal model

™ You obtain the small-signal model of the CCM PWM switch

a c

p

0 0 0

0 ˆ 0

ˆ ˆ

cp ap

cp ap ap

V d V

v d v dV

=

= +

(

Vap d0

)

dˆ

0 ˆ

ap ap

V + v

0 ˆ

c c

I +i

V1 0 c0

d I

(

0

)

ˆ ˆ

c c

d I +i

‰ You can now analytically find the dc bias and the ac response!

(19)

Agenda

‰ Why simulating power supplies?

‰ Average modeling techniques

‰ The PWM switch concept, CCM

‰ The PWM switch concept, DCM

‰ The voltage-mode model at work

‰ Current-mode modeling

‰ The current-mode model at work

‰ Power factor correction

‰ Switching models

‰ EMI filtering

‰ Conclusion

(20)

The PWM Switch in DCM

c a

p

d1 d2

Ia(t) Ic(t)

Vap(t) Vcp(t)

Vin

L

C R

Vout

d3

Ia

Ipeak

Vap

Ipeak Ic

Vcp

Vap

Vcp

d1Tsw d2Tsw d3Tsw

t t

t t Ia

Ipeak

Vap

Ipeak Ic

Vcp

Vap

Vcp

d1Tsw d2Tsw d3Tsw

t t

t t

‰ The original model could not be auto-toggling

‰ A new DCM-CCM model has been derived

( )

( )

1

1 2

1 2

2 2

peak a

peak c

c a

I d I

I d d

I

d d I I

d

=

= +

= +

Extract and replace

(21)

The PWM Switch in DCM

a c

p

Ia(t) Ic(t)

1 N

Vap Vcp

N=d1/(d1+d2)

1

2 1

1 1

2

c ac

²

sw

2

sw c

ac sw ac

I L V d T LF I

d d

V d T d V

= − = −

Model input Clamp d

2

: d

2

CCM = 1- d

1

d

2

DCM = 1- d

1

- d

3

d

2

< 1 - d

1

model is in DCM!

‰ By clamping the d2 equation, the circuit toggles between the modes

(22)

Agenda

‰ Why simulating power supplies?

‰ Average modeling techniques

‰ The PWM switch concept, CCM

‰ The PWM switch concept, DCM

‰ The voltage-mode model at work

‰ Current-mode modeling

‰ The current-mode model at work

‰ Power factor correction

‰ Switching models

‰ EMI filtering

‰ Conclusion

(23)

The PWM Switch in DCM

3

V4 10

4

L1 75u

17 d

a c

PWM switch VM p

X4

PWMCCMVM

GAIN

XPWM GAIN K = 0.5 10.0

5.00

0.500

‰ In voltage-mode, the duty-cycle is built with a ramp generator

‰ The transition occurs when the error voltage crosses the ramp

( )

on

( ) ( )

err peak peak

sw

t t

V t V V d t

= T =

V

peak

0

V

err

0

Vramp(t)

d(t)

ton Tsw

( )

err

( )

peak

V t d t = V

( ) ( )

1 PWM

err peak

d d t

d V t V K

⎛ ⎞

= =

⎜ ⎟

⎜ ⎟

⎝ ⎠

Vpeak = 2 V

(24)

The Voltage-Mode Model at Work

‰ Let us compensate a buck converter operated in CCM and DCM 1. Run an open-loop Bode plot at full load, lowest input

2. Identify the excess/deficiency of gain at the selected cross over

3. Place a double zero at f0, a pole at the ESR zero and a pole at Fsw/2 4. Check final loop gain and run a transient load test

Vout2

16

Cout 220u

Resr 150m

2 13

L1 180u

6

Rupper 38k

Rlower 10k

9 5

X2 AMPSIMP

V2 2.5

vout

d

a c

PWM switch VM p

4

7

X3 PWMVM L = 180u Fs = 100k

GAIN

15

XPWM GAIN K = 0.4

R4 20m

LoL 1kH

10

CoL 1kF

V1 AC = 1 Vin

vout

Vout

12

R2 {R2}

C1 {C1}

C2 {C2}

8

R3 {R3}

C3 {C3}

Rload 3 Vin

20

12.0V

12.0V 12.0V

2.50V

2.50V 1.51V

20.0V

12.1V 604mV

1.51V

1.51V 12.0V

parameters Rupper=38k fc=7k Gfc=-15 G=10^(-Gfc/20) pi=3.14159 fz1=650 fz2=650 fp1=7k fp2=50k

C3=1/(2*pi*fz1*Rupper) R3 =1/(2*pi*fp2*C3) C1=1/(2*pi*fz2*R2) C2=1/(2*pi*(fp1)*R2)

a=fc^4+fc^2*fz1^2+fc^2*fz2^2+fz1^2*fz2^2 c=fp2^2*fp1^2+fc^2*fp2^2+fc^2*fp1^2+fc^4 R2=sqrt(c/a)*G*fc*R3/fp1

Automated compensation

H(s)

T(s)

(25)

The Voltage-Mode Model at Work

-24.0 -12.0 0 12.0 24.0

-180 -90.0 0 90.0

180

2

1

10 100 1k 10k 100k

-180 -90.0 0 90.0

180

-40.0 -20.0 0 20.0 40.0

3 4

Pm = 80°

fc = 7 kHz

|H(7 kHz)| =-15 dB

ArgH(7 kHz) =-121°

ArgT(s)

|H(s)|

9.91m 11.0m 12.1m 13.3m 14.4m

11.6 11.8 12.0 12.2 12.4

1 2

‰ The Bode plot reveals a gain loss of -15 dB at 7 kHz

‰ The compensator provides a +15 dB gain increase plus phase boost

‰ The final loop gain shows a comfortable phase margin

‰ The transient response at both input levels shows a stable signal

|T(s)|

arg|H(s)|

V

out

(t)

Iout = 200 mA to 4 A in 10 µs

(26)

Agenda

‰ Why simulating power supplies?

‰ Average modeling techniques

‰ The PWM switch concept, CCM

‰ The PWM switch concept, DCM

‰ The voltage-mode model at work

‰ Current-mode modeling

‰ The current-mode model at work

‰ Power factor correction

‰ Switching models

‰ EMI filtering

‰ Conclusion

(27)

Current-Mode Operation

‰ In voltage-mode, the error signal directly controls the duty cycle

‰ In current mode, the error voltage sets the inductor peak current

‰ To derive a model, observe the current signals and average them!

( ) ( ) ( ) '( )

2

(1 )

2

f sw

c i c sw e

c sw e sw

c cp

i i

S d t T I t R V t d t T S

V T S T

I d V d

R R L

= − −

= − − −

1 2

3

c a

p

Ia(t)

Ic(t)

I=Vc/Ri

p

I=d.Ic I=Iu Cs

( ) ( ) ( ) '( )

2

(1 )

2

f sw

c i c sw e

c sw e sw

c cp

i i

S d t T I t R V t d t T S

V T S T

I d V d

R R L

= − −

= − − −

1 2

3

c a

p

Ia(t)

Ic(t)

I=Vc/Ri

p

I=d.Ic I=Iu Cs

1

2

3

CCM

(28)

Current-Mode Operation

‰ Do the same for DCM signals

‰ Match the previous structure to build a CCM/DCM model

c a

p

Ia(t) Ic(t)

I=Vc/Ri

p

I=(d1/(d1+d2)).Ic I=Iu

3rd event linked to DCM

1

1

2

1 1 2

2 1

2

c sw e

peak

i

c sw e

c sw f

i sw e cp

sw i

V d T S

I R

V d T S

I d T S

R

d T S V d d

I d T

R L

μ

α

= −

= − −

⎛ + ⎞

= + ⎜⎝ − ⎟⎠

α

DCM

(29)

Agenda

‰ Why simulating power supplies?

‰ Average modeling techniques

‰ The PWM switch concept, CCM

‰ The PWM switch concept, DCM

‰ The voltage-mode model at work

‰ Current-mode modeling

‰ The current-mode model at work

‰ Power factor correction

‰ Switching models

‰ EMI filtering

‰ Conclusion

(30)

The Current-Mode Model at Work

‰ To study a converter, we can write down the equations

‰ Or use a SPICE simulation to get the Bode plot in a second

‰ Take the example of a current-mode flyback converter

( ) 2

1

2 2

2

1 3

10 0 2 2 2 2

1 1 1

20 log 1

1 1

z z z

p n n p

f f f

f f f

H f G

f f f

f f f Q

+ + +

=

+ ⎜ + ⎜

( )

1 2 3 1

1 1 1 1 1

2

arg tan tan tan tan tan 1

z z z p n p 1

n

f f f f f

H f f f f f f Q f

f

= + − ⎜ ⎟

(31)

Stabilizing a CCM Flyback Converter

‰ Capture a SPICE schematic with an averaged model

1

C5 6600u R10 14.4m

2

Vin 90 AC = 0

3 4

X2x XFMR

RATIO = -0.25 vout

vout DC 6

8 13

L1 {Lp}

D1A

mbr20200ctp

B1 Voltage V(errP)/3 > 1 ? 1 : V(errP)/3

Rload 4

vcac PWM switch CMp

duty-cycle

X9 PWMCM L = Lp Fs = 65k Ri = 0.25 Se = 0

19.0V 19.0V 90.0V

-78.8V 19.7V

467mV

0V

786mV

‰ Look for the bias points values: V

out

= 19 V, ok

‰ V

setpoint

< 1 V, enough margin on current sense

(32)

Stabilizing a CCM Flyback Converter

‰ Capture a SPICE schematic with an averaged model

18

Verr

Cpole2 {Cpole}

10 9

11

vout

X8

Optocoupler Fp = Pole CTR = CTR

Czero1 {Czero}

Rpullup {Rpullup}

5

Rled {Rled}

Rlower2 {Rlower}

Rupper2 {Rupper}

X10 TL431_G Vdd

5 errP

X4 POLE FP = pole

K = 1 K S+A

R7 1 err

14

LoL 1kH

Vstim AC = 1

15

CoL 1kF

2.36V

0V 2.36V 2.36V

2.36V 18.7V

2.49V 17.7V

5.00V

parameters Vout=19 Ibridge=250u Rlower=2.5/Ibridge

Rupper=(Vout-2.5)/Ibridge Lp=350u

Se=20k fc=1k pm=60 Gfc=-22 pfc=-71

G=10^(-Gfc/20) boost=pm-(pfc)-90 pi=3.14159

K=tan((boost/2+45)*pi/180) Fzero=fc/k

Fpole=k*fc Rpullup=20k

RLED=CTR*Rpullup/G

Czero=1/(2*pi*Fzero*Rupper) Cpole=1/(2*pi*Fpole*Rpullup) CTR=1.5

Pole=6k

from Bode

(33)

Stabilizing a CCM Flyback Converter

‰ Capture a SPICE schematic with an averaged model

-32.0 -16.0 0 16.0 32.0

4

-180 -90.0 0 90.0 180

6

Gain at 1 kHz -22 dB

Phase at 1 kHz -71 °

|H(s)|

argH(s)

Sub harmonic poles

Inject ramp compensation

ramp

(34)

Stabilizing a CCM Flyback Converter

‰ The easiest way to damp the poles:

¾ Calculate the equivalent quality coefficient at F

sw

/2

¾ Calculate the external ramp to make Q less than 1

( )

1 1

3.14 0.5 0.46 8 ' 1

2

e n

Q

D S D

π S

= = =

×

+ −

( )

1 1 90 0.25 1

0.5 0.5 0.5 0.46 36

' ' 320 1 0.46 3.14

n in i

e

p

S V R

S D D kV s

D π L D π u

×

= + = + = × − + =

NCP1230 Rramp

Ri

2.3 Vpp

18 k

CS

DRV 2.3

15 153

Sramp kV s

= u =

36 51%

70

e r

n

S k

M = S = k =

0.51 70 18 153 4.1

r n ramp current

ramp

M S R k k

R k

S k

× ×

= = = Ω

Rcurrent

On-time slope in i

p

V R L

(35)

Stabilizing a CCM Flyback Converter

‰ Boost the gain by +22 dB, boost the phase at f

c

11

-80.0 -40.0 0 40.0 80.0

10

-180 -90.0 0 90.0 180

11

|T(s)|

argT(s)

Cross over 1 kHz

Margin at 1 kHz 60 °

GM 20 dB

(36)

Stabilizing a CCM Flyback Converter

‰ Test the response at both input levels, 90 and 265 Vrms

‰ Sweep ESR values and check margins again

18.79 18.87 18.95 19.03 19.11

1211

V

out

(t)

Low line Hi

line

112 mV

(37)

Agenda

‰ Why simulating power supplies?

‰ Average modeling techniques

‰ The PWM switch concept, CCM

‰ The PWM switch concept, DCM

‰ The voltage-mode model at work

‰ Current-mode modeling

‰ The current-mode model at work

‰ Power factor correction

‰ Switching models

‰ EMI filtering

‰ Conclusion

(38)

Power Factor Correction

CBulk 100u IC = 50

6

D5 1N4007

2

D6 1N4007

D7 1N4007

D8 1N4007 Vmains

Vbulk

Vbulk

B2 Current 50/V(Vbulk)

Itotal Iout

Ibulk

Vbulk

Vmains

Iin Vbulk

Vmains

Iin

‰ The bulk capacitor connects to a low-impedance source

‰ At the bulk capacitor refueling, a narrow peak current flows

‰ This peak conveys a large harmonic content

(39)

Power Factor Correction

Cbulk

D1 D2

D3 D4

Mains

PWM Vbulk

PFC

Pre-converter

store release

Cbulk

D1 D2

D3 D4

Mains

PWM Vbulk

PFC

Pre-converter

store release

‰ A pre-converter is installed as a front-end section

‰ The pre-converter draws a sinusoidal current

‰ The energy is stored and released in/by the bulk capacitor

(40)

Power Factor Correction

+ -

2 1

4

+-

17 7

3

5

16 11 8

Rlimit

Ddmg

12

Dout

Cout

Vout S

R Q

Q 6

Verr Reset detector

Rsense current sense

comparator

9

10 13

G1 A

B K*A*B 14

X6

C1 Vref

Rupper

Rlower

RdivL RdivU

18

D3

15

D4

D5 D6

Cin Vin

Vdem

L

Peak current setpoint Error amplifier

‰ One of the most popular techinique uses Borderline mode

‰ The MC33262 operates in peak current mode control

‰ The NCP1606 also operates in constant-on time

(41)

Power Factor Correction

‰ the average inductor current is average half the inductor peak current value half

8.05m 8.15m 8.25m 8.35m 8.45m

time in seconds

IL(t) IL,peak

IL,avg

ton

IL = 0

( ) ( )

( )

L Tsw in

I t t =I t

8.05m 8.15m 8.25m 8.35m 8.45m

time in seconds

IL(t) IL,peak

IL,avg

ton

IL = 0

( ) ( )

( )

L Tsw in

I t t =I t

‰ The core is always reset from cycle to the other

On time is constant

(42)

Power Factor Correction

4

9

C5 150u

IC = {Vrms*1.414}

R10 50m

16 23

L1 {L}

parameter Vrms=100 Pout=150 Vout=400 Ri=0.22 L=850u

Vton 5

Vfsw 26

22

13 17

G1 100u

V4 2.5

25

C2 0.68u R5

1G Verr

14

V5 1.7 D2 N = 0.01

15

D1 N = 0.01

V3 6.4

10

R1 1.6Meg

R2

12k C3

10n

A

B K*A*B 24

2

K = 0.6 R6 100m

B1 V11 Current

I(V11) > 10u ? 10u : I(V11)

R3 10k R4 1.6Meg

R8 23k

err B4

Voltage

V(err)-2.05 < 0 ? 0 : V(err)-2.05

B1 3 0 V = V(1) * V(2) * {K}>1.3 ? 1.3 : V(1) * V(2) * {K}

vcac PWM switch BCMp

tonFsw (kHz)

X5

PWMBCMCM2 L = L Ri = Ri

3

6

Vin {VRMS}

+

- IN

8

X1 KBU4J Iin

Δ

Vin

Vrect

Cin 1u

Vmul

Vout

Rload {Vout*Vout/Pout}

‰ A 150 W BCM PFC average example with the MC33262

Current-mode borderline model

(43)

Power Factor Correction

-8.00 -4.00 0 4.00 8.00

vton in volts

-2.00 -1.00 0 1.00 2.00

iin in amperesPlot1

1 3

394 398 402 406 410

vout, vout#a in voltsPlot2 62

1.139 1.149 1.159 1.169 1.179

-60.0 -30.0 0 30.0 60.0

vton in volts

-4.00 -2.00 0 2.00 4.00

iin in amperesPlot3

4 5

THD = 2%

THD = 10% Iin(t)

Iin(t) Vin = 230 Vac

Vin = 100 Vac

ton(t) - µs

ton(t) - µs

Vout,peak = 406 V

Vout,valley = 398 V Vout(t)

-8.00 -4.00 0 4.00 8.00

vton in volts

-2.00 -1.00 0 1.00 2.00

iin in amperesPlot1

1 3

394 398 402 406 410

vout, vout#a in voltsPlot2 62

1.139 1.149 1.159 1.169 1.179

-60.0 -30.0 0 30.0 60.0

vton in volts

-4.00 -2.00 0 2.00 4.00

iin in amperesPlot3

4 5

THD = 2%

THD = 10% Iin(t)

Iin(t) Vin = 230 Vac

Vin = 100 Vac

ton(t) - µs

ton(t) - µs

Vout,peak = 406 V

Vout,valley = 398 V Vout(t)

High line

Low line Constant

on-time

‰ Average models can also work in transient conditions

(44)

Power Factor Correction

-80.0 -40.0 0 40.0 80.0

gain in db(volts)

-180 -90.0 0 90.0 180

phase in degreesplot1

1

2

1m 10m 100m 1 10 100 1k 10k 100k

frequency in hertz -80.0

-40.0 0 40.0 80.0

gain in db(volts)

-180 -90.0 0 90.0 180

phase in degreesPlot2

4

5

No zero added Zero added

phase gain

phase gain

fc = 5 Hz fc = 5 Hz

Pm = 61°

-80.0 -40.0 0 40.0 80.0

gain in db(volts)

-180 -90.0 0 90.0 180

phase in degreesplot1

1

2

1m 10m 100m 1 10 100 1k 10k 100k

frequency in hertz -80.0

-40.0 0 40.0 80.0

gain in db(volts)

-180 -90.0 0 90.0 180

phase in degreesPlot2

4

5

No zero added Zero added

phase gain

phase gain

fc = 5 Hz fc = 5 Hz

Pm = 61°

‰ Use the model to boost the phase at the cross over point

(45)

Power Factor Correction

122m 365m 608m 851m 1.09

time in seconds 320

350 380 410 440

vout#a, vout#a#1 in voltsPlot1

32

1.128 1.135 1.142 1.149 1.157

time in seconds -800m

-400m 0 400m 800m

iin, iin#1 in amperesPlot2 41

Vout(t)

Iin(t)

440 V

413 V

THD = 1.5%

THD = 10%

122m 365m 608m 851m 1.09

time in seconds 320

350 380 410 440

vout#a, vout#a#1 in voltsPlot1

32

1.128 1.135 1.142 1.149 1.157

time in seconds -800m

-400m 0 400m 800m

iin, iin#1 in amperesPlot2 41

Vout(t)

Iin(t)

440 V

413 V

THD = 1.5%

THD = 10%

Added zero No zero

Added zero

No zero

‰ The zero improves the overshoot but degrades the THD…

(46)

Agenda

‰ Why simulating power supplies?

‰ Average modeling techniques

‰ The PWM switch concept, CCM

‰ The PWM switch concept, DCM

‰ The voltage-mode model at work

‰ Current-mode modeling

‰ The current-mode model at work

‰ Power factor correction

‰ Switching models

‰ EMI filtering

‰ Conclusion

参照

関連したドキュメント

Then it follows immediately from a suitable version of “Hensel’s Lemma” [cf., e.g., the argument of [4], Lemma 2.1] that S may be obtained, as the notation suggests, as the m A

We also dis- cuss the connections between the notion of Grassmannian design and the notion of design associated with the symmetric space of the totally isotropic subspaces in a

With a diverse portfolio of products and services, talented engineering staff with system expertise, a deep understanding of the quality, reliability and longevity requirements

• View reference designs, design notes, and other material supporting the design of highly efficient power supplies

Once the voltage on this V CC capacitor reaches the V CC(ON) level (typically 8.4 V), the current source turns off and pulses are delivered by the output stage: the circuit is

Conditions for transmitter specifications unless otherwise specified with the antenna network from AX−SFUS Application Note: Sigfox Compliant Reference Design and at 902.2 MHz?.

Conditions for transmitter specifications unless otherwise specified with the antenna network from AX−SFEU Application Note: Sigfox Compliant Reference Design and at 868.130

Figure 13 shows measurement results of steering stroke by running test (Refer to Figure 17).The steering stroke is quantity of change for an appropriate turning angle of a