• 検索結果がありません。

THE MICROLOCAL SMOOTHING EFFECT FOR SCHRODINGER TYPE OPERATORS IN GEVREY CLASSES (Asymptotic Analysis and Microlocal Analysis of PDE)

N/A
N/A
Protected

Academic year: 2021

シェア "THE MICROLOCAL SMOOTHING EFFECT FOR SCHRODINGER TYPE OPERATORS IN GEVREY CLASSES (Asymptotic Analysis and Microlocal Analysis of PDE)"

Copied!
2
0
0

読み込み中.... (全文を見る)

全文

(1)

THE MICROLOCAL SMOOTHING

EFFECT

FOR

SCHR\"ODINGER

TYPE

OPERATORS

IN

GEVREY CLASSES

KUNIHIKO

KAJITANI

&

GIOVANNI

TAGLIALATELA

$(W. \mathrm{T}\sigma M)$

Let

$T>0$

,

we

consider the Cauchy

problem,

(1)

$\{$

$Lu=0$

,

$t\in[-T, T]$

,

$x\in \mathrm{R}^{n}$

,

$u(0, x)=u_{0}(x)$

,

$x\in \mathrm{R}^{n}$

,

where

$Lu= \partial_{t}u-\sqrt{-1}\sum_{j.k=1}^{n}\frac{\partial}{\partial x_{j}}(a_{jk}(x)\frac{\partial}{\partial x_{k}}u)-\sum_{j=1}^{||}b_{j}(t, x)\frac{\partial}{\partial x_{j}}u-b_{0}(t, x)u$

,

$a_{2}(x, \xi)=\sum_{j,k=1}^{n}a_{jk}(x)\xi_{j}\xi_{k}$

,

is areal

elliptic

symbol

with

smooth

and

bounded coefficients.

We

will consider the smoothing

effect

phenomenon:

more

the initial data

decays at the

infinity,

more

the solution

of

(1)

is regular. In the

case

of microlocal smoothing

effect, the

decay

of initial data is

required

only

on

aneighborhood

of the backward bicharacteristic.

Recall

that

afunction

$f$

belongs to

the

Gevrey

class

$\gamma^{d}(\Omega)$

,

if

$f\in \mathrm{C}^{\infty}(\Omega)$

and for any

compact

$K$

of

0there

exist positive constants

$\rho$

and

$C$

such that

$\sup_{x\epsilon\kappa}|D^{\alpha}f(x)|\leq C\rho^{-|\alpha|}|\alpha|!^{d}$

,

for all

$\alpha\in \mathrm{N}^{n}$

.

Apoint

$(y0, \mathrm{W})$ $\in T^{\cdot}\mathrm{R}^{*}$

does

not

belong to the Gevrey

$wave$

front

set

of

order

$d$

of

a

distribution

$u$

if there exists

afunction

$\chi\in\gamma_{0}^{d}(\mathrm{R}^{n})(=\gamma^{d}(\mathrm{R}^{n})\cap \mathrm{C}_{0}^{\infty}(\mathrm{R}^{n}))$

, equal to

1in

a

neighborhood

of

0,

such that if

one

sets

$\chi_{y0}(x)=\chi(x-yo)$

and

$\chi_{r_{\hslash}}(\xi)=(\frac{\xi}{|\xi|}-\frac{\eta_{0}}{|\eta_{0}|})$

,

then

there

exist

positive

constants

$C$

and

$\rho$

such that

$|D_{x}^{\alpha}(\chi_{h},(D)(\chi_{y0}(x)u))|\leq C\rho^{-1\circ 1}\alpha!^{d}$

,

for all

$\alpha\in \mathrm{N}^{n}$

.

We will note

$\mathrm{W}\mathrm{F}_{d}u$

the

wave

front set of order

$d$

of

$u$

.

Assumption I.

1.

$a_{jk}\in\gamma^{d}(\mathrm{R}^{n})$

,

for

some

$d\geq 1$

;

2. there exists

apositive

constant

$C$

such

that

$C^{-1}|\xi|^{2}\leq a_{2}(x, \xi)\leq C|\zeta|^{2}$

,

for

all

$\xi\in \mathrm{R}$

$1$

;

3.

there

exist

positive

constants

$\delta$

,

$\rho$

and

$C$

such

that

$|D_{x}^{\alpha}a_{jk}(x)|\leq C_{\rho}\rho^{-|\alpha|}\alpha!^{d}(x\rangle^{-|\alpha|-\delta}$

,

数理解析研究所講究録 1211 巻 2001 年 54-55

(2)

KUNIHIKO KAJITANI

a

GIOVANNI

TAGLIALATELA

for all

$x\in \mathbb{R}^{n}$

,

a

$\in \mathrm{N}^{n}\backslash \{0\}$

,

for

all

$j$

,

$k$

$=1$

,

$\ldots$

,

$n$

;

4. there

exists

$\theta(x, \xi)\in\gamma^{d}$

(

$\mathbb{R}^{n}\mathrm{x}$

Rn)

such that

(a)

there exist positive constants

$\rho$

and

$C$

such

that

$|D_{\zeta}^{\alpha}D_{x}^{\beta}\theta(x, \xi)|\leq C_{\rho}\rho^{-|\alpha+\beta|}|\alpha|!|\beta|!^{d}\langle\xi\rangle^{1-|\alpha|}\langle x\rangle^{1-|\beta|}$

,

for all

$x$

,

$\xi\in \mathbb{R}^{n}$

,

$\alpha$

,

$\beta\in \mathrm{N}^{n}$

;

(b)

$H_{a_{2}}\theta(x, \langle)$

$\geq C|\xi|^{2}$

,

for

some

positive constant

$C$

,

where

$H_{a_{2}}$

is

the Hamiltonian

flow

associated

to

$a_{2}:H_{a_{2}}= \sum_{j=1}^{n}\frac{\partial a_{2}}{\partial\xi_{j}}\frac{\partial}{\partial x_{j}}-\frac{\partial a_{2}}{\partial x_{j}}\frac{\partial}{\partial\xi_{j}}$

.

Assumption

$\mathrm{I}\mathrm{I}$

.

1.

$b_{j}\in \mathrm{C}$$([0, T]|.\gamma^{d}(\mathbb{R}^{n}))$

,

for

$j=0,1$

,

$\ldots$

,

yr

and

there

exist

positive constants

$\rho$

and

$C$

such that

$(X(0),—(0))=(y_{0}, \eta_{0})$

.

$|D_{x}^{\alpha}b_{j}(t, x)|\leq C_{\rho}\rho^{-|\alpha|}\alpha!^{d}\langle x\rangle^{-|\alpha|}$

,

for

all

$x\in \mathbb{R}^{\mathfrak{n}}$

,

$\alpha\in \mathrm{N}^{n}\backslash \{0\}$

,

for all

$j=0,1$ ,

$\ldots$

,

$n$

;

2.

${\rm Im} u(t, x)=0$

,

for

$j=1$

,

$\ldots$

,

$n$

.

For

$(y_{0}, \eta_{0})\in T^{*}\mathbb{R}^{n}$

,

we

consider the bicharacteristic

of

$a_{2}(x, \xi)$

passing through

$(y_{0}, \eta_{0})$

:

$\{_{\underline{=}}^{\dot{X}(s)=\frac{\partial}{-\partial}(X(s),-(s))}.(s)=\frac{5a_{2}a_{2}}{\partial x}(X(s)_{-}^{-}--,-(s))$

The hypothesis

on

the principal symbol imply

$\mathrm{t}\mathrm{h}\mathrm{a}\mathrm{t},\lim_{sarrow+\infty}|X(s;y_{0}, \eta_{0})|=+\infty$

.

We set

$\Gamma_{\epsilon 0}^{\pm}(y_{0}, \eta_{0})=\cup\{x\in \mathbb{R}^{n}s\leq 0||x-X(\pm s_{1}\cdot y_{0}, \eta_{0})|\leq\epsilon(1+|s|)\}$

.

For

$\epsilon$ $\in \mathbb{R}$

denote

$\phi_{\epsilon}(x, \xi)=x\cdot\xi-i\epsilon\frac{\theta(x,\xi)}{\langle x\rangle^{1-\sigma}\langle\xi\rangle^{1-\delta}}$

,

where

$\sigma>0$

,

$\delta$

$\geq 0$

and

$\sigma+\delta=\kappa$

,

$\kappa<1$

,

and

define

$I_{\phi_{\epsilon}}(x, D)u(x)= \int_{\mathrm{R}^{n}}e^{:\phi_{e}(x,\xi)}\hat{u}(\xi)d^{-}\xi$

,

where

\^u

$(\xi)$

stands

for

aFourier

transform of

$u$

and

$d^{-}\xi=(2\pi)^{-n}d\xi$

.

Theorem.

Assume that

Assumptions

I and

$II$

are

satisfied for

$d\kappa\leq 1_{f}\kappa<1$

and

$d\geq 1$

.

If

$u_{0}\in L^{2}(\mathbb{R}^{n})$

and

$I_{\phi_{e}}(x, D)u_{0}\in L^{2}(\Gamma_{\epsilon_{0}}^{-}(y_{0}, \eta_{0}))$

,

for

$|\epsilon|\leq\epsilon_{0}$

,

then there exists

a

solution

$u$

of

(1)

such that

$(y_{0}, \eta_{0})\not\in \mathrm{W}\mathrm{F}_{1/\kappa}\mathrm{u}(\mathrm{t}, \cdot)$

,

for

all

$t>0$

.

INSTITUTE

OF

MATHEMATICS,

UNIVERSITY

OF

TSUKUBA,

1-1-1

$\mathrm{T}\mathrm{E}\mathrm{N}\mathrm{N}\overline{\mathrm{O}}\mathrm{D}\mathrm{A}\mathrm{I}$

,

305 TSUKUBA

IBARAKI,

参照

関連したドキュメント

We prove the coincidence of the two definitions of the integrated density of states (IDS) for Schr¨ odinger operators with strongly singular magnetic fields and scalar potentials:

It is suggested by our method that most of the quadratic algebras for all St¨ ackel equivalence classes of 3D second order quantum superintegrable systems on conformally flat

In the present paper we give the rate of convergence for the linear combi- nations of the generalized Durrmeyer type operators which includes the well known Szasz-Durrmeyer

We analyze a class of large time-stepping Fourier spectral methods for the semiclassical limit of the defocusing Nonlinear Schr ¨odinger equation and provide highly stable methods

Interesting results were obtained in Lie group invariance of generalized functions [8, 31, 46, 48], nonlinear hyperbolic equations with generalized function data [7, 39, 40, 42, 45,

de la CAL, Using stochastic processes for studying Bernstein-type operators, Proceedings of the Second International Conference in Functional Analysis and Approximation The-

The commutative case is treated in chapter I, where we recall the notions of a privileged exponent of a polynomial or a power series with respect to a convenient ordering,

In these cases it is natural to consider the behaviour of the operator in the Gevrey classes G s , 1 &lt; s &lt; ∞ (for definition and properties see for example Rodino