• 検索結果がありません。

JJ II

N/A
N/A
Protected

Academic year: 2022

シェア "JJ II"

Copied!
23
0
0

読み込み中.... (全文を見る)

全文

(1)

volume 5, issue 3, article 79, 2004.

Received 21 January, 2004;

accepted 14 June, 2004.

Communicated by:C.P. Niculescu

Abstract Contents

JJ II

J I

Home Page Go Back

Close Quit

Journal of Inequalities in Pure and Applied Mathematics

RATE OF CONVERGENCE FOR A GENERAL SEQUENCE OF DURRMEYER TYPE OPERATORS

NIRAJ KUMAR

School of Applied Sciences

Netaji Subhas Institute of Technology Sector 3, Dwarka

New Delhi 110045, India.

EMail:neeraj@nsit.ac.in

c

2000Victoria University ISSN (electronic): 1443-5756 016-04

(2)

Rate Of Convergence For A General Sequence Of Durrmeyer Type Operators

Niraj Kumar

Title Page Contents

JJ II

J I

Go Back Close

Quit Page2of23

J. Ineq. Pure and Appl. Math. 5(3) Art. 79, 2004

http://jipam.vu.edu.au

Abstract

In the present paper we give the rate of convergence for the linear combi- nations of the generalized Durrmeyer type operators which includes the well known Szasz-Durrmeyer operators and Baskakov-Durrmeyer operators as spe- cial cases.

2000 Mathematics Subject Classification:41A16, 41A25.

Key words: Szasz-Durrmeyer operators, Baskakov-Durrmeyer operators, Rate of convergence, Order of approximation.

The author is extremely grateful to the referee for making valuable suggestions lead- ing to the better presentation of the paper.

Contents

1 Introduction. . . 3 2 Auxiliary Results. . . 7 3 Rate Of Convergence . . . 20

References

(3)

Rate Of Convergence For A General Sequence Of Durrmeyer Type Operators

Niraj Kumar

Title Page Contents

JJ II

J I

Go Back Close

Quit Page3of23

J. Ineq. Pure and Appl. Math. 5(3) Art. 79, 2004

http://jipam.vu.edu.au

1. Introduction

Durrmeyer [1] introduced the integral modification of Bernstein polynomials so as to approximate Lebesgue integrable functions on the interval [0,1].We now consider the general family of Durrmeyer type operators, which is defined by

(1.1) Sn(f(t), x) = (n−c)

X

v=0

pn,v(x) Z

0

pn,v(t)f(t)dt, x∈I

where n ∈ N, n > max{0,−c}and pn,v(x) = (−1)v xv!vϕ(v)n (x). Also {φn} is a sequence of real functions having the following properties on[0, a], where a >0and for alln∈N, v ∈N∪ {0}, we have

(I) φn ∈C[0, a], φn(0) = 1.

(II) φnis complete monotonic.

(III) There existc∈N:φ(v+1)n =−nφ(v)n+c, n >max{0,−c}. Some special cases of the operators (1.1) are as follows:

1. Ifc= 0,φn(x) = e−nx, we get the Szasz-Durrmeyer operator.

2. Ifc = 1, φn(x) = (1 +x)−n, we obtain the Baskakov-Durrmeyer opera- tor.

3. Ifc > 1, φn(x) = (1 +cx)−nc , we obtain a general Baskakov-Durrmeyer operator.

(4)

Rate Of Convergence For A General Sequence Of Durrmeyer Type Operators

Niraj Kumar

Title Page Contents

JJ II

J I

Go Back Close

Quit Page4of23

J. Ineq. Pure and Appl. Math. 5(3) Art. 79, 2004

http://jipam.vu.edu.au

4. Ifc=−1, φn(x) = (1−x)n, we obtain the Bernstein-Durrmeyer opera- tor.

Very recently Srivastava and Gupta [9] studied a similar type of operators and obtained the rate of convergence for functions of bounded variation. It is easily verified that the operators (1.1) are linear positive operators and these op- erators reproduce the constant ones, while the operators studied in [9] reproduce every linear functional for the casec= 0. Several researchers studied different approximation properties on the special cases of the operators (1.1), the pioneer work on Durrmeyer type operators is due to S. Guo [3], Vijay Gupta (see e. g.

[4], [5]), R. P. Sinha et al. [8] and Wang and Guo [11], etc. It turns out that the order of approximation for such type of Durrmeyer operators is at bestO(n−1), how so ever smooth the function may be. In order to improve the order of ap- proximation, we have to slacken the positivity condition of the operators, for this we consider the linear combinations of the operators (1.1). The technique of linear combinations is described as follows:

Sn,k(f, x) =

1 d−10 d−20 ... d−k0 1 d−11 d−21 ... d−k1 ... .. .. ... ..

... .. .. ... ..

1 d−1k d−2k ... d−kk

−1

Sd0n(f, x) d−10 d−20 ... d−k0 Sd1n(f, x) d−11 d−21 ... d−k1

... .. .. ... ..

... .. .. ... ..

Sdkn(f, x) d−1k d−2k ... d−kk .

Such types of linear combinations were first considered by May [7] to improve the order of approximation of exponential type operators. In the alternative form

(5)

Rate Of Convergence For A General Sequence Of Durrmeyer Type Operators

Niraj Kumar

Title Page Contents

JJ II

J I

Go Back Close

Quit Page5of23

J. Ineq. Pure and Appl. Math. 5(3) Art. 79, 2004

http://jipam.vu.edu.au

the above linear combinations can be defined as

Sn,k(f, x) =

k

X

j=0

c(j, k)Sdjn(f, x),

where

C(j, k) =

k

Y

i=0 i6=j

dj

dj −di, k6= 0 and C(0,0) = 1.

Iff ∈ Lp[0,∞),1 ≤p < ∞and0< a1 < a3 < a2 < b2 < b3 < b1 <∞ andIi = [ai, bi], i= 1,2,3, the Steklov meanfη,mofmthorder corresponding tof is defined as

fη,m(t) = η−m Z η2

−η 2

· · · Z η2

−η 2

f(t) + (−1)m−1mPm

i=1tif(t)Ym

i=1

dti; t∈I1.

It can be verified [6,10] that

(i) fη,mhas derivative up to orderm,fη,m(m−1) ∈AC(I1)andfη,m(m)exist almost every where and belongs toLp(I1);

(ii) fη,m(r)

L

p(I1) ≤K1η−rωr(f, η, p, I1),r= 1,2,3, . . . , m;

(iii) kf−fη,mkL

p(I2) ≤K2ωm(f, η, p, I1);

(iv) fη,mm

Lp(I2) ≤K3ηmkfkL

p(I1)

(6)

Rate Of Convergence For A General Sequence Of Durrmeyer Type Operators

Niraj Kumar

Title Page Contents

JJ II

J I

Go Back Close

Quit Page6of23

J. Ineq. Pure and Appl. Math. 5(3) Art. 79, 2004

http://jipam.vu.edu.au

(v) fη,m(m)

Lp(I1) ≤K4η−rωr(f, η, p, I1)

whereKi0s, i= 1,2,3,4are certain constants independent off andη.

In the present paper we establish the rate of convergence for the combina- tions of the generalized Durrmeyer type operators inLp−norm.

(7)

Rate Of Convergence For A General Sequence Of Durrmeyer Type Operators

Niraj Kumar

Title Page Contents

JJ II

J I

Go Back Close

Quit Page7of23

J. Ineq. Pure and Appl. Math. 5(3) Art. 79, 2004

http://jipam.vu.edu.au

2. Auxiliary Results

To prove the rate of convergence we need the following lemmas:

Lemma 2.1. Let m ∈ N∪ {0}, alsoµn,m(x)is themth order central moment defined by

µn,m ≡Sn((t−x)m, x) = (n−c)

X

v=0

pn,v(x) Z

0

pn,v(t)(t−x)mdt,

then

(i) µn,m(x)is a polynomial inxof degreem.

(ii) µn,m(x)is a rational function innand for each0 ≤x < ∞ µn,m(x) = O n−[(m+1)/2]

.

Remark 2.1. Using Hölder’s inequality, it can be easily verified thatSn(|t−x|r, x)

=O(n−r/2)for eachr >0and for every fixed0≤x <∞.

Lemma 2.2. For sufficiently largenandq ∈N, there holds Sn,k((t−x)q, x) = n−(k+1){F(q, k, x) +o(1)},

where F(q, k, x)are certain polynomials in xof degree q and0 ≤ x < ∞is arbitrary but fixed.

Proof. For sufficiently large values ofnwe can write, from Lemma2.1 Sn((t−x)q, x) = Q0(x)

n[(q+1)/2] + Q1(x)

n[(q+1)/2]+1 +· · ·+Q[q/2](x) nq ,

(8)

Rate Of Convergence For A General Sequence Of Durrmeyer Type Operators

Niraj Kumar

Title Page Contents

JJ II

J I

Go Back Close

Quit Page8of23

J. Ineq. Pure and Appl. Math. 5(3) Art. 79, 2004

http://jipam.vu.edu.au

whereQi(x),i= 0,1,2, . . . are certain polynomials inxof at most degreeq.

ThereforeSn,k((t−x)q, x)is given by

1 d−10 d−20 ... d−k0 1 d−11 d−21 ... d−k1 ... .. .. ... ..

... .. .. ... ..

1 d−1k d−2k ... d−kk

−1

×

Q0(x)

(d0n)[(q+1)/2] + (d Q1(x)

0n)[(q+1)/2]+1 +.... d−10 d−20 ... d−k0

Q0(x)

(d1n)[(q+1)/2] + (d Q1(x)

1n)[(q+1)/2]+1 +.... d−11 d−21 ... d−k1 ... .. .. ... ..

... .. .. ... ..

Q0(x)

(dkn)[(q+1)/2] +(d Q1(x)

kn)[(q+1)/2]+1 +.... d−1k d−2k ... d−kk

=n−(k+1){F(q, k, x) +o(1)}, 0≤x <∞.

Lemma 2.3 ([4]). Let1≤p <∞,f ∈Lp[a, b],f(m) ∈AC[a, b]andf(m+1)∈ Lp[a, b], then

f(j)

Lp[a,b] ≤C n

f(m+1)

Lp[a,b]+kfkL

p[a,b]

o , j = 1,2,3, . . . , mandCis a constant depending onj, p, m, a, b.

(9)

Rate Of Convergence For A General Sequence Of Durrmeyer Type Operators

Niraj Kumar

Title Page Contents

JJ II

J I

Go Back Close

Quit Page9of23

J. Ineq. Pure and Appl. Math. 5(3) Art. 79, 2004

http://jipam.vu.edu.au

Lemma 2.4. Let f ∈ Lp[0,∞), p > 1. If f(2k+1) ∈ AC(I1) and f(2k+2) ∈ Lp(I1), then for allnsufficiently large

(2.1) kSn,k(f,·)−fkL

p(I2) ≤C1n−(k+1)n

f(2k+2)

Lp(I2)+kfkL

p[0,∞)

o . Also if f ∈ L1[0,∞), f(2k+1) ∈ L1(I1) with f(2k) ∈ AC(I1) and f(2k+1) ∈ BV(I1), then for allnsufficiently large

(2.2) kSn,k(f,·)−fkL

p(I2)

≤C2n−(k+1)n

f(2k+1)

BV(I1)+

f(2k+1)

L1(I2)+kfkL

1[0,∞)

o . Proof. First letp >1. By the hypothesis, for allt ∈[0,∞)andx∈I2, we have

Sn,k(f, x)−f(x) =

2k+1

X

i=1

f(i)(x)

i! Sn,k((t−x)i, x)

+ 1

(2k+ 1)!Sn,k(φ(t) Z t

x

(t−w)2k+1f(2k+2)(w)dw, x) +Sn,k(F(t, x)(1−φ(t)), x)

=E1+E2+E3, say,

whereφ(t)denotes the characteristic function ofI1and

F(t, x) = f(t)−

2k+1

X

i=0

(t−x)i

i! f(i)(x).

(10)

Rate Of Convergence For A General Sequence Of Durrmeyer Type Operators

Niraj Kumar

Title Page Contents

JJ II

J I

Go Back Close

Quit Page10of23

J. Ineq. Pure and Appl. Math. 5(3) Art. 79, 2004

http://jipam.vu.edu.au

Applying Lemma2.2and Lemma2.3, we have kE1kL

p(I2) ≤C3n−(k+1)

2k+1

X

i=1

f(i) Lp(I2)

≤C4n−(k+1) n

kfkLp(I

2)+

f(2k+2) Lp(I2)

o .

Next we estimate E2. LetHf be the Hardy Littlewood maximal function [10]

off(2k+2)onI1, using Hölder’s inequality and Lemma2.1, we have

|E2| ≤ 1

(2k+ 2)!Sn,k

φ(t)

Z t x

|t−w|2k+1

f(2k+2)(w) dw

, x

≤ 1

(2k+ 2)!Sn,k

φ(t)|t−x|2k+1

Z t x

f(2k+2)(w) dw

, x

≤ 1

(2k+ 2)!Sn,k

φ(t)|t−x|2k+2|Hf(t)|, x

≤ 1

(2k+ 2)!

n Sn,k

φ(t)|t−x|q(2k+2), xo1q

{Sn,k(φ(t)|Hf(t)|p, x)}1p

≤C5n−(k+1)

k

X

j=0

C(j, k) Z b1

a1

(djn−c)

X

v=0

pdjn,v(x)pdjn,v(t)|Hf(t)|pdt

!1p . Next applying Fubini’s theorem, we have

kE2kpL

p(I2)

≤C6n−p(k+1)

k

X

j=0

C(j, k) Z b2

a2

Z b1

a1

(djn−c)

X

v=0

pdjn,v(x)pdjn,v(t)|Hf(t)|pdtdx

(11)

Rate Of Convergence For A General Sequence Of Durrmeyer Type Operators

Niraj Kumar

Title Page Contents

JJ II

J I

Go Back Close

Quit Page11of23

J. Ineq. Pure and Appl. Math. 5(3) Art. 79, 2004

http://jipam.vu.edu.au

≤C6n−p(k+1)

k

X

j=0

C(j, k) Z b1

a1

Z b2

a2

(djn−c)

X

v=0

pdjn,v(x)pdjn,v(t)dx

!

|Hf(t)|pdt

≤C7n−p(k+1)kHfkpL

p(I1) ≤C8n−p(k+1)

f(2k+2)

p Lp(I1). Therefore

kE2kL

p(I2)≤C8n−(k+1)

f(2k+2) Lp(I1).

Fort∈[0,∞)\[a1, b1], x∈I2there exists aδ >0such that|t−x| ≥δ.Thus E3 ≡Sn,k(F(t, x)(1−φ(t)), x))

≤δ−(2k+2)

k

X

j=0

C(j, k)Sdjn |F(t, x)|(t−x)2k+2, x

≤δ−(2k+2)

k

X

j=0

C(j, k)

"

Sdjn |f(t)|(t−x)2k+2, x

+

2k+1

X

i=0

f(i)(x) i! Sdjn

|t−x|2k+2+i, x

#

=E31+E32, say.

Applying Hölder’s inequality and Lemma2.1, we have

|E31| ≤δ−(2k+2)

k

X

j=0

C(j, k)

Sdjn(|f(t)|p, x)

1 p n

Sdjn(|t−x|q(2k+2), x)o1q

(12)

Rate Of Convergence For A General Sequence Of Durrmeyer Type Operators

Niraj Kumar

Title Page Contents

JJ II

J I

Go Back Close

Quit Page12of23

J. Ineq. Pure and Appl. Math. 5(3) Art. 79, 2004

http://jipam.vu.edu.au

≤C9

k

X

j=0

C(j, k)

Sdjn(|f(t)|p, x)

1

p 1

(djn)k+1. Finally by Fubini’s theorem, we obtain

kE31kpL

p(I2) = Z b2

a2

|E31|pdx

≤C9 k

X

j=0

C(j, k)(djn)−p(k+1)

× Z b2

a2

Z 0

(djn−c)pdjn,v(x)pdjn,v(t)|f(t)|pdtdx

≤C10n−p(k+1)kfkpL

p[0,∞). Again by Lemma2.3, we have

kE32kL

p(I2) ≤C11n−(k+1)n kfkL

p(I2)+

f(2k+2) Lp(I2)

o . Thus

kE3kL

p(I2) ≤C12n−(k+1)n kfkL

p[0,∞)+

f(2k+2) Lp(I2)

o . Combining the estimates ofE1, E2, E3, we get (2.1).

Next suppose p = 1. By the hypothesis, for almost all x ∈ I2 and for all

(13)

Rate Of Convergence For A General Sequence Of Durrmeyer Type Operators

Niraj Kumar

Title Page Contents

JJ II

J I

Go Back Close

Quit Page13of23

J. Ineq. Pure and Appl. Math. 5(3) Art. 79, 2004

http://jipam.vu.edu.au

t ∈[0,∞), we have Sn,k(f, x)−f(x) =

2k+1

X

i=1

f(i)(x)

i! Sn,k((t−x)i, x)

+ 1

(2k+ 1)!Sn,k(φ(t) Z t

x

(t−w)2k+1f(2k+1)(w)dw, x) +Sn,k(F(t, x)(1−φ(t)), x)

=M1+M2+M3, say,

whereφ(t)denotes the characteristic function ofI1 and F(t, x) = f(t)−

2k+1

X

i=0

(t−x)i

i! f(i)(x), for almost allx∈I2 andt∈[0,∞).

Applying Lemma2.2and Lemma2.3, we have kM1kL

1(I2)≤C13n−(k+1) n

kfkL

1(I2)+

f(2k+1) L1(I2)

o . Next, we have

kM2kL

1(I2)

≤ 1

(2k+ 1)!

k

X

j=0

|C(j, k)|

Z b2

a2

Z b1

a1

(djn−c)

X

v=0

pdjn,v(x)pdjn,v(t)|t−x|2k+1

×

Z t x

df(2k+1)(w)

dtdx.

(14)

Rate Of Convergence For A General Sequence Of Durrmeyer Type Operators

Niraj Kumar

Title Page Contents

JJ II

J I

Go Back Close

Quit Page14of23

J. Ineq. Pure and Appl. Math. 5(3) Art. 79, 2004

http://jipam.vu.edu.au

For eachdjnthere exists a non negative integerr=r(djn)satisfying r(djn)−1/2 <max(b1−a2, b2−a1)≤(r+ 1)(djn)−1/2. Thus

kM2kL

1(I2) ≤ 1 (2k+ 1)!

k

X

j=0

|C(j, k)|

r

X

l=0

Z b2

a2

(Z x+(l+1)(djn)−1/2 x+(l)(djn)−1/2

φ(t)(djn−c)

.

X

v=0

pdjn,v(x)pdjn,v(t)|t−x|2k+1

) Z x+(l+1)(djn)−1/2 x

φ(w)

df(2k+1)(w)

! dtdx

+ 1

(2k+ 1)!

k

X

j=0

|C(j, k)|

r

X

l=0

Z b2

a2

(Z x−(l)(djn)−1/2 x+(l+1)(djn)−1/2

φ(t)(djn−c)

×

X

v=0

pdjn,v(x)pdjn,v(t)|t−x|2k+1 )

· Z x

x−(l+1)(djn)−1/2

φ(w)

df(2k+1)(w)

! dtdx.

Supposeφx,c,s(w)denotes the characteristic function of the interval

x−c(djn)−1/2, x+s(djn)−1/2

, wherec, sare nonnegative integers. Then we have kM2kL

1(I2)

≤ 1

(2k+ 1)!

k

X

j=0

|C(j, k)|

r

X

l=1

Z b2

a2

(Z x+(l+1)(djn)−1/2

x+(l)(djn)−1/2

φ(t)(djn)2(djn−c)

×

X

v=0

pdjn,v(x)pdjn,v(t)l−4|t−x|2k+5 )

(15)

Rate Of Convergence For A General Sequence Of Durrmeyer Type Operators

Niraj Kumar

Title Page Contents

JJ II

J I

Go Back Close

Quit Page15of23

J. Ineq. Pure and Appl. Math. 5(3) Art. 79, 2004

http://jipam.vu.edu.au

×

Z x+(l+1)(djn)−1/2 x

φ(w)φx,0,l+1(w)

df(2k+1)(w)

! dtdx

+ 1

(2k+ 1)!

k

X

j=0

|C(j, k)|

r

X

l=1

Z b2

a2

(Z x−(l)(djn)−1/2

x+(l+1)(djn)−1/2

φ(t)(djn)2(djn−c).

×

X

v=0

bdjn,v(x)pdjn,v(t)l−4|t−x|2k+5 )

× Z x

x−(l+1)(djn)−1/2

φ(w)φx,l+1,0(w)

df(2k+1)(w)

! dtdx

× 1

(2k+ 1)!

k

X

j=0

|C(j, k)|

Z b2

a2

(Z a1+(djn)−1/2 (djn)−1/2

φ(t)(djn−c)

×

X

v=0

pdjn,v(x)pdjn,v(t)|t−x|2k+1 )

×

Z x+(djn)−1/2 x−(djn)−1/2

φ(w)φx,1,1(w)

df(2k+1)(w)

! dtdx

≤ 1

(2k+ 1)!

k

X

j=0

|C(j, k)|

r

X

l=1

l−4 Z b2

a2

(Z x+(l+1)(djn)−1/2 x+(l)(djn)−1/2

φ(t)(djn−c)

×

X

v=0

pdjn,v(x)pdjn,v(t)|t−x|2k+5 )

(16)

Rate Of Convergence For A General Sequence Of Durrmeyer Type Operators

Niraj Kumar

Title Page Contents

JJ II

J I

Go Back Close

Quit Page16of23

J. Ineq. Pure and Appl. Math. 5(3) Art. 79, 2004

http://jipam.vu.edu.au

× Z b1

a1

φx,0,l+1(w)

df(2k+1)(w)

dtdx

+ 1

(2k+ 1)!

k

X

j=0

|C(j, k)|

r

X

l=1

l−4 Z b2

a2

(Z x−(l)(djn)−1/2

x+(l+1)(djn)−1/2

φ(t)(djn−c)

×

X

v=0

pdjn,v(x)pdjn,v(t)|t−x|2k+5 )

× Z b1

a1

φx,l+1,0(w)

df(2k+1)(w)

dtdx

+ 1

(2k+ 1)!

k

X

j=0

|C(j, k)|

Z b2

a2

(Z a1+(djn)−1/2

(djn)−1/2

φ(t)(djn−c)

×

X

v=0

pdjn,v(x)pdjn,v(t)|t−x|2k+1 )

× Z b1

a1

φ(w)φx,1,1(w)

df(2k+1)(w)

dtdx.

Applying Lemma2.1and using Fubini’s theorem we get kM2kL

1(I2)

≤C14 k

X

j=0

|C(j, k)|(djn)2k+12

r

X

l=1

l−4 Z b2

a2

Z b1

a1

φx,0,l+1(w)

df(2k+1)(w) dx

(17)

Rate Of Convergence For A General Sequence Of Durrmeyer Type Operators

Niraj Kumar

Title Page Contents

JJ II

J I

Go Back Close

Quit Page17of23

J. Ineq. Pure and Appl. Math. 5(3) Art. 79, 2004

http://jipam.vu.edu.au

+C14

k

X

j=0

|C(j, k)|(djn)2k+12

r

X

l=1

l−4 Z b2

a2

Z b1

a1

φx,l+1,0(w)

df(2k+1)(w) dx +

Z b1

a1

φx,1,1(w)

df(2k+1)(w) dx

≤C14 k

X

j=0

|C(j, k)|(djn)2k+12

r

X

l=1

l−4 Z b1

a1

Z b2

a2

φx,0,l+1(w)dx

df(2k+1)(w)

+C14

k

X

j=0

|C(j, k)|(djn)2k+12

r

X

l=1

l−4 Z b1

a1

Z b2

a2

φx,l+1,0(w)

df(2k+1)(w) dx +

Z b2

a2

φx,1,1(w)

df(2k+1)(w) dx

≤C15

k

X

j=0

|C(j, k)|(djn)2k+12

r

X

l=1

l−4 (Z b1

a1

Z w

w−(l+1)(djn)12

dx

!

df(2k+1)(w)

)

+C15

k

X

j=0

|C(j, k)|(djn)2k+12

r

X

l=1

l−4 Z b1

a1

Z w+(l+1)(djn)12 w

dx

df(2k+1)(w)

+ Z b1

a1

Z w+(djn)12 w−(djn)12

dx

df(2k+1)(w)

≤C16n−(k+1)

f(2k+1)

B.V.(I1).

Finally we estimate M3. It is sufficient to choose the expression without the

(18)

Rate Of Convergence For A General Sequence Of Durrmeyer Type Operators

Niraj Kumar

Title Page Contents

JJ II

J I

Go Back Close

Quit Page18of23

J. Ineq. Pure and Appl. Math. 5(3) Art. 79, 2004

http://jipam.vu.edu.au

linear combinations. For all t ∈ [0,∞)\[a1, b1] and all x ∈ I2, we choose a δ >0such that|t−x| ≥δ. Thus

kSn(F(t, x)(1−φ(t)), x)kL

1(I2)

≤ Z b2

a2

Z 0

(n−c)

X

v=0

pn,v(x)pn,v(t)|f(t)|(1−φ(t))dtdx

2k+1

X

i=0

1 i!

Z b2

a2

Z 0

(n−c)

X

v=0

pn,v(x)pn,v(t)

f(i)(t)

.|t−x|i(1−φ(t))dtdx

=M4+M5, say.

For sufficiently largetthere exist positive constantsC17, C18such that(t−x)t2k+22k+2+1 >

C17for allt≥C18, t∈I2. Applying Fubini’s theorem and Lemma2.1, we ob- tain

M4 =

Z C18

0

Z b2

a2

+ Z

C18

Z b2

a2

X

v=0

(n−c)pn,v(x)pn,v(t)|f(t)|(1−φ(t))dtdx

≤C19n−(k+1)

Z C20

0

|f(t)|dt

+ 1 C17

Z C20

Z b2

a2

X

v=0

pn,v(x)pn,v(t)(t−x)2k+2

(t2k+2+ 1)|f(t)|dxdt

≤C20n−(k+1)

Z C20

0

|f(t)|dt

+ Z

C20

|f(t)|dt

≤C21n−(k+1)kfkL

1[0,∞).

(19)

Rate Of Convergence For A General Sequence Of Durrmeyer Type Operators

Niraj Kumar

Title Page Contents

JJ II

J I

Go Back Close

Quit Page19of23

J. Ineq. Pure and Appl. Math. 5(3) Art. 79, 2004

http://jipam.vu.edu.au

Finally by the Lemma2.3, we have M5 ≤C22n−(k+1)n

kfkL

1(I2)+

f(2k+1) L1(I2)

o . CombiningM4andM5, we obtain

M3 ≤C23n−(k+1)n kfkL

1[0,∞)+

f(2k+1) L1(I2)

o . This completes the proof of (2.2) of the lemma.

(20)

Rate Of Convergence For A General Sequence Of Durrmeyer Type Operators

Niraj Kumar

Title Page Contents

JJ II

J I

Go Back Close

Quit Page20of23

J. Ineq. Pure and Appl. Math. 5(3) Art. 79, 2004

http://jipam.vu.edu.au

3. Rate Of Convergence

Theorem 3.1. Letf ∈Lp[0,∞), p≥1. Then fornsufficiently large kSn,k(f,·)−fkL

p(I2)≤C24

n

ω2k+2(f, n−1/2, p, I1) +n−(k+1)kfkLp[0,∞)o , whereC24is a constant independent off andn.

Proof. We can write kSn,k(f,∗)−fkL

p(I2)

≤ kSn,k(f−fη,2k+2,∗)kL

p(I2)

+kSn,k(fη,2k+2,∗)−fη,2k+2)kL

p(I2)+k(fη,2k+2−f)k

Lp(I2)

=E1+E2+E3, say.

It is well known that fη,2k+2(2k+1)

B.V.(I3)

= fη,2k+2(2k+2)

L1(I3)

. Therefore from Lemma2.4(p >1)and(p= 1)we have

E2 ≤C25n−(k+1)

fη,2k+2(2k+2)

Lp(I3)+kfη,2k+2kL

p[0,∞)

≤C26n−(k+1)

n−(k+2)ω2k+2(f, η, p, I1) +kfkL

p[0,∞)

, which follows from the properties of Steklov means.

(21)

Rate Of Convergence For A General Sequence Of Durrmeyer Type Operators

Niraj Kumar

Title Page Contents

JJ II

J I

Go Back Close

Quit Page21of23

J. Ineq. Pure and Appl. Math. 5(3) Art. 79, 2004

http://jipam.vu.edu.au

Letφ(t)be the characteristic function ofI3, we have Sn((f−fη,2k+2)(t), x)

=Sn(φ(t)(f −fη,2k+2)(t), x) +Sn((1−φ(t))(f−fη,2k+2)(t), x)

=E4+E5, say.

By Hölder’s inequality Z b2

a2

|E4|pdx≤ Z b2

a2

Z b1

a1

(n−c)

X

v=0

pn,v(x)pn,v(t)|(f−fη,2k+2)(t)|pdtdx.

Applying Fubini’s theorem, we have Z b2

a2

|E4|pdx≤ kf −fη,2k+2kLp(I

2). Similarly, for allp≥1

kE5k

Lp(I2)

≤C27η−(k+1)kf −fη,2k+2kLp(0,∞). Consequently, via the property of Steklov means, we find that kSn(f −f η,2k+ 2,·)kLp(I2) ≤C28n

ω2k+2(f, η, p, I1) +η−(k+1)kfkLp[0,∞)o . Hence

E1 ≤C29n

ω2k+2(f, η, p, I1) +η−(k+1)kfkLp[0,∞)o . Thus, withη=n−1/2, the result follows.

This completes the proof of the theorem.

(22)

Rate Of Convergence For A General Sequence Of Durrmeyer Type Operators

Niraj Kumar

Title Page Contents

JJ II

J I

Go Back Close

Quit Page22of23

J. Ineq. Pure and Appl. Math. 5(3) Art. 79, 2004

http://jipam.vu.edu.au

References

[1] J.L. DURRMEYER, Une Formula d’ inversion de la Transformee de Laplace: Application a la Theorie des Moments, These de 3c cycle, Fac- ulte des Science de l’ University de Paris, 1967.

[2] S. GOLDBERG ANDV. MEIR, Minimum moduli of ordinary differential operators, Proc. London Math. Soc., 23 (3) (1971), 1–15.

[3] S. GUO, On the rate of convergence of Durrmeyer operator for functions of bounded variation, J. Approx. Theory, 51(1987), 183–192.

[4] V. GUPTA, Simultaneous approximation by Szasz-Durrmeyers operators, The Math. Student, 64 (1-4) (1995), 27–36.

[5] V. GUPTA, A note on modified Baskakov operators, Approx.Theory and its Appl., 10(3) (1994), 74–78.

[6] E. HEWITTANDK. STROMBERG, Real and Abstract Analysis, McGraw Hill, New York (1956).

[7] C.P. MAY, Saturation and inverse theorem for combination of a class of exponential type operators, Canad. J. Math., 28 (1976), 1224–1250.

[8] R.P. SINHA, P.N. AGRAWALANDV. GUPTA, On simultaneous approx- imation by modified Baskakov operators, Bull Soc. Math Belg. Ser. B., 44 (1991), 177–188.

[9] H.M. SRIVASTAVAANDV. GUPTA, A certain family of summation inte- gral type operators, Math and Comput. Modelling, 37 (2003), 1307–1315.

(23)

Rate Of Convergence For A General Sequence Of Durrmeyer Type Operators

Niraj Kumar

Title Page Contents

JJ II

J I

Go Back Close

Quit Page23of23

J. Ineq. Pure and Appl. Math. 5(3) Art. 79, 2004

http://jipam.vu.edu.au

[10] A.F. TIMAN, Theory of Approximation of Functions of a Real Variable, Hindustan Publ. Corp., Delhi 1966.

[11] Y. WANG AND S. GUO, Rate of approximation of function of bounded variation by modified Lupas operators, Bull. Austral. Math. Soc., 44 (1991), 177–188.

参照

関連したドキュメント

It is suggested by our method that most of the quadratic algebras for all St¨ ackel equivalence classes of 3D second order quantum superintegrable systems on conformally flat

For instance, Racke &amp; Zheng [21] show the existence and uniqueness of a global solution to the Cahn-Hilliard equation with dynamic boundary conditions, and later Pruss, Racke

This paper develops a recursion formula for the conditional moments of the area under the absolute value of Brownian bridge given the local time at 0.. The method of power series

Abstract. Recently, the Riemann problem in the interior domain of a smooth Jordan curve was solved by transforming its boundary condition to a Fredholm integral equation of the

“rough” kernels. For further details, we refer the reader to [21]. Here we note one particular application.. Here we consider two important results: the multiplier theorems

Then it follows immediately from a suitable version of “Hensel’s Lemma” [cf., e.g., the argument of [4], Lemma 2.1] that S may be obtained, as the notation suggests, as the m A

Our method of proof can also be used to recover the rational homotopy of L K(2) S 0 as well as the chromatic splitting conjecture at primes p &gt; 3 [16]; we only need to use the

In this paper we focus on the relation existing between a (singular) projective hypersurface and the 0-th local cohomology of its jacobian ring.. Most of the results we will present