• 検索結果がありません。

NCL30085 Power Factor Corrected Quasi-Resonant Primary Side Current-Mode Controller for LED Lighting with Line Step Dimming and Thermal Foldback

N/A
N/A
Protected

Academic year: 2022

シェア "NCL30085 Power Factor Corrected Quasi-Resonant Primary Side Current-Mode Controller for LED Lighting with Line Step Dimming and Thermal Foldback"

Copied!
29
0
0

読み込み中.... (全文を見る)

全文

(1)

Power Factor Corrected Quasi-Resonant Primary Side Current-Mode

Controller for LED Lighting with Line Step Dimming and Thermal Foldback

The NCL30085 is a power factor corrected flyback controller targeting isolated and non−isolated constant current LED drivers. The controller operates in a quasi−resonant mode to provide optimal efficiency. Thanks to a novel control method, the device is able to tightly regulate a constant LED current from the primary side. This removes the need for secondary side feedback circuitry, biasing and an optocoupler.

The device is highly integrated with a minimum number of external components. A robust suite of safety protection is built in to simplify the design. This device is specifically intended for very compact, space efficient designs and supports 3 levels of log step dimming which allows light output reduction by toggling the main AC switch on and off to signal the controller to reduce the LED current point down to 5% of full load.

Features

Quasi−resonant Peak Current−mode Control Operation

Constant Current Control with Primary Side Feedback

Tight LED Constant Current Regulation of ±2% Typical

Power Factor Correction

3 Step Dimming (70/25/5%)

Line Feedforward for Enhanced Regulation Accuracy

Low Start−up Current (10 mA typ.)

Wide Vcc Range

300 mA / 500 mA Totem Pole Driver with 12 V Gate Clamp

Robust Protection Features

OVP on VCC

Programmable Over Voltage / LED Open Circuit Protection

Cycle−by−cycle Peak Current Limit

Winding Short Circuit Protection

Secondary Diode Short Protection

Output Short Circuit Protection

Current Sense Short Protection

User Programmable NTC Based Thermal Foldback

Thermal Shutdown

Vcc Undervoltage Lockout

Brown−out Protection

Pb−Free, Halide−Free MSL1 Product Typical Applications

Integral LED Bulbs and Tubes

LED Light Engines

LED Drivers/Power Supplies

www.onsemi.com

SOIC−8 NB CASE 751

PIN CONNECTIONS MARKING DIAGRAM

(Top View)

L30085x = Specific Device Code x = A, B

A = Assembly Location L = Wafer Lot

Y = Year

W = Work Week G = Pb-Free Package

See detailed ordering and shipping information in the package dimensions section on page 26 of this data sheet.

ORDERING INFORMATION VCC DRV GND 1

CS VS

COMP ZCD

SD

1 8

L30085x ALYW

G 1 8

(2)

1 2 3

4 5

8

6 7

. . Aux

.

NCL30085

sense

R

Figure 1. Typical Application Schematic for NCL30085

Table 1. PIN FUNCTION DESCRIPTION

Pin No Pin Name Function Pin Description

1 ZCD Zero Crossing Detection Connected to the auxiliary winding, this pin detects the core reset event.

2 VS Input Voltage Sensing This pin observes the input voltage rail and protects the LED driver in case of too low mains conditions (brown−out).

This pin also observes the input voltage rail for:

− Power Factor Correction

− Valley lockout

− Step dimming

3 COMP Filtering Capacitor This pin receives a filtering capacitor for power factor correction. Typical values ranges from 1 − 4.70 mF

4 SD Thermal Foldback and

Shutdown

Connecting an NTC to this pin allows the user to program thermal current fold- back threshold and slope. A Zener diode can also be used to pull−up the pin and stop the controller for adjustable OVP protection.

5 CS Current Sense This pin monitors the primary peak current.

6 GND Controller ground pin.

7 DRV Driver Output The driver’s output to an external MOSFET

8 VCC IC Supply Pin This pin is the positive supply of the IC. The circuit starts to operate when VCC exceeds 18 V and turns off when VCC goes below 8.8 V (typical values). After start−up, the operating range is 9.4 V up to 26 V (VCC (OVP ) minimum level).

(3)

Internal Circuit Architecture

SD Thermal

Foldback

Over Temp. Protection Over Voltage Protection

ZCD Zero Crossing Detection Logic

(ZCD Blanking, Time−Out, ...) Valley Selection

CS Power Factor and

Constant−Current Control Leading

Edge Blanking

Winding and Output diode Short Circuit Protection Max. Peak Current Limit

Ipkmax

WOD_SCP DRV

VCC Management

VCC

DRV VCC Over Voltage

Protection

VCC Internal

Thermal Shutdown (Auto−recovery or Latched)

Fault Management

Clamp Circuit

VS Brown−Out

BO_NOK S

R Q Q

CS_reset

STOP

UVLO OFF

Latch

STOP WOD_SCP BO_NOK

GND STOP

Aux. Winding Short Circuit Prot. Aux_SCP Aux_SCP

VCC_max

FF_mode

V Line

feed−forward

VS VVS

Ipkmax

VTF VTF

VREF VDD

VREF VVS

Enable

CS Short Protection

CS_ok

CS_ok

VREF Frequency Foldback

FF_mode

STEP_DIM Maximum on time

VREFX VREFX

UVLO ton,max

on,max t

Dimming control VVS VREFX

COMP

Figure 2. Internal Circuit Architecture

(Auto−recovery or Latched)

(4)

VCC(MAX) ICC(MAX)

Maximum Power Supply voltage, VCC pin, continuous voltage Maximum current for VCC pin

−0.3 to 30 Internally limited

V mA VDRV(MAX)

IDRV(MAX)

Maximum driver pin voltage, DRV pin, continuous voltage Maximum current for DRV pin

−0.3, VDRV (Note 1)

−300, +500

V mA VMAX

IMAX

Maximum voltage on low power pins (except DRV and VCC pins) Current range for low power pins (except DRV and VCC pins)

−0.3, 5.5 (Notes 2 and 5)

−2, +5

V mA

RθJ−A Thermal Resistance Junction−to−Air 180 °C/W

TJ(MAX) Maximum Junction Temperature 150 °C

Operating Temperature Range −40 to +125 °C

Storage Temperature Range −60 to +150 °C

ESD Capability, HBM model (Note 3) 3.5 kV

ESD Capability, MM model (Note 3) 250 V

ESD Capability, CDM model (Note 3) 2 kV

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. VDRV is the DRV clamp voltage VDRV(high) when VCC is higher than VDRV(high). VDRV is VCC otherwise.

2. This level is low enough to guarantee not to exceed the internal ESD diode and 5.5−V Zener diode. More positive and negative voltages can be applied if the pin current stays within the −2−mA / 5−mA range.

3. This device contains ESD protection and exceeds the following tests: Human Body Model 3500 V per JEDEC Standard JESD22−A114E, Machine Model Method 250 V per JEDEC Standard JESD22−A115B, Charged Device Model 2000 V per JEDEC Standard JESD22−C101E.

4. This device contains latch−up protection and has been tested per JEDEC Standard JESD78D, Class I and exceeds ±100 mA 5. Recommended maximum VS voltage for optimal operation is 4 V. −0.3 V to +4.0 V is hence, the VS pin recommended range.

Table 3. ELECTRICAL CHARACTERISTICS (Unless otherwise noted: For typical values TJ = 25°C, VCC = 12 V, VZCD = 0 V, VCS = 0 V, VSD = 1.5 V) For min/max values TJ = −40°C to +125°C, VCC = 12 V)

Description Test Condition Symbol Min Typ Max Unit

STARTUP AND SUPPLY CIRCUITS Supply Voltage

Startup Threshold

Minimum Operating Voltage Hysteresis VCC(on) – VCC(off) Internal logic reset

VCC rising VCC rising VCC falling

VCC(on) VCC(off) VCC(HYS) VCC(reset)

16.0 8.2 8 4

18.0 8.8

5

20.0 9.4

6

V

VCC Over Voltage Protection Threshold VCC(OVP) 25.5 26.8 28.5 V

VCC(off) noise filter VCC(reset) noise filter

tVCC(off) tVCC(reset)

5 20

ms

Startup current ICC(start) 13 30 mA

Startup current in fault mode ICC(sFault) 58 75 mA

Supply Current Device Disabled/Fault

Device Enabled/No output load on pin 7 Device Switching (FSW = 65 kHz)

VCC > VCC(off) Fsw = 65 kHz CDRV = 470 pF, Fsw = 65 kHz

ICC1 ICC2 ICC3

0.8

1.0 2.5 3.0

1.2 4.0 4.5

mA

CURRENT SENSE

Maximum Internal current limit VILIM 0.95 1.00 1.05 V

Leading Edge Blanking Duration for VILIM tLEB 240 300 360 ns

Line feed−forward current DRV high, VVS = 2 V IFF 35 40 45 mA

6. Guaranteed by Design

7. A NTC is generally placed between the SD and GND pins. Parameters RTF(start), RTF(stop), ROTP(off) andROTP(on) give the resistance the NTC must exhibit to respectively, enter thermal foldback, stop thermal foldback, trigger the OTP limit and allow the circuit recovery after an OTP situation.

(5)

Table 3. ELECTRICAL CHARACTERISTICS (Unless otherwise noted: For typical values TJ = 25°C, VCC = 12 V, VZCD = 0 V, VCS = 0 V, VSD = 1.5 V) For min/max values TJ = −40°C to +125°C, VCC = 12 V)

Description Test Condition Symbol Min Typ Max Unit

CURRENT SENSE

Propagation delay from current detection to gate off−state

tILIM 100 150 ns

Maximum on−time ton(MAX) 26 36 46 ms

Threshold for immediate fault protection activation VCS(stop) 1.35 1.50 1.65 V

Leading Edge Blanking Duration for VCS(stop) tBCS 150 ns

Current source for CS to GND short detection ICS(short) 400 500 600 mA

Current sense threshold for CS to GND short de- tection

VCS rising VCS(low) 30 65 100 mV

GATE DRIVE Drive Resistance

DRV Sink DRV Source

RSNK RSRC

13 30

W

Drive current capability DRV Sink (Note 6) DRV Source (Note 6)

ISNK ISRC

500 300

mA

Rise Time (10% to 90%) CDRV = 470 pF tr 40 ns

Fall Time (90% to 10%) CDRV = 470 pF tf 30 ns

DRV Low Voltage VCC = VCC(off)+0.2 V

CDRV = 470 pF, RDRV=33 kW

VDRV(low) 8 V

DRV High Voltage VCC = VCC(MAX)

CDRV = 470 pF, RDRV=33 kW

VDRV(high) 10 12 14 V

ZERO VOLTAGE DETECTION CIRCUIT

Upper ZCD threshold voltage VZCD rising VZCD(rising) 90 150 mV

Lower ZCD threshold voltage VZCD falling VZCD(falling) 35 55 mV

ZCD hysteresis VZCD(HYS) 15 mV

Propagation Delay from valley detection to DRV high VZCD falling TDEM 100 300 ns Blanking delay after on−time VREFX > 30% VREF TZCD(blank1) 1.12 1.50 1.88 ms Blanking Delay at light load VREFX < 25% VREF TZCD(blank2) 0.56 0.75 0.94 ms

Timeout after last DEMAG transition TTIMO 5.0 6.5 8.0 ms

Pulling−down resistor VZCD = VZCD(falling) RZCD(PD) 200 kW

CONSTANT CURRENT AND POWER FACTOR CONTROL

Reference Voltage at TJ = 25°C VREF 245 250 255 mV

Reference Voltage TJ = 25°C to 100°C VREF 242.5 250.0 257.5 mV

Reference Voltage TJ = −40°C to 125°C VREF 240 250 260 mV

Current sense lower threshold VCS falling VCS(low) 20 50 100 mV

Vcontrol to current setpoint division ratio Vratio 4

Error amplifier gain VREFX=VREF (no dimming)

VREFX=25%* VREF

GEA 40 50

200

60 mS

6. Guaranteed by Design

7. A NTC is generally placed between the SD and GND pins. Parameters RTF(start), RTF(stop), ROTP(off) andROTP(on) give the resistance the NTC must exhibit to respectively, enter thermal foldback, stop thermal foldback, trigger the OTP limit and allow the circuit recovery after an OTP situation.

8. At startup, when V reaches V , the controller blanks OTP for more than 250 ms to avoid detecting an OTP fault by allowing the

(6)

Description Test Condition Symbol Min Typ Max Unit CONSTANT CURRENT AND POWER FACTOR CONTROL

Error amplifier current capability VREFX=VREF (no dimming) VREFX=25%* VREF

IEA ±60

±240

mA

COMP Pin Start−up Current Source No dimming, COMP pin grounded

IEA_STUP 140 mA

LINE FEED FORWARD

VVS to ICS(offset) conversion ratio KLFF 18 20 22 mS

Line feed−forward current on CS pin DRV high, VVS = 2 V IFF 35 40 45 mA

Offset current maximum value VVS > 5 V Ioffset(MAX) 80 100 120 mA

VALLEY LOCKOUT SECTION

Threshold for high− line range (HL) detection VVS rising VHL 2.28 2.40 2.52 V Threshold for low−line range (LL) detection VVS falling VLL 2.18 2.30 2.42 V

Blanking time for line range detection tHL(blank) 15 25 35 ms

Valley Lockout

First step valley in High−Line.

Second step valley in High−Line.

Third step valley in High−Line.

First step valley in Low−Line.

Second step valley in Low−Line.

Third step valley in Low−Line.

VHL100%

VHL70%

VHL25%

VLL100%

VLL70%

VLL25%

2 3 6 1 2 5 FREQUENCY FOLDBACK

Additional dead time VREFX = 25%*VREF tFF1LL 1.4 2.0 2.6 ms

Additional dead time VREFX = 5%*VREF tFF2HL 40 ms

FAULT PROTECTION

Thermal Shutdown (Note 6) FSW = 65 kHz TSHDN 130 150 170 _C

Thermal Shutdown Hysteresis TSHDN(HYS) 50 _C

Threshold voltage for output short circuit or aux.

winding short circuit detection

VZCD(short) 0.8 1.0 1.2 V

Short circuit detection Timer VZCD < VZCD(short) tOVLD 70 90 110 ms

Auto−recovery timer duration trecovery 3 4 5 s

SD pin Clamp series resistor RSD(clamp) 1.6 kW

Clamped voltage SD pin open VSD(clamp) 1.13 1.35 1.57 V

SD pin detection level for OVP VSD rising VOVP 2.35 2.50 2.65 V

Delay before OVP or OTP confirmation (OVP and OTP)

TSD(delay) 22.5 30.0 37.5 ms Reference current for direct connection of an NTC

(Note 8)

IOTP(REF) 80 85 90 mA

Fault detection level for OTP (Note 7) VSD falling VOTP(off) 0.47 0.50 0.53 V SD pin level for operation recovery after an OTP

detection

VSD rising VOTP(on) 0.66 0.70 0.74 V

6. Guaranteed by Design

7. A NTC is generally placed between the SD and GND pins. Parameters RTF(start), RTF(stop), ROTP(off) andROTP(on) give the resistance the NTC must exhibit to respectively, enter thermal foldback, stop thermal foldback, trigger the OTP limit and allow the circuit recovery after an OTP situation.

8. At startup, when VCC reaches VCC(on), the controller blanks OTP for more than 250 ms to avoid detecting an OTP fault by allowing the SD pin voltage to reach its nominal value if a filtering capacitor is connected to the SD pin.

(7)

Table 3. ELECTRICAL CHARACTERISTICS (Unless otherwise noted: For typical values TJ = 25°C, VCC = 12 V, VZCD = 0 V, VCS = 0 V, VSD = 1.5 V) For min/max values TJ = −40°C to +125°C, VCC = 12 V)

Description Test Condition Symbol Min Typ Max Unit

FAULT PROTECTION

OTP blanking time when circuit starts operating (Note 8)

tOTP(start) 250 370 ms

SD pin voltage at which thermal fold−back starts (VREF is decreased)

VTF(start) 0.94 1.00 1.06 V

SD pin voltage at which thermal fold−back stops (VREF is clamped to VREF50)

VTF(stop) 0.64 0.69 0.74 V

VTF(start) over IOTP(REF) ratio (Note 7) TJ = +25°C to +125°C RTF(start) 10.8 11.7 12.6 kW VTF(stop) over IOTP(REF) ratio (Note 7) TJ = +25°C to +125°C RTF(stop) 7.4 8.1 8.8 kW VOTP(off) over IOTP(REF) ratio (Note 7) TJ = +25°C to +125°C ROTP(off) 5.4 5.9 6.4 kW VOTP(on) over IOTP(REF) ratio (Note 7) TJ = +25°C to +125°C ROTP(on) 7.5 8.1 8.7 kW VREFX @ VSD = 600 mV (percent of VREF) SD pin falling, no OTP

detection

VREF(50) 40 50 60 %

BROWN−OUT

Brown−Out ON level (IC start pulsing) VS rising VBO(on) 0.95 1.00 1.05 V

Brown−Out OFF level (IC shuts down) VS falling VBO(off) 0.85 0.90 0.95 V

BO comparators delay tBO(delay) 30 ms

Brown−Out blanking time tBO(blank) 15 25 35 ms

VS pin Pulling−down Current VS = VBO(on) IBO(bias) 50 250 450 nA

Step Dimming Reset Time VS < VBO(off) tstep−reset 2.4 3.2 4.0 s

6. Guaranteed by Design

7. A NTC is generally placed between the SD and GND pins. Parameters RTF(start), RTF(stop), ROTP(off) andROTP(on) give the resistance the NTC must exhibit to respectively, enter thermal foldback, stop thermal foldback, trigger the OTP limit and allow the circuit recovery after an OTP situation.

8. At startup, when VCC reaches VCC(on), the controller blanks OTP for more than 250 ms to avoid detecting an OTP fault by allowing the SD pin voltage to reach its nominal value if a filtering capacitor is connected to the SD pin.

(8)

Figure 3. VCC Start−up Threshold vs.

Temperature

Figure 4. VCC Minimum Operating Voltage vs.

Temperature

TJ, JUNCTION TEMPERATURE (°C) TJ, JUNCTION TEMPERATURE (°C) 125

100 75 50 25 0

−25

−50 16.0 16.5 17.0 17.5 18.0 19.0 19.5

125 100 75 50 25 0

−25

−50 8.2 8.3 8.5 8.7 8.9 9.0 9.2

Figure 5. Hysteresis (VCC(on) − VCC(off)) vs.

Temperature

Figure 6. VCC(reset) vs. Temperature TJ, JUNCTION TEMPERATURE (°C) TJ, JUNCTION TEMPERATURE (°C)

125 100 75 50 25 0

−25

−50 7.5 8.0 8.5 9.0 9.5 10.5 11.0 11.5

125 100 75 50 25 0

−25

−50 4.0 4.2 4.6 4.8 5.0 5.4 5.8 6.0

VCC(on) (V) VCC(off) (V)

VCC(hys) (V) VCC(reset) (V)

150 18.5

150 8.4

8.6 8.8 9.1 9.3

150 10.0

150 4.4

5.2 5.6

(9)

TYPICAL CHARACTERISTICS

Figure 7. VCC Over Voltage Protection Threshold vs. Temperature

Figure 8. Start−up Current vs. Temperature TJ, JUNCTION TEMPERATURE (°C) TJ, JUNCTION TEMPERATURE (°C)

125 100 75 50 25 0

−25

−50 25.6 26.0 26.2 26.6 27.0 27.4 27.6 28.0

125 100 75 50 25 0

−25

−50 0 5 10 15 20 30 35 40

Figure 9. Start−up Current in Fault Mode vs.

Temperature

Figure 10. ICC1 vs. Temperature TJ, JUNCTION TEMPERATURE (°C) TJ, JUNCTION TEMPERATURE (°C)

125 100 75 50 25 0

−25

−50 0 25 50 75 100 125 150

125 100 75 50 25 0

−25

−50 0.4 0.6 0.8 1.0 1.2 1.6 1.8 2.0

Figure 11. ICC2 vs. Temperature Figure 12. ICC3 vs. Temperature TJ, JUNCTION TEMPERATURE (°C) TJ, JUNCTION TEMPERATURE (°C)

125 100 75 50 25 0

−25

−50 1.2 1.6 2.0 2.4 2.6 3.0 3.4 3.8

125 100 75 50 25 0

−25

−50 1.0 1.5 2.0 2.5 3.0 4.0 4.5 5.0

VCC(ovp) (V) ICC(start) (mA)

ICC(sfault) (mA) ICC1 (mA)

ICC2 (mA) ICC3 (mA)

150 25.8

26.4 26.8 27.2 27.8

150 25

150 150

1.4

150 1.4

1.8 2.2 2.8 3.2 3.6

150 3.5

(10)

Figure 13. Maximum Internal Current Limit vs.

Temperature

Figure 14. Leading Edge Blanking vs.

Temperature

TJ, JUNCTION TEMPERATURE (°C) TJ, JUNCTION TEMPERATURE (°C) 125

100 75 50 25 0

−25

−50 0.95 0.97 0.98 1.00 1.03

125 100 75 50 25 0

−25

−50 200 220 240 260 280 320 340

Figure 15. Current Limit Propagation Delay vs.

Temperature

Figure 16. Maximum On−time vs. Temperature TJ, JUNCTION TEMPERATURE (°C) TJ, JUNCTION TEMPERATURE (°C)

125 100 75 50 25 0

−25

−50 0 10 50 70 100 120 150

125 100 75 50 25 0

−25

−50 30 32 34 38 40 44 48 50

Figure 17. VCS(stop) vs. Temperature Figure 18. Leading Edge Blanking Duration for VCS(stop) vs. Temperature

TJ, JUNCTION TEMPERATURE (°C) TJ, JUNCTION TEMPERATURE (°C) 125

100 75 50 25 0

−25

−50 1.38 1.42 1.46 1.48 1.50 1.54 1.60

125 100 75 50 25 0

−25

−50 100 110 130 140 170 210 220

VILIM (V) TLEB (ns)

TILIM (ns) TON(max) (ms)

VCS(stop) (V) TBCS (ns)

150 0.96

0.99 1.01 1.02 1.04

150 300

150 150

42

150 1.40

1.44 1.52 1.58

150 180

360 380

20 30 40 60 80 90 110 130 140

36 46

1.56

120 150 190

160 200

(11)

TYPICAL CHARACTERISTICS

Figure 19. ICS(short) vs. Temperature Figure 20. VCS(low), VCS Rising vs.

Temperature

TJ, JUNCTION TEMPERATURE (°C) TJ, JUNCTION TEMPERATURE (°C) 125

100 75 50 25 0

−25

−50 400 420 440 480 540 560 600

125 100 75 50 25 0

−25

−50 20 30 40 50 60 80 90 100

Figure 21. Sink Gate Drive Resistance vs.

Temperature

Figure 22. Source Gate Drive Resistance vs.

Temperature

TJ, JUNCTION TEMPERATURE (°C) TJ, JUNCTION TEMPERATURE (°C) 125

100 75 50 25 0

−25

−50 0 2 6 10 12 16 20

125 100 75 50 25 0

−25

−50 10 14 16 20 24 32 36 40

Figure 23. Gate Drive Rise Time vs.

Temperature

Figure 24. Gate Drive Fall Time (CDRV = 470 pF) vs. Temperature TJ, JUNCTION TEMPERATURE (°C) TJ, JUNCTION TEMPERATURE (°C)

125 100 75 50 25 0

−25

−50 0 15 25 35 40 50

125 100 75 50 25 0

−25

−50 0 5 10 20 25 40 45 50

ICS(short) (mA) VCS(low) (mV)

RSNK (W) RSRC (W)

tr (ns) tF (ns)

150 460

500 520 580

150 70

150 150

28

150 5

10 20 30 45

150 30

4 8 14 18

12 18 22 26 30 34 38

15 35

(12)

Figure 25. DRV Low Voltage vs. Temperature Figure 26. DRV High Voltage vs. Temperature TJ, JUNCTION TEMPERATURE (°C) TJ, JUNCTION TEMPERATURE (°C)

125 100 75 50 25 0

−25

−50 8.2 8.4 8.6 8.8 9.4

125 100 75 50 25 0

−25

−50 10.0 10.5 11.0 12.0 12.5 13.5 14.5

Figure 27. Upper ZCD Threshold Voltage vs.

Temperature

Figure 28. Lower ZCD Threshold vs.

Temperature

TJ, JUNCTION TEMPERATURE (°C) TJ, JUNCTION TEMPERATURE (°C) 125

100 75 50 25 0

−25

−50 30 50 70 90 100 130 150

125 100 75 50 25 0

−25

−50 30 35 40 50 55 70 75 80

Figure 29. ZCD Hysteresis vs. Temperature Figure 30. ZCD Blanking Delay vs.

Temperature

TJ, JUNCTION TEMPERATURE (°C) TJ, JUNCTION TEMPERATURE (°C) 125

100 75 50 25 0

−25

−50 0 5 15 25 35 40 50

125 100 75 50 25 0

−25

−50 1.0 1.1 1.2 1.4 1.5 1.7 1.9 2.0

VDRV(low) (V) VDRV(high) (V)

VZCD(rising) (mV) VZCD(falling) (mV)

VZCD(HYS) (mV) tZCD(blank1) (ms)

150 9.0

9.2 9.6

150 13.0

150 150

60

150 10

20 30 45

150 1.6

11.5 14.0

40 60 80 110 120 140

45 65

1.3 1.8

(13)

TYPICAL CHARACTERISTICS

Figure 31. ZCD Time−out vs. Temperature Figure 32. Reference Voltage vs. Temperature TJ, JUNCTION TEMPERATURE (°C) TJ, JUNCTION TEMPERATURE (°C)

125 100 75 50 25 0

−25

−50 5.8 6.2 6.6 7.0 7.2 7.4 7.8

125 100 75 50 25 0

−25

−50 244 245 247 248 250 253 254 256

Figure 33. Current Sense Lower Threshold (VCS Falling) vs. Temperature

Figure 34. Error Amplifier Trans−conductance Gain vs. Temperature

TJ, JUNCTION TEMPERATURE (°C) TJ, JUNCTION TEMPERATURE (°C) 125

100 75 50 25 0

−25

−50 10 20 40 60 80 90 110

125 100 75 50 25 0

−25

−50 42 44 46 48 50 56 58 60

Figure 35. Feedforward VVS to ICS(offset) Conversion Ratio vs. Temperature

Figure 36. Line Feedforward Current on CS Pin (@ VVS = 2 V) vs. Temperature TJ, JUNCTION TEMPERATURE (°C) TJ, JUNCTION TEMPERATURE (°C)

125 100 75 50 25 0

−25

−50 18.0 18.5 19.0 20.0 21.5 22.0

125 100 75 50 25 0

−25

−50 36 37 38 39 40 42 43 44

TTIMO (ms) VREF (mV)

VCS(low) (mV) GEA (mS)

KLFF (mS) IFF (mA)

150 6.0

6.4 6.8 7.6

150 251

150 150

54

150 19.5

20.5 21.0

150 41

246 249 252 255

30 50 70 100

52

(14)

Figure 37. Ioffset(MAX) vs. Temperature Figure 38. Threshold for High−line Range Detection vs. Temperature TJ, JUNCTION TEMPERATURE (°C) TJ, JUNCTION TEMPERATURE (°C)

125 100 75 50 25 0

−25

−50 80 85 90 95 110

125 100 75 50 25 0

−25

−50 2.25 2.30 2.35 2.40 2.50

Figure 39. Threshold for Low−line Range Detection vs. Temperature

Figure 40. Blanking Time for Low−line Range Detection vs. Temperature

TJ, JUNCTION TEMPERATURE (°C) TJ, JUNCTION TEMPERATURE (°C) 125

100 75 50 25 0

−25

−50 2.20 2.25 2.35 2.40 2.50 2.55 2.60

125 100 75 50 25 0

−25

−50 20 22 24 28 30 34 38 40

Figure 41. Threshold Voltage for Output Short Circuit Detection vs. Temperature

Figure 42. Short Circuit Detection Timer vs.

Temperature

TJ, JUNCTION TEMPERATURE (°C) TJ, JUNCTION TEMPERATURE (°C) 125

100 75 50 25 0

−25

−50 0.80 0.85 1.00 1.15 1.20

125 100 75 50 25 0

−25

−50 75 80 85 90 95 105 110 115

Ioffset(MAX) (mA) VHL (V)

VLL (V) THL(blank) (ms)

VZCD(short) (V) tOVLD (ms)

150 100

105 115

150 2.45

150 150

32

150 0.90

0.95 1.05 1.10

150 100

2.30 2.45

26 36

(15)

TYPICAL CHARACTERISTICS

Figure 43. Auto−recovery Timer Duration vs.

Temperature

Figure 44. SD Pin Clamp Series Resistor vs.

Temperature

TJ, JUNCTION TEMPERATURE (°C) TJ, JUNCTION TEMPERATURE (°C) 125

100 75 50 25 0

−25

−50 3.00 3.25 3.50 3.75 4.50 5.00

125 100 75 50 25 0

−25

−50 1.00 1.10 1.30 1.40 1.60 1.90 2.00 2.20

Figure 45. SD Pin Clamp Voltage vs.

Temperature

Figure 46. SD Pin OVP Threshold Voltage vs.

Temperature

TJ, JUNCTION TEMPERATURE (°C) TJ, JUNCTION TEMPERATURE (°C) 125

100 75 50 25 0

−25

−50 1.10 1.15 1.30 1.35 1.45 1.50 1.60

125 100 75 50 25 0

−25

−50 2.40 2.42 2.44 2.46 2.50 2.54 2.56 2.58

Figure 47. TSD(delay) vs. Temperature Figure 48. IOTP(REF) vs. Temperature TJ, JUNCTION TEMPERATURE (°C) TJ, JUNCTION TEMPERATURE (°C)

125 100 75 50 25 0

−25

−50 22 24 30 38

125 100 75 50 25 0

−25

−50 79 80 82 83 85 88 89 91

Trecovery (s) RSD(clamp) (kW)

VSD(clamp) (V) VOVP (V)

TSD(delay) (ms) IOTP(REF) (mA)

150 4.00

4.25 4.75

150 1.70

150 150

2.52

150 26

28 32 34 36

150 86

1.20 1.50 1.80 2.10

1.20 1.25 1.40 1.55

2.48

81 84 87 90

参照

関連したドキュメント

The NCL30081 changes valley as the input voltage increases and as the output current set−point is varied (thermal fold−back and step dimming).. This

When the current setpoint falls below a given value, e.g. the output power demand diminishes, the IC automatically enters the so−called skip cycle mode and provides

The NCP1216 automatically skips switching cycles when the output power demand drops below a given level. This is accomplished by monitoring the FB pin. In normal operation, pin

• Primary Side Constant Current Control: thanks to a proprietary circuit, the controller is able to take into account the effect of the leakage inductance of the transformer and

• Primary Side Constant Current Control: thanks to a proprietary circuit, the controller is able to take into account the effect of the leakage inductance of the transformer and

The NCL30083 changes valley as the input voltage increases and as the output current set−point is varied (thermal fold−back and step dimming). This limits the switching

When the power supply is running in constant−current mode and when the output voltage falls below V UVP level, the controller stops sending drive pulses and enters a double hiccup

Figure 48. At low power levels or in no−load operation, the feedback voltage stays in the vicinity of 400 mV and ensures skip−cycle operation. In this mode, the peak current is