• 検索結果がありません。

JJ II

N/A
N/A
Protected

Academic year: 2022

シェア "JJ II"

Copied!
28
0
0

読み込み中.... (全文を見る)

全文

(1)

volume 6, issue 3, article 84, 2005.

Received 11 October, 2004;

accepted 22 July, 2005.

Communicated by:S.S. Dragomir

Abstract Contents

JJ II

J I

Home Page Go Back

Close Quit

Journal of Inequalities in Pure and Applied Mathematics

LITTLEWOOD-PALEY g-FUNCTION IN THE DUNKL ANALYSIS ON Rd

FETHI SOLTANI

Department of Mathematics Faculty of Sciences of Tunis

University of EL-Manar Tunis 2092 Tunis, Tunisia.

EMail:Fethi.Soltani@fst.rnu.tn

c

2000Victoria University ISSN (electronic): 1443-5756 183-04

(2)

Littlewood-Paleyg-Function in the Dunkl Analysis onRd

Fethi Soltani

Title Page Contents

JJ II

J I

Go Back Close

Quit Page2of28

J. Ineq. Pure and Appl. Math. 6(3) Art. 84, 2005

http://jipam.vu.edu.au

Abstract

We proveLp-inequality for the Littlewood-Paleyg-function in the Dunkl case on Rd.

2000 Mathematics Subject Classification:42B15, 42B25.

Key words: Dunkl operators, Generalized Poisson integral,g-function.

The author is very grateful to the referee for many comments on this paper.

Contents

1 Introduction. . . 3 2 The Dunkl Analysis onRd. . . 5 3 The Littlewood-Paleyg-Function . . . 15

References

(3)

Littlewood-Paleyg-Function in the Dunkl Analysis onRd

Fethi Soltani

Title Page Contents

JJ II

J I

Go Back Close

Quit Page3of28

J. Ineq. Pure and Appl. Math. 6(3) Art. 84, 2005

http://jipam.vu.edu.au

1. Introduction

In the Euclidean case, the Littlewood-Paleyg-function is given by

g(f)(x) :=

"

Z 0

∂tu(x, t)

2

+|∇xu(x, t)|2

! t dt

#12

, x∈Rd,

whereuis the Poisson integral off and∇is the usual gradient. TheLp-norm of this operator is comparable with theLp-norm off forp ∈]1,∞[(see [19]).

Next, this operator plays an important role in questions related to multipliers, Sobolev spaces and Hardy spaces (see [19]).

Over the past twenty years considerable effort has been made to extend the Littlewood-Paley g-function on generalized hypergroups [20, 1, 2], and com- plete Riemannian manifolds [4].

In this paper we consider the differential-difference operatorsTj;j = 1, . . . , d, onRdintroduced by Dunkl in [5] and aptly called Dunkl operators in the litera- ture. These operators extend the usual partial derivatives by additional reflection terms and give generalizations of many multi-variable analytic structures like the exponential function, the Fourier transform, the convolution product and the Poisson integral (see [12,23,16] and [13]).

During the last years, these operators have gained considerable interest in various fields of mathematics and in certain parts of quantum mechanics; one expects that the results in this paper will be useful when discussing the bound- edness property of the Littlewood-Paleyg-function in the Dunkl analysis onRd. Moreover they are naturally connected with certain Schrödinger operators for Calogero-Sutherland-type quantum many body systems [3,9].

(4)

Littlewood-Paleyg-Function in the Dunkl Analysis onRd

Fethi Soltani

Title Page Contents

JJ II

J I

Go Back Close

Quit Page4of28

J. Ineq. Pure and Appl. Math. 6(3) Art. 84, 2005

http://jipam.vu.edu.au

The main purpose of this paper is to give theLp-inequality for the Littlewood- Paley g-function in the Dunkl case onRdby using continuity properties of the Dunkl transformFk, the Dunkl translation operators of radial functions and the generalized convolution product∗k. We will adapt to this case techniques Stein used in [18,19].

The paper is organized as follows. In Section 2 we recall some basic har- monic analysis results related to the Dunkl operators on Rd. In particular, we list some basic properties of the Dunkl transform Fk and the generalized con- volution product∗k(see [8,23,15]).

In Section3we study the Littlewood-Paleyg-function:

g(f)(x) :=

"

Z 0

∂tuk(x, t)

2

+|∇xuk(x, t)|2

! t dt

#12

, x∈Rd,

whereuk(·, t)is the generalized Poisson integral off. We prove thatgisLp-boundedness forp∈]1,2].

Throughout the paper c denotes a positive constant whose value may vary from line to line.

(5)

Littlewood-Paleyg-Function in the Dunkl Analysis onRd

Fethi Soltani

Title Page Contents

JJ II

J I

Go Back Close

Quit Page5of28

J. Ineq. Pure and Appl. Math. 6(3) Art. 84, 2005

http://jipam.vu.edu.au

2. The Dunkl Analysis on R

d

We considerRdwith the Euclidean inner producth·,·iand normkxk=p hx, xi.

Forα∈Rd\{0}, letσαbe the reflection in the hyperplaneHα ⊂Rdorthog- onal toα:

σαx:=x−

2hα, xi kαk2

α.

A finite setR ⊂Rd\{0}is called a root system, ifR∩R, α={−α, α}and σαR = Rfor all α ∈ R. We assume that it is normalized bykαk2 = 2for all α ∈R.

For a root systemR, the reflectionsσα,α ∈ Rgenerate a finite group G⊂ O(d), the reflection group associated withR. All reflections inG, correspond to suitable pairs of roots. For a givenβ ∈H :=RdS

α∈RHα, we fix the positive subsystem:

R+:={α∈R /hα, βi>0}.

Then for eachα ∈Reitherα∈R+or−α∈R+.

Let k : R → C be a multiplicity function on R (i.e. a function which is constant on the orbits under the action of G). For brevity, we introduce the index:

γ =γ(k) := X

α∈R+

k(α).

Moreover, letwkdenote the weight function:

wk(x) := Y

α∈R+

|hα, xi|2k(α), x∈Rd,

(6)

Littlewood-Paleyg-Function in the Dunkl Analysis onRd

Fethi Soltani

Title Page Contents

JJ II

J I

Go Back Close

Quit Page6of28

J. Ineq. Pure and Appl. Math. 6(3) Art. 84, 2005

http://jipam.vu.edu.au

which isG-invariant and homogeneous of degree2γ.

We introduce the Mehta-type constantck, by (2.1) ck :=

Z

Rd

e−kxk2k(x) −1

, where dµk(x) := wk(x)dx.

The Dunkl operatorsTj; j = 1, . . . , d, on Rd associated with the finite re- flection groupGand multiplicity functionkare given for a functionf of class C1 onRd, by

Tjf(x) := ∂

∂xjf(x) + X

α∈R+

k(α)αjf(x)−f(σαx) hα, xi .

The generalized Laplacian∆kassociated withGandk, is defined by∆k :=

Pd

j=1Tj2. It is given explicitly by

(2.2) ∆kf(x) :=Lkf(x)−2 X

α∈R+

k(α)f(x)−f(σαx) hα, xi2 , with the singular elliptic operator:

(2.3) Lkf(x) := ∆f(x) + 2 X

α∈R+

k(α)h∇f(x), αi hα, xi , where∆denotes the usual Laplacian.

The operatorLk can also be written in divergence form:

(2.4) Lkf(x) = 1

wk(x)

d

X

i=1

∂xi

wk(x) ∂

∂xi

.

(7)

Littlewood-Paleyg-Function in the Dunkl Analysis onRd

Fethi Soltani

Title Page Contents

JJ II

J I

Go Back Close

Quit Page7of28

J. Ineq. Pure and Appl. Math. 6(3) Art. 84, 2005

http://jipam.vu.edu.au

This is a canonical multi-variable generalization of the Sturm-Liouville operator for the classical spherical Bessel function [1,2,20].

Fory∈Rd, the initial value problemTju(x,·)(y) = xju(x, y);j = 1, . . . , d, withu(0, y) = 1admits a unique analytic solution onRd, which will be denoted byEk(x, y)and called a Dunkl kernel [6,14,16,23].

This kernel has the Bochner-type representation (see [12]):

(2.5) Ek(x, z) = Z

Rd

ehy,zix(y); x∈Rd, z ∈Cd, wherehy, zi := Pd

i=1yizi andΓx is a probability measure onRd with support in the closed ballBd(o,kxk)of centeroand radiuskxk.

Example 2.1 (see [23, p. 21]). IfG=Z2, the Dunkl kernel is given by Eγ(x, z) = Γ γ+12

√πΓ(γ) ·sgn(x)

|x| Z |x|

−|x|

eyz(x2−y2)γ−1(x+y)dy.

Notation. We denote byD(Rd)the space ofC−functions onRdwith compact support.

The Dunkl kernel gives an integral transform, called the Dunkl transform on Rd, which was studied by de Jeu in [8]. The Dunkl transform of a functionfin D(Rd)is given by

Fk(f)(x) :=

Z

Rd

Ek(−ix, y)f(y)dµk(y), x∈Rd.

(8)

Littlewood-Paleyg-Function in the Dunkl Analysis onRd

Fethi Soltani

Title Page Contents

JJ II

J I

Go Back Close

Quit Page8of28

J. Ineq. Pure and Appl. Math. 6(3) Art. 84, 2005

http://jipam.vu.edu.au

Note thatF0 agrees with the Fourier transformF onRd: F(f)(x) :=

Z

Rd

e−ihx,yif(y)dy, x∈Rd.

The Dunkl transform of a functionf ∈ D(Rd)which is radial is again radial, and could be computed via the associated Fourier-Bessel transform Fγ+d/2−1B [11, p. 586] that is:

Fk(f)(x) = 2γ+d/2c−1k Fγ+d/2−1B (F)(kxk), wheref(x) = F(kxk), and

Fγ+d/2−1B (F)(kxk) :=

Z 0

F(r) jγ+d/2−1(kxkr)

2γ+d/2−1Γ γ+d2r2γ+d−1dr.

Herejγis the spherical Bessel function [24].

Notations. We denote byLpk(Rd),p∈[1,∞], the space of measurable functions f onRd, such that

kfkLp

k :=

Z

Rd

|f(x)|pk(x) 1p

<∞, p∈[1,∞[, kfkL

k := esssup

x∈Rd

|f(x)|<∞, whereµkis the measure given by (2.1).

(9)

Littlewood-Paleyg-Function in the Dunkl Analysis onRd

Fethi Soltani

Title Page Contents

JJ II

J I

Go Back Close

Quit Page9of28

J. Ineq. Pure and Appl. Math. 6(3) Art. 84, 2005

http://jipam.vu.edu.au

Theorem 2.1 (see [7]).

i) Plancherel theorem: the normalized Dunkl transform2−γ−d/2ckFk is an isometric automorphism onL2k(Rd). In particular,

kfkL2

k = 2−γ−d/2ckkFk(f)kL2

k.

ii) Inversion formula: let f be a function in L1k(Rd), such that Fk(f) ∈ L1k(Rd). Then

Fk−1(f)(x) = 2−2γ−dc2kFk(f)(−x), a.e.x∈Rd.

In [6], Dunkl defines the intertwining operatorVk on P := C[Rd] (theC- algebra of polynomial functions onRd), by

Vk(p)(x) :=

Z

Rd

p(y)dΓx(y), x∈Rd, whereΓxis the representing measure onRdgiven by (2.5).

Next, Rösler proved the positivity properties of this operator (see [12]).

Notation. We denote by E(Rd)and byE0(Rd)the spaces ofC−functions on Rdand of distributions onRdwith compact support respectively.

In [22, Theorem 6.3], Trimèche has proved the following results:

Proposition 2.2.

i) The operatorVkcan be extended to a topological automorphism onE(Rd).

(10)

Littlewood-Paleyg-Function in the Dunkl Analysis onRd

Fethi Soltani

Title Page Contents

JJ II

J I

Go Back Close

Quit Page10of28

J. Ineq. Pure and Appl. Math. 6(3) Art. 84, 2005

http://jipam.vu.edu.au

ii) For all x ∈ Rd, there exists a unique distribution ηk,x in E0(Rd) with supp(ηk,x)⊂ {y∈Rd /kyk ≤ kxk}, such that

(Vk)−1(f)(x) = hηk,x, fi, f ∈ E(Rd).

Next in [23], the author defines:

• The Dunkl translation operatorsτx,x∈Rd, onE(Rd), by τxf(y) := (Vk)x⊗(Vk)y[(Vk)−1(f)(x+y)], y∈Rd. These operators satisfy forx, y andz ∈Rdthe following properties:

(2.6) τ0f =f, τxf(y) = τyf(x), Ek(x, z)Ek(y, z) =τx(Ek(·, z))(x), and

(2.7) Fkxf)(y) = Ek(ix, y)Fk(f)(y), f ∈ D(Rd).

Thus by (2.7), the Dunkl translation operators can be extended onL2k(Rd), and forx∈Rdwe have

xfkL2

k ≤ kfkL2

k, f ∈L2k(Rd).

• The generalized convolution product∗kof two functionsfandginL2k(Rd), by

f ∗kg(x) :=

Z

Rd

τxf(−y)g(y)dµk(y), x∈Rd.

(11)

Littlewood-Paleyg-Function in the Dunkl Analysis onRd

Fethi Soltani

Title Page Contents

JJ II

J I

Go Back Close

Quit Page11of28

J. Ineq. Pure and Appl. Math. 6(3) Art. 84, 2005

http://jipam.vu.edu.au

Note that∗0 agrees with the standard convolution∗onRd: f∗g(x) :=

Z

Rd

f(x−y)g(y)dy, x∈Rd. The generalized convolution∗k satisfies the following properties:

Proposition 2.3.

i) Letf, g ∈ D(Rd). Then

Fk(f ∗kg) =Fk(f)Fk(g).

ii) Letf, g ∈L2k(Rd). Thenf∗kgbelongs toL2k(Rd)if and only ifFk(f)Fk(g) belongs toL2k(Rd)and we have

Fk(f ∗kg) = Fk(f)Fk(g), in theL2kcase.

Proof. The assertion i) is shown in [23, Theorem 7.2]. We can prove ii) in the same manner demonstrated in [21, p. 101–103].

Theorem 2.4. Let p, q, r ∈ [1,∞]satisfy the Young’s condition: 1/p+ 1/q = 1 + 1/r. Assume thatf ∈ Lpk(Rd)andg ∈ Lqk(Rd). IfkτxfkLq

k ≤ ckfkLq

k for allx∈Rd, then

kf ∗kgkLr

k ≤ckfkLp

kkgkLq

k.

Proof. The assumption thatτxis a bounded operator onLpk(Rd)ensures that the usual proof of Young’s inequality (see [25, p. 37]) works.

(12)

Littlewood-Paleyg-Function in the Dunkl Analysis onRd

Fethi Soltani

Title Page Contents

JJ II

J I

Go Back Close

Quit Page12of28

J. Ineq. Pure and Appl. Math. 6(3) Art. 84, 2005

http://jipam.vu.edu.au

Proposition 2.5.

i) Iff(x) =F(kxk)inE(Rd), then we have τxf(y) =

Z

Ax,y

F p

kxk2+kyk2+ 2hy, ξi

x(ξ); x, y ∈Rd, where

Ax,y =

ξ∈Rd/ min

g∈Gkx+gyk ≤ kξk ≤max

g∈G kx+gyk

,

andΓxthe representing measure given by(2.5).

ii) For allx∈Rdand forf ∈Lpk(Rd), radial,p∈[1,∞], kτxfkLp

k ≤ kfkLp

k.

iii) Let p, q, r ∈ [1,∞]satisfy the Young’s condition: 1/p+ 1/q = 1 + 1/r.

Assume thatf ∈Lpk(Rd), radial, andg ∈Lqk(Rd), then kf ∗kgkLr

k ≤ kfkLp

kkgkLq

k.

Proof. The assertion i) is shown by Rösler in [13, Theorem 5.1].

ii) Sincef is a radial function, the explicit formula ofτxf shows that

xf(y)| ≤τx(|f|)(y).

Hence, it follows readily from(2.6)that kτxfkL1

k ≤ kfkL1

k.

(13)

Littlewood-Paleyg-Function in the Dunkl Analysis onRd

Fethi Soltani

Title Page Contents

JJ II

J I

Go Back Close

Quit Page13of28

J. Ineq. Pure and Appl. Math. 6(3) Art. 84, 2005

http://jipam.vu.edu.au

By duality the same inequality holds forp=∞.

Thus by interpolation we obtain the result forp∈]1,∞[.

iii) follows directly from Theorem2.4.

Notation. For allx, y, z ∈R, we put

Wγ(x, y, z) := [1−σx,y,zz,x,yz,y,x]Bγ(|x|,|y|,|z|), where

σx,y,z :=





x2+y2−z2

2xy , ifx, y ∈R\{0}

0, otherwise

andBγ is the Bessel kernel given by Bγ(|x|,|y|,|z|)

:=





dγ[((|x|+|y|)2−z2) (z2−(|x| − |y|)2)]γ−1

|xyz|2γ−1 , if|z| ∈Ax,y

0, otherwise,

dγ = 2−2γ+1Γ γ+12

√πΓ(γ) , Ax,y =h

|x| − |y|

,|x|+|y|i . Remark 1 (see [10]). The signed kernelWγis even and satisfies:

Wγ(x, y, z) =Wγ(y, x, z) =Wγ(−x, z, y), Wγ(x, y, z) = Wγ(−z, y,−x) =Wγ(−x,−y,−z),

(14)

Littlewood-Paleyg-Function in the Dunkl Analysis onRd

Fethi Soltani

Title Page Contents

JJ II

J I

Go Back Close

Quit Page14of28

J. Ineq. Pure and Appl. Math. 6(3) Art. 84, 2005

http://jipam.vu.edu.au

and Z

R

|Wγ(x, y, z)|dz ≤4.

We consider the signed measuresνx,y(see [10]) defined by

x,y(z) :=









Wγ(x, y, z)|z|dz, ifx, y ∈R\{0}

x(z), ify= 0 dδy(z), ifx= 0.

The measuresνx,yhave the following properties:

supp(νx,y) = Ax,y∪(−Ax,y), kνx,yk:=

Z

R

d|νx,y| ≤4.

Proposition 2.6 (see [10,15]). Ifd= 1andG=Z2, then

i) For allx, y ∈Rand forf a continuous function onR, we have τxf(y) =

Z

Ax,y

f(ξ)dνx,y(ξ) + Z

(−Ax,y)

f(ξ)dνx,y(ξ).

ii) For allx∈Rand forf ∈Lpγ(R),p∈[1,∞], kτxfkLpγ ≤4kfkLpγ.

iii) Assume that p, q, r ∈ [1,∞] satisfy the Young’s condition: 1/p+ 1/q = 1 + 1/r. Then the map(f, g)→f ∗γgextends to a continuous map from Lpγ(R)×Lqγ(R)toLrγ(R)and we have

kf ∗γgkLrγ ≤4kfkLpγkgkLqγ.

(15)

Littlewood-Paleyg-Function in the Dunkl Analysis onRd

Fethi Soltani

Title Page Contents

JJ II

J I

Go Back Close

Quit Page15of28

J. Ineq. Pure and Appl. Math. 6(3) Art. 84, 2005

http://jipam.vu.edu.au

3. The Littlewood-Paley g-Function

By analogy with the case of Euclidean space [19, p. 61] we define, fort > 0, the functionsWtandPtonRd, by

Wt(x) := 2−2γ−dc2k Z

Rd

e−tkξk2Ek(ix, ξ)dµk(ξ), x∈Rd, and

Pt(x) := 2−2γ−dc2k Z

Rd

e−tkξkEk(ix, ξ)dµk(ξ), x∈Rd.

The functionWt, may be called the generalized heat kernel and the functionPt, the generalized Poisson kernel respectively.

From [23, p. 37] we have Wt(x) = ck

(4t)γ+d/2e−kxk2/4t, x∈Rd. Writing

(3.1) Pt(x) = 1

√π Z

0

e−s

√sWt2/4s(x)ds, x∈Rd, we obtain

(3.2) Pt(x) = akt

(t2+kxk2)γ+(d+1)/2, ak := ckΓ γ+d+12

√π .

However, fort >0and for allf ∈Lpk(Rd),p∈[1,∞], we put:

uk(x, t) := Ptkf(x), x∈Rd.

(16)

Littlewood-Paleyg-Function in the Dunkl Analysis onRd

Fethi Soltani

Title Page Contents

JJ II

J I

Go Back Close

Quit Page16of28

J. Ineq. Pure and Appl. Math. 6(3) Art. 84, 2005

http://jipam.vu.edu.au

The functionukis called the generalized Poisson integral off, which was stud- ied by Rösler in [11,13].

Let us consider the Littlewood-Paley g-function (in the Dunkl case). This auxiliary operator is defined initially forf ∈ D(Rd), by

g(f)(x) :=

"

Z 0

∂tuk(x, t)

2

+|∇xuk(x, t)|2

! t dt

#12

, x∈Rd,

whereukis the generalized Poisson integral.

The main result of the paper is:

Theorem 3.1. For p ∈]1,2], there exists a constant Ap > 0 such that, for f ∈Lpk(Rd),

kg(f)kLp

k ≤ApkfkLp.

For the proof of this theorem we need the following lemmas:

Lemma 3.2. Letf ∈ D(Rd)be a positive function.

i) uk(x, t)≥0and

Nuk

∂tN (x, t)

t2γ+d+Nc ; k∈Nandx∈Rd. ii) Forkxklarge we have

uk(x, t)≤ c

(t2+kxk2)γ+d/2 and

∂uk

∂xi(x, t)

≤ c

(t2+kxk2)γ+(d+1)/2. Proof. i) If the generalized Poisson kernelPtis a positive radial function, then from Proposition2.5i) we obtainuk(x, t)≥0.

(17)

Littlewood-Paleyg-Function in the Dunkl Analysis onRd

Fethi Soltani

Title Page Contents

JJ II

J I

Go Back Close

Quit Page17of28

J. Ineq. Pure and Appl. Math. 6(3) Art. 84, 2005

http://jipam.vu.edu.au

On the other hand from Proposition2.5iii) we have

Nuk

∂tN (x, t)

≤ kfkL1

k

NPt

∂tN Lk

.

Then we obtain the result from the fact that

NPt

∂tN Lk

≤ c

t2γ+d+N. ii) From Proposition2.5i) we can write

τxPt(−y) =ak Z

Rd

t dΓx(ξ)

[t2+kxk2+kyk2−2hy, ξi]γ+(d+1)/2; x, y ∈R, whereakis the constant given by (3.2).

Sincef ∈ D(Rd), there existsa >0, such that supp(f)⊂Bd(o, a). Then uk(x, t) = ak

Z

Bd(o,a)

Z

Ax,y

t f(y)dΓx(ξ)dµk(y)

[t2+kxk2+kyk2−2hy, ξi]γ+(d+1)/2. It is easily verified forkxklarge andy∈Bd(o, a)that

1

[t2+kxk2+kyk2−2hy, ξi]γ+(d+1)/2 ≤ c

(t2 +kxk2)γ+(d+1)/2. Therefore and using the fact thatt ≤(t2+kxk2)1/2, we obtain

uk(x, t)≤ c t

(t2+kxk2)γ+(d+1)/2 ≤ c

(t2+kxk2)γ+d/2.

(18)

Littlewood-Paleyg-Function in the Dunkl Analysis onRd

Fethi Soltani

Title Page Contents

JJ II

J I

Go Back Close

Quit Page18of28

J. Ineq. Pure and Appl. Math. 6(3) Art. 84, 2005

http://jipam.vu.edu.au

Thus the first inequality is proven.

From (2.6) we can write uk(x, t) =ak

Z

Bd(o,a)

Z

Ax,y

t f(−y)dΓy(ξ)dµk(y)

[t2+kxk2+kyk2+ 2hx, ξi]γ+(d+1)/2. By derivation under the integral sign we obtain

∂uk

∂xi(x, t) =ak Z

Bd(o,a)

Z

Ax,y

−t(2xii)f(−y)dΓy(ξ)dµk(y) [t2 +kxk2+kyk2+ 2hx, ξi]γ+(d+3)/2. But forkxklarge andy∈Bd(o, a)we have

t|2xii|

[t2+kxk2+kyk2+ 2hx, ξi]γ+(d+3)/2 ≤ t(2|xi|+|ξi|) (t2+kxk2)γ+(d+3)/2.

Using the fact that t(2|xi|+|ξi|)≤(1 +|ξi|)(t2+kxk2) when kxk large, we obtain

∂uk

∂xi(x, t)

≤ c

(t2+kxk2)γ+(d+1)/2, which proves the second inequality.

Lemma 3.3. Letf ∈ D(Rd)be a positive function andp∈]1,∞[.

i) lim

N→∞

R

Bd(o,N)

RN 0

2upk

∂t2 (x, t)tdtdµk(x) =R

Rdfp(x)dµk(x).

ii) lim

N→∞

RN 0

R

Bd(o,N)Lkupk(·, t)(x)dµk(x)tdt= 0,

(19)

Littlewood-Paleyg-Function in the Dunkl Analysis onRd

Fethi Soltani

Title Page Contents

JJ II

J I

Go Back Close

Quit Page19of28

J. Ineq. Pure and Appl. Math. 6(3) Art. 84, 2005

http://jipam.vu.edu.au

whereLkis the singular elliptic operator given by(2.4).

Proof. i) Integrating by parts, we obtain Z

Bd(o,N)

Z N 0

2upk

∂t2 (x, t)tdtdµk(x)

= Z

Bd(o,N)

fp(x)dµk(x)− Z

Bd(o,N)

upk(x, N)dµk(x) +pN

Z

Bd(o,N)

up−1k (x, N)∂uk

∂t (x, N)dµk(x).

From Lemma3.2i), we easily get Z

Bd(o,N)

upk(x, N)dµk(x)≤c N−(p−1)(2γ+d)

, and

N Z

Bd(o,N)

up−1k (x, N)∂uk

∂t (x, N)dµk(x)≤c N−(p−1)(2γ+d)

, which gives i).

ii) We have Z N

0

Z

Bd(o,N)

Lkupk(·, t)(x)dµk(x)tdt=

d

X

i=1

Ii,N,

where Ii,N =

Z N 0

Z

Bd(o,N)

∂xi

wk(x)∂upk

∂xi(x, t)

dxtdt, i= 1, . . . , d.

(20)

Littlewood-Paleyg-Function in the Dunkl Analysis onRd

Fethi Soltani

Title Page Contents

JJ II

J I

Go Back Close

Quit Page20of28

J. Ineq. Pure and Appl. Math. 6(3) Art. 84, 2005

http://jipam.vu.edu.au

Let us studyI1,N: I1,N =p

Z N 0

Z

Bd−1(o,N)

wk(x(N))

up−1k (x(N), t)∂uk

∂x1(x(N), t)

− up−1k (−x(N), t)∂uk

∂x1(−x(N), t)

dx2. . . dxdtdt,

wherex(N) = q

N2−Pd

i=2x2i , x2, . . . , xd

.

Then, by using Lemma3.2ii) and the fact thatwk(x(N))≤2γN we obtain forN large,

I1,N ≤c N Z N

0

Z

Bd−1(o,N)

dx2. . . dxdtdt (t2+N2)(γ+d/2)p+1/2

≤c N−p(2γ+d)+2γ−1Z N 0

Z

Bd−1(o,N)

dx2. . . dxdtdt

≤c N−(p−1)(2γ+d)−(d−1)/2

.

The same result holds forIi,N,i= 2, . . . , d, which proves ii).

Lemma 3.4. Letf ∈ D(Rd)be a positive function. Define the maximal function Mk(f), by

(3.3) Mk(f)(x) := sup

t>0

(uk(x, t)), x∈Rd.

Then forp∈]1,∞[, there exists a constantCp >0such that, forf ∈Lpk(Rd), kMk(f)kLp

k ≤CpkfkLp

k,

(21)

Littlewood-Paleyg-Function in the Dunkl Analysis onRd

Fethi Soltani

Title Page Contents

JJ II

J I

Go Back Close

Quit Page21of28

J. Ineq. Pure and Appl. Math. 6(3) Art. 84, 2005

http://jipam.vu.edu.au

moreover the operatorMkis of weak type(1,1).

Proof. From (3.1) it follows that uk(x, t) = t

8√ π

Z 0

Wskf(x)e−t2/4ss−3/2ds,

which implies, as in [18, p. 49] that Mk(f)(x)≤csup

y>0

1 y

Z y 0

Qsf(x)ds

, x∈Rd,

where Qsf(x) = Wsk f(x), which is a semigroup of operators on Lpk(Rd).

Hence using the Hopf-Dunford-Schwartz ergodic theorem as in [18, p. 48], we get the boundedness ofMkonLpk(Rd)forp∈]1,∞]and weak type(1,1).

Proof of Theorem3.1. Letf ∈ D(Rd)be a positive function. From Lemma3.2 i) the generalized Poisson integralukoff is positive.

First step: Estimate of the quantity

∂tuk(x, t)

2+|∇xuk(x, t)|2. LetHk be the operator:

Hk:=Lk+ ∂2

∂t2,

whereLkis the singular elliptic operator given by (2.3).

Using the fact that

kuk(·, t)(x) + ∂2

∂t2uk(x, t) = 0,

(22)

Littlewood-Paleyg-Function in the Dunkl Analysis onRd

Fethi Soltani

Title Page Contents

JJ II

J I

Go Back Close

Quit Page22of28

J. Ineq. Pure and Appl. Math. 6(3) Art. 84, 2005

http://jipam.vu.edu.au

we obtain forp∈]1,∞[,

Hkupk(x, t) =p(p−1)up−2k (x, t)

"

∂tuk(x, t)

2

+|∇xuk(x, t)|2

#

+p X

α∈R+

k(α)Uα(x, t) hα, xi2 , where

Uα(x, t) := 2up−1k (x, t) [uk(x, t)−ukαx, t)], α∈R+. LetA, B ≥0, then the inequality

2Ap−1(A−B)≥(Ap−1+Bp−1)(A−B) is equivalent to

(Ap−1−Bp−1)(A−B)≥0, which holds ifA ≥BorA < B. Thus we deduce that

Uα(x, t)≥

up−1k (x, t) +up−1kαx, t)

[uk(x, t)−ukαx, t)], and therefore we get

(3.4)

∂tuk(x, t)

2

+|∇xuk(x, t)|2

≤ 1

p(p−1)u2−pk (x, t) [vk(x, t) +Hkupk(x, t)],

(23)

Littlewood-Paleyg-Function in the Dunkl Analysis onRd

Fethi Soltani

Title Page Contents

JJ II

J I

Go Back Close

Quit Page23of28

J. Ineq. Pure and Appl. Math. 6(3) Art. 84, 2005

http://jipam.vu.edu.au

where

vk(x, t) =p X

α∈R+

k(α) hα, xi2

up−1kαx, t) +up−1k (x, t)

[ukαx, t)−uk(x, t)]. Second step: The inequalitykg(f)kLp

k ≤ApkfkLp

k, forp∈]1,2[.

From (3.4), we have [g(f)(x)]2 ≤ 1

p(p−1) Z

0

u2−pk (x, t) [vk(x, t) +Hkupk(x, t)]tdt

≤ 1

p(p−1)Ik(f)(x) [Mk(f)(x)]2−p, x∈Rd, where

Ik(f)(x) :=

Z 0

[vk(x, t) +Hkupk(x, t)]tdt, andMk(f)the maximal function given by (3.3).

Thus it is proven that kg(f)kpLp

k

1 p(p−1)

p2 Z

Rd

[Ik(f)(x)]p/2[Mk(f)(x)](2−p)p/2k(x).

By applying Hölder’s inequality, we obtain (3.5) kg(f)kpLp

k

1 p(p−1)

p2

kIk(f)kp/2L1 k

kMk(f)k(2−p)p/2Lp k

.

(24)

Littlewood-Paleyg-Function in the Dunkl Analysis onRd

Fethi Soltani

Title Page Contents

JJ II

J I

Go Back Close

Quit Page24of28

J. Ineq. Pure and Appl. Math. 6(3) Art. 84, 2005

http://jipam.vu.edu.au

Since vk(x, t) + Hkupk(x, t) ≥ 0, we can apply Fubini-Tonnelli’s Theorem to obtain

kIk(f)kL1

k = lim

N→∞

Z N 0

Z

Bd(o,N)

[vk(x, t) +Hkupk(x, t)]dµk(x)tdt.

Puttingy = σαxand using the fact thatσ2α = id;hσαy, αi =−hy, αi, then as in the argument of [16, p. 390] we obtain

Z

Bd(o,N)

vk(x, t)dµk(x) = − Z

Bd(o,N)

vk(y, t)dµk(y).

Thus Z

Bd(o,N)

vk(x, t)dµk(x) = 0.

Hence from Lemma3.3, we deduce that (3.6) kIα(f)kL1

k = lim

N→∞

Z

Bd(o,N)

Z N 0

Hkupk(x, t)tdtdµk(x) = kfkpLp

k

.

On the other hand from Lemma3.4we have

(3.7) kMk(f)kLp

k ≤CpkfkLp

k. Finally, from (3.5), (3.6) and (3.7), we obtain

kg(f)kLp

k ≤ApkfkLp

k, Ap =

1 p(p−1)

12

Cp(2−p)/2.

(25)

Littlewood-Paleyg-Function in the Dunkl Analysis onRd

Fethi Soltani

Title Page Contents

JJ II

J I

Go Back Close

Quit Page25of28

J. Ineq. Pure and Appl. Math. 6(3) Art. 84, 2005

http://jipam.vu.edu.au

Since the operator g is sub-linear, we obtain the inequality for f ∈ D(Rd).

And by an easy limiting argument one shows that the result is also true for any f ∈Lpk(Rd),p∈]1,2[.

For the casep= 2, using (3.4) and (3.6) we get kg(f)k2L2

k ≤ 1 2

Z

Rd

Z 0

vk(x, t) +Hku2k(x, t)

tdtdµk(x) = 1 2kfk2L2

k, which completes the proof of the theorem.

(26)

Littlewood-Paleyg-Function in the Dunkl Analysis onRd

Fethi Soltani

Title Page Contents

JJ II

J I

Go Back Close

Quit Page26of28

J. Ineq. Pure and Appl. Math. 6(3) Art. 84, 2005

http://jipam.vu.edu.au

References

[1] A. ACHOUR AND K. TRIMÈCHE, La g-fonction de Littlewood-Paley associée à un opérateur différentiel singulier sur(0,∞), Ann. Inst. Fourier, Grenoble, 33 (1983), 203–226.

[2] H. ANNABI ANDA. FITOUHI, Lag-fonction de Littlewood-Paley asso- ciée à une classe d’opérateurs différentiels sur]0,∞[contenant l’opérateur de Bessel, C.R. Acad. Sc. Paris, 303 (1986), 411–413.

[3] T.H. BAKER AND P.J. FORRESTER, The Calogero-Sutherland model and generalized classical polynomials, Comm. Math. Phys., 188 (1997), 175–216.

[4] T. COULHON, X.T. DUONGANDX.D. LI, Littlewood-Paley-Stein func- tions on manifolds1≤p≤2, Studia Math., 154 (2003), 37–57.

[5] C.F. DUNKL, Differential-difference operators associated with reflection groups, Trans. Amer. Math. Soc., 311 (1989), 167–183.

[6] C.F. DUNKL, Integral kernels with reflection group invariance, Can. J.

Math., 43 (1991), 1213–1227.

[7] C.F. DUNKL, Hankel transforms associated to finite reflection groups, Contemp. Math., 138 (1992) 123–138.

[8] M.F.E. de JEU, The Dunkl transform, Inv. Math., 113 (1993), 147–162.

[9] L. LAPOINTE AND L. VINET, Exact operator solution of the Calogero- Sutherland model, Comm. Math. Phys., 178 (1996), 425–452.

(27)

Littlewood-Paleyg-Function in the Dunkl Analysis onRd

Fethi Soltani

Title Page Contents

JJ II

J I

Go Back Close

Quit Page27of28

J. Ineq. Pure and Appl. Math. 6(3) Art. 84, 2005

http://jipam.vu.edu.au

[10] M. RÖSLER, Bessel-type signed hypergroups on R, In : H.Heyer, A.Mukherjea (Eds.), Proc XI, Probability measures on groups and re- lated structures, Oberwolfach, 1994, World Scientific, Singapore, (1995), p. 292–304.

[11] M. RÖSLER ANDM. VOIT, Markov processes related with Dunkl opera- tor, Adv. Appl. Math., 21 (1998), 575–643.

[12] M. RÖSLER, Positivity of Dunkl’s intertwining operator, Duke Math. J., 98 (1999), 445–463.

[13] M. RÖSLER, A positive radial product formula for the Dunkl kernel, Trans. Amer. Math. Soc., 355 (2003) 2413–2438.

[14] M. SIFI AND F. SOLTANI, Generalized Fock spaces and Weyl relations for the Dunkl kernel on the real line, J. Math. Anal. Appl., 270 (2002), 92–106.

[15] F. SOLTANI, Lp-Fourier multipliers for the Dunkl operator on the real line, J. Functional Analysis, 209 (2004), 16–35.

[16] F. SOLTANI, Generalized Fock spaces and Weyl commutation relations for the Dunkl kernel, Pacific J. Math., 214 (2004), 379–397.

[17] F. SOLTANI, Inversion formulas in the Dunkl-type heat conduction onRd, Applicable Analysis, 84 (2005), 541–553.

[18] E.M. STEIN, Topics in Harmonic Analysis related to the Littlewood-Paley theory, Annals of Mathematical Studies, 63 (1970), Princeton Univ. Press, Princeton, New Jersey.

(28)

Littlewood-Paleyg-Function in the Dunkl Analysis onRd

Fethi Soltani

Title Page Contents

JJ II

J I

Go Back Close

Quit Page28of28

J. Ineq. Pure and Appl. Math. 6(3) Art. 84, 2005

http://jipam.vu.edu.au

[19] E.M. STEIN, Singular integrals and differentiability properties of func- tions, Princeton Univ. Press, Princeton, New Jersey, 1971.

[20] K. STEMPAK, La théorie de Littlewood-Paley pour la transformation de Fourier-Bessel, C.R.A.S. Paris, Série I, Math., 303 (1986), 15–18.

[21] K. TRIMÈCHE, Inversion of the Lions transmutation operators using gen- eralized wavelets, App. Comput. Harm. Anal., 4 (1997), 97–112.

[22] K. TRIMÈCHE, The Dunkl intertwining operator on spaces of functions and distributions and integral representation of dual, Int. Trans. Spec.

Funct., 12 (2001), 349–374.

[23] K. TRIMÈCHE, Paley-Wiener Theorems for the Dunkl transform and Dunkl translation operators, Int. Trans. Spec. Funct., 13 (2002), 17–38.

[24] G.N. WATSON, A Treatise on Theory of Bessel Functions, Cambridge University Press, 1966.

[25] A. ZYGMUND, Trigonometric Series, Cambridge University Press, 1959.

参照

関連したドキュメント

For example, a maximal embedded collection of tori in an irreducible manifold is complete as each of the component manifolds is indecomposable (any additional surface would have to

It is suggested by our method that most of the quadratic algebras for all St¨ ackel equivalence classes of 3D second order quantum superintegrable systems on conformally flat

Keywords: continuous time random walk, Brownian motion, collision time, skew Young tableaux, tandem queue.. AMS 2000 Subject Classification: Primary:

Kilbas; Conditions of the existence of a classical solution of a Cauchy type problem for the diffusion equation with the Riemann-Liouville partial derivative, Differential Equations,

Next, we prove bounds for the dimensions of p-adic MLV-spaces in Section 3, assuming results in Section 4, and make a conjecture about a special element in the motivic Galois group

In this section, we are going to study how the product acts on Sobolev and Hölder spaces associated with the Dunkl operators. This could be very useful in nonlinear

Then it follows immediately from a suitable version of “Hensel’s Lemma” [cf., e.g., the argument of [4], Lemma 2.1] that S may be obtained, as the notation suggests, as the m A

To derive a weak formulation of (1.1)–(1.8), we first assume that the functions v, p, θ and c are a classical solution of our problem. 33]) and substitute the Neumann boundary