• 検索結果がありません。

Chapter 4 Reliability assessments on Ge MOS device

4.6 Summary

This chapter reports on the reliability assessment of Ge gate stacks with promising initial electrical properties, focusing on the pre-existing trap and trap generation under a constant Estress. Initial Ge gate stack properties do not necessarily secure the high reliability robustness. It is found that the pre-existing hole traps are one of the most critical concerns in GeO2/Ge gate stack, which might be attributed to the VO formed during the gate stack process. The HPO-GeO2 and M-GeO2 can effectively reduce the VO formation during the gate stack process, thereby reduce pre-existing hole trap density.

However, under an elevated stress field, the trap generation becomes a major concern regardless of the initial properties because Ge-O bond are highly susceptible to bond breaking and ion displacement by electric field. Small amount Y-GeO2 or Sc-GeO2

significantly reduces the trap generation in Ge gate stacks without the interface deterioration. This result is understandable from the increase of average coordination number (Nav) in the modified GeO2 network by doping.

The reliability of sub-nm EOT YScO3/Y-GeO2/Ge and HfO2/Y-GeO2/Ge gate stacks are also examined. The selection of top high-k dielectric also has a significant impact on the reliability degradation. YScO3/Y-GeO2/Ge shows better long term reliability thanks to its defect free characteristics.

Chapter 4. Reliability assessments on Ge MOS device

150

Reference

1 N. Kimizuka, T. Yamamoto, T. Mogami, K. Yamaguchi, K. Imai, and T. Horiuchi, “The impact of bias temperature instability for direct-tunneling ultra-thin gate oxide on MOSFET scaling,” VLSI Symp. Tech. Dig., p.73, 1999.

2 N. Rahim and D. Misra, “Role of hydrogen in Ge/HfO2/Al gate stacks subjected to negative bias temperature instability,” Appl. Phys. Lett., vol. 92, p. 023511, 2008.

3 T. Kaga, and T. Hagiwara, “Short- and long-term reliability of nitrided oxide MISFET’s,”

IEEE Elec. Dev. Lett., vol. 35, p. 930, 1988.

4 N. K. Patel and A. Toriumi, “Stress-induced leakage current in ultrathin SiO2 films,”

Appl. Phys. Lett., vol. 64, p, 1809, 1994.

5 D. J. DiMaria and E. Cattier, “Mechanism for stress‐induced leakage currents in thin silicon dioxide films,” J. Appl. Phys., vol. 78, p. 3883, 1995.

6 E. Hasegawa, A. Ishitani, K. Akimoto, M. Tsukiji, and N. Ohta, “SiO2/Si interface structures and reliability characteristics,” J. Electrochem. Soc., vol. 142, p. 273, 1995.

7 C. H. Lee, T. Nishimura, K. Nagashio, K. Kita, and A. Toriumi, “High-electron-mobility Ge/GeO2 n-MOSFETs with two-step oxidation,” IEEE Trans. Elec. Dev., vol. 58, p. 1295, 2011.

8 H. Uchida, and T. Ajioka, “Electron trap center generation due to hole trapping in SiO2 under Fowler–Nordheim tunneling stress,” Appl. Phys. Lett., vol. 51, p. 433, 1987.

9 D. J. DiMaria, “Correlation of trap creation with electron heating in silicon dioxide,” J Appl. Phys., vol. 51, p. 655, 1987.

10 W. D. Zhang, J. F. Zhang, M. Lalor, D. Burton, G. V. Groeseneken, and R. Degraeve,

“Two types of neutral electron traps generated in the gate silicon dioxide,” IEEE Trans.

Elec. Dev., vol. 49, p. 1868, 2002.

151

11 S. Jakschik, A. Avellan, U. Schroeder, and J. W. Bartha, “Influence of Al2O3 dielectrics on the trap-depth profiles in MOS devices investigated by the charge-pumping method,”

IEEE Trans. Elec. Dev., vol. 51, p. 2252, 2004.

12 B. E. Deal, “The current understanding of charges in the thermally oxidized silicon structure,” J. Electrochem. Soc., vol. 121, p. 198C, 1974.

13 S. M. Sze, and K. K. Ng, “Physics of semiconductor devices,” (Wiley, NJ, 2007) 3rd ed., chapter 4.

14 T. H. Ning, “Capture cross section and trap concentration of holes in silicon dioxide,” J.

Appl. Phys., vol. 47, p. 1079, 1976.

15 A. Zylbersztejn, “Trap depth and electron capture cross section determination by trap refilling experiments in Schottky diodes,” Appl. Phys. Lett., vol. 33, p. 200, 1978.

16 D. R. Young, E. A. Irene, D. J. DiMaria, R. F. De Keersmaecker, and H. Z. Massoud,

“Electron trapping in SiO2 at 295 and 77 K,” J. Appl. Phys., vol. 50, p. 6366, 1979.

17 D. J. DiMaria, “Temperature dependence of trap creation in silicon dioxide,” J Appl.

Phys., vol. 68, p. 5234, 1990.

18 J. W. McPherson, and H. C. Mogul, “Underlying physics of the thermochemical E model in describing low-field time dependent dielectric breakdown in SiO2 thin films,” J. Appl.

Phys., vol. 84, p. 1514, 1998.

19 M. V. Fischetti, “Model for the generation of positive charge at the Si-Sioz interface based on hot-hole injection from the anode,” Phys. Rev. B, vol. 31, p. 2099, 1985.

20 J. W. McPherson, J. Kim, A. Shanware, H. Mogul, and J. Rodriguez, “Trends in the ultimate breakdown strength of high dielectric-constant materials,” IEEE Trans. Elec. Dev., vol. 50, p. 1771, 2003.

21 G. Ribes, J. Mitard, M. Denais, S. Bruyere, F. Monsieur, C. Parthasarathy, E. Vincent, and G. Ghibaudo, “Review on high-k dielectrics reliability issues,” IEEE Trans. dev. and mat. reliab., vol. 5, p. 5, 2005.

Chapter 4. Reliability assessments on Ge MOS device

152

22 J. F. Binder, P. Broqvist, and A. Pasquarello, “Stability of valence alternation pairs across the substoichiometric region at Ge/GeO2 interfaces,” Physica B, vol. 407, p 2939, 2012.

23 M. Aoulaiche, M. Houssa, T. Conard, G. Groeseneken, S. De Gendt, and M.M. Heyns,

“Impact of nitrogen incorporation in SiOx/HfSiO gate stacks on negative bias temperature instabilities,” Proceedings of IEEE International Reliability Physics Symposium, p.317, 2006.

24 K, K. Abdelghafar, K. Watanabe, J. Ushio, and E. Murakami, “Effect of nitrogen at SiO2/Si interface on reliability issues—negative-bias-temperature instability and Fowler–

Nordheim-stress degradation,” Appl. Phys. Lett., vol. 81, p. 4362, 2002.

25 D. J. DiMaria, E. Cat-tier, and D. Arnolda, “Impact ionization, trap creation, degradation, and breakdown in silicon dioxide films on silicon,” J. Appl. Phys., vol. 73, p.

3367, 1993.

26 G. Lucovsky, Y. Wu, H. Niimi, V. Misra and J. C. Phillips, “Bonding constraints and defect formation at interfaces between crystalline silicon and advanced single layer and composite gate dielectrics,” Appl. Phys. Lett., vol. 74, p. 2005, 1999.

27 E. M. Levin, “Liquid immiscibility in the rare earth oxide-boric oxide systems,” Am.

Ceramic Soc. Jour., vol. 50, p. 29, 1966.

28 C. Lu, C. H. Lee, T. Nishimura, K. Nagashio, and A. Toriumi, “Reliability assessment of germanium gate stacks with promising initial characteristics,” Appl. Phys. Exp., vol. 8, p.

021301, 2015.

29 E. N. Plotnikov, S. I. Lopatin, and V. L. Stolyarova, “Application of the sanderson method to the calculation of bonding energies in oxide glass-forming systems,” Appl. Phys.

Lett., vol. 93, p. 161909, 2008.

30 J. Wang, W. S. Brocklesby, J. R. Lincoln, J. E. Townsend, and D. N. Payne, “Local structures of rare-earth ions in glasses: the 'crystal-chemistry' approach,” J. Non-Cryst.

Solids, vol. 163, p. 261, 1993.

153

31 R. D. Shannon, “Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides,” Acta Cryst. A, vol. 32, p. 751, 1976.

32 X. Bu, P. Feng, T. E. Gier, D. Zhao, and G. D. Stucky, “Hydrothermal synthesis and structural characterization of zeolite-like structures based on gallium and aluminum germanates,” J. Am. Chem. Soc., vol. 120, p. 13389, 1998.

33 W. L. Warren, M. R. Shaneyfelt, D. M. Fleetwood, J. R. Schwank, and P.S. Winokur,

“Microscopic nature of border traps in MOS oxides,” IEEE Trans. nuclear sci., vol. 41, p.

1817, 1994.

34 R. Zhang, N. Taoka, P.-C. Huang, M. Takenaka, and S. Takagi, “1-nm-thick EOT high mobility Ge n- and p-MOSFETs with ultrathin GeOx/Ge MOS interfaces fabricated by plasma post oxidation,” IEDM Tech. Dig., p. 642, 2011.

35 J. Franco, B. Kaczer, Ph. J. Roussel, J. Mitard, S. Sioncke, L. Witters, H. Mertens, T.

Grasser, and G. Groeseneken, “Understanding the suppressed charge trapping in relaxed- and strained-Ge/SiO2/HfO2 pMOSFETs and implications for the screening of alternative high-mobility substrate/dielectric CMOS gate stacks,” IEDM Tech. Dig., p. 397, 2013.

Chapter 4. Reliability assessments on Ge MOS device

154

関連したドキュメント