• 検索結果がありません。

LCO 80%

ドキュメント内 九州大学学術情報リポジトリ (ページ 47-100)

ブ ブピ

1 別 ° ロ L ロ L

ロ L

L際 O ロ L

L 際 O P 平

F i 離 バ ブ 切 1 判 ブ L 際 O

L 際 O

P m i L 際 O P m i

F i 離 バ ブ 切 1 判 L 際 O

C r a n k a n g l e

GO LCO 50%

ブ ブフ

F i 離 バ ブ 切 1 別 L 際 O P m i

ブ バ プ ブ バ プ ブ バ プ

ブ バ プ L 際 OL 際 OL 際 OL 際 O

ブ バ プ バ 1

L際 O

平 A 年 平 E W a r t s i l a 験 T 切 f l e x

L際 O 1 0 0 デ

判 0 9 プ 平 P a T a b l e ブ バ プ バ 1

T a b l e ブ 切 プ

7 0 M P a φ 0 . 2 3 m m × 4

× 2

1 6 d e g . 8 0 k P a

( )

9 5 M P a 1 3 d e g .

ブ バ プ バ ピ

F i 離 バ ブ 切 1 9 °

1 6 °

F i 離 バ ブ 切 ピ 1

ブ ブブ

F i 離 バ ブ 切 ピ 0

F i 離 バ ブ 切 ピ 1

0 . 0 0 . 00 . 0 0 . 0 0 . 5 0 . 50 . 5 0 . 5 1 . 0 1 . 01 . 0 1 . 0 1 . 5 1 . 51 . 5 1 . 5 2 . 0 2 . 02 . 0 2 . 0

000 0 555 5 1 0 1 01 0 1 0 1 5 1 51 5 1 5 2 0 2 02 0 2 0

0 . 0 0 . 00 . 0 0 . 0 0 . 5 0 . 50 . 5 0 . 5 1 . 0 1 . 01 . 0 1 . 0 1 . 5 1 . 51 . 5 1 . 5 2 . 0 2 . 02 . 0 2 . 0

ROHR [kJ/deg.] ROHR [kJ/deg.] Q [kJ]

Q [kJ]

徹 坎 咀 梺 珽 坎 咀 梺

徹 坎 咀 梺

6 8 1 4 1 6 2 2 3 4

珽 坎 咀 梺

F i 離 バ ブ 切 1 9

1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0

8 0 0 8 0 0 8 0 0 8 0 0

6 0 0 6 0 0 6 0 0 6 0 0

4 0 0 4 0 0 4 0 0 4 0 0

2 0 0 2 0 0 2 0 0 2 0 0

0 00 0

1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0

8 0 0 8 0 0 8 0 0 8 0 0

6 0 0 6 0 0 6 0 0 6 0 0

4 0 0 4 0 0 4 0 0 4 0 0

2 0 0 2 0 0 2 0 0 2 0 0

0 00 0

Pinj [bar] Pinj [bar]

珽 坎 咀 梺 徹 坎 咀 梺

ブ ブプ

ブ バ 6 ブ バ 6 ブ バ 6

ブ バ 6 L 際 OL 際 OL 際 OL 際 O

ブ バ 6 バ 1

L際 O

ピ ピ

A 障 障

T a b l e ブ バ 6 バ 1 ピ

[ M P a ]

( )

1 0 0

1 0 0

0 . 2 3 0 . 2 3 - 5 ( 2 )

1 : 1

- 1 5 - 5 0 . 2 0

0 . 2 0

7 0 0 . 2 3 1 : 2

1 0 0 0 . 2 0 - 1 0 1 : 1

ブ バ 6 バ ピ

F i 離 バ ブ 切 ピ ピ F i 離 バ ブ 切 ピ フ

市 A 布 ピ

B 1 0 °

A

際 B B

T a b l e ブ 切 6

ブ ブ6

B

1 ピ

E 際 プ °

際 1 0 °

S o o t

S o o t

P m i 年 O

F i 離 バ ブ 切 ピ ピ

A

B

C

4 8

D

E

1 4 2 0 2 6 3 4

ブ ブ判

A

B

E

F i 離 バ ブ 切 ピ フ

- 4 0 0 - 4 0 0 - 4 0 0 - 4 0 0 - 2 0 0 - 2 0 0 - 2 0 0 - 2 0 0 0 00 0 2 0 0 2 0 0 2 0 0 2 0 0 4 0 0 4 0 0 4 0 0 4 0 0 6 0 0 6 0 0 6 0 0 6 0 0 8 0 0 8 0 0 8 0 0 8 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 2 0 0 1 2 0 0 1 2 0 0 1 2 0 0

- 4 0 0 - 4 0 0 - 4 0 0 - 4 0 0 - 2 0 0 - 2 0 0 - 2 0 0 - 2 0 0 0 00 0 2 0 0 2 0 02 0 0 2 0 0 4 0 0 4 0 04 0 0 4 0 0 6 0 0 6 0 06 0 0 6 0 0 8 0 0 8 0 08 0 0 8 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 2 0 0 1 2 0 0 1 2 0 0 1 2 0 0

- 4 0 0 - 4 0 0 - 4 0 0 - 4 0 0 - 2 0 0 - 2 0 0 - 2 0 0 - 2 0 0 0 00 0 2 0 0 2 0 0 2 0 0 2 0 0 4 0 0 4 0 0 4 0 0 4 0 0 6 0 0 6 0 0 6 0 0 6 0 0 8 0 0 8 0 0 8 0 0 8 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 2 0 0 1 2 0 0 1 2 0 0 1 2 0 0

- 4 0 0 - 4 0 0- 4 0 0 - 4 0 0 - 2 0 0 - 2 0 0- 2 0 0 - 2 0 0 0 00 0 2 0 0 2 0 0 2 0 0 2 0 0 4 0 0 4 0 0 4 0 0 4 0 0 6 0 0 6 0 0 6 0 0 6 0 0 8 0 0 8 0 0 8 0 0 8 0 0 1 0 0 0 1 0 0 01 0 0 0 1 0 0 0 1 2 0 0 1 2 0 01 2 0 0 1 2 0 0

0 . 0 0 . 0 0 . 0 0 . 0 0 . 5 0 . 5 0 . 5 0 . 5 1 . 0 1 . 0 1 . 0 1 . 0 1 . 5 1 . 5 1 . 5 1 . 5 2 . 0 2 . 0 2 . 0 2 . 0

000 0 5 55 5 1 0 1 0 1 0 1 0 1 5 1 5 1 5 1 5 2 02 0 2 02 0

0 . 0 0 . 0 0 . 0 0 . 0 0 . 5 0 . 5 0 . 5 0 . 5 1 . 0 1 . 0 1 . 0 1 . 0 1 . 5 1 . 5 1 . 5 1 . 5 2 . 0 2 . 0 2 . 0 2 . 0

0 00 0 5 55 5 1 0 1 0 1 0 1 0 1 51 5 1 51 5 2 02 0 2 02 0

0 . 0 0 . 0 0 . 0 0 . 0 0 . 5 0 . 5 0 . 5 0 . 5 1 . 0 1 . 0 1 . 0 1 . 0 1 . 5 1 . 5 1 . 5 1 . 5 2 . 0 2 . 0 2 . 0 2 . 0

0 00 0 555 5 1 0 1 0 1 0 1 0 1 51 5 1 51 5 2 0 2 0 2 0 2 0

0 . 0 0 . 0 0 . 0 0 . 0 0 . 5 0 . 5 0 . 5 0 . 5 1 . 0 1 . 0 1 . 0 1 . 0 1 . 5 1 . 5 1 . 5 1 . 5 2 . 0 2 . 0 2 . 0 2 . 0

0 00 0 5 55 5 1 0 1 0 1 0 1 0 1 5 1 5 1 5 1 5 2 0 2 0 2 0 2 0 - 4 0 0

- 4 0 0 - 4 0 0 - 4 0 0 - 2 0 0 - 2 0 0 - 2 0 0 - 2 0 0 0 00 0 2 0 0 2 0 0 2 0 0 2 0 0 4 0 0 4 0 0 4 0 0 4 0 0 6 0 0 6 0 0 6 0 0 6 0 0 8 0 0 8 0 0 8 0 0 8 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 2 0 0 1 2 0 0 1 2 0 0 1 2 0 0

0 . 0 0 . 0 0 . 0 0 . 0 0 . 5 0 . 5 0 . 5 0 . 5 1 . 0 1 . 0 1 . 0 1 . 0 1 . 5 1 . 5 1 . 5 1 . 5 2 . 0 2 . 0 2 . 0 2 . 0

000 0 5 55 5 1 0 1 01 0 1 0 1 51 51 5 1 5 2 0 2 02 0 2 0

RHR [kJ/deg.]RHR [kJ/deg.]RHR [kJ/deg.]RHR [kJ/deg.]RHR [kJ/deg.] Q[kJ]Q[kJ]Q[kJ]Q[kJ]Q[kJ]

Inj. P [bar]Inj. P [bar]Inj. P [bar]Inj. P [bar]Inj. P [bar]

Crank Angle [deg. ATDC]

Crank Angle [deg. ATDC]

Crank Angle [deg. ATDC]

Crank Angle [deg. ATDC]

Crank Angle [deg. ATDC]

Crank Angle [deg. ATDC]

Crank Angle [deg. ATDC]

Crank Angle [deg. ATDC]

Crank Angle [deg. ATDC]

Crank Angle [deg. ATDC]

ブ ブ別

ブ バ 判

ブ バ 1 L際 O ル 平 O

ブ バ ピ ピ L際 O

ブ バ フ L際 O

ブ バ ブ L際 O

ブ バ プ L 際 O

ブ バ 6 L際 O

F i 離 バ ブ 切 ピ プ 年 O x

0.95 0.96 0.97 0.98 0.99 1 1.01 1.02 1.03

0.0 200.0 400.0 600.0

鋻鋻鋻鋻((((師実旨師実旨師実旨師実旨AAAA嫻╪嫻╪嫻╪嫻╪

NOx [ppm]

NOx [ppm]

NOx [ppm]

NOx [ppm]

B C D E

プ ュFユ ブホ

ププ

ププ ュFユュFユュFユュFユ

ピ00 平致a

年至x

ュFユ ュomputational Fluid ユynamics

ュFユ

ュFユ

AーL Fire AーL ロルーA

ュFユ

ュFユ

プ.1 プ.1 プ.1

プ.1

ュFユ

フ ブ 年ユT

ュase次A

A 100 平致a ュase次B

1プ0 平致a ュase次ュ

プ ュFユ プ0

ュase次B ュase次ュ

プ.1.1

次11フ de離. ATユュ 別プ de離. ATユュ

Fi離. プ次1

フ ピ

Fi離. プ 次 1

プd e 10 de

離. ピ0 de 10 d離.

e離 .

Fi離. プ次 ピ Tユ ュ

(a)ュase次 A

賜 実 爾 識 磁 紫 斯 自

(b) ュase次 B欠 ュ

プ ュFユ プ1

[m m ] 3 3

[m m ] 0 . 5

[ - ] 3 5 0 , 5 0 6 3 5 0 5 0 6

[ - ] 4 6 , 0 3 6 6 3 5 0 0

[ d e g . A T D C ] ― - 1 5 3 5

Fi離. プ次 フ

A

A

0. プm m欠 別 0. 判プ m m欠 10

1. プm m欠 10

Tabl e プ 次 ピ Tabl e プ 次 1

- 1 1 5 ~ - 1 0 5 - 1 0 5 ~ - 9 5

- 9 5 ~ - 8 5 - 8 5 ~ - 7 5 - 7 5 ~ - 6 5 - 6 5 ~ - 5 5 - 5 5 ~ - 4 5 - 4 5 ~ - 3 5 - 3 5 ~ - 2 5 - 2 5 ~ - 1 5

- 1 5 ~ - 5 5 0 , 6 4 1 1 7 8 , 9 7 7 - 5 ~ 5 4 6 , 0 3 6 1 7 4 , 8 3 3

5 ~ 1 5 5 0 , 6 4 1 1 7 8 , 9 7 7

1 5 ~ 2 5 6 3 , 5 0 0 1 9 2 , 2 8 0 2 5 ~ 3 5 8 1 , 4 5 8 2 1 0 , 0 7 8 3 5 ~ 4 5

4 5 ~ 5 5 5 5 ~ 6 5 6 5 ~ 7 5 7 5 ~ 8 5

3 5 0 , 5 0 6 3 1 9 , 6 1 5 2 8 4 , 5 7 7 2 4 8 , 6 1 9 2 1 1 , 9 0 0 1 7 3 , 3 5 6 1 3 8 , 2 0 6

1 0 7 , 5 1 5 1 0 7 , 5 1 5 d e g . A T D C

2 1 1 , 9 0 0 2 4 8 , 6 1 9 8 1 , 4 5 8 6 3 , 5 0 0

1 3 8 , 1 9 9 1 7 3 , 3 5 6

プ ュFユ プピ

プ.1.ピ

ュase次A欠 B欠 ュ Table プ.1.フ Table

プ.1.プ

Case A B C

[rpm ] 346 371 374

[-] 3.7

Case A B C

[MP a] 0.322 0.313 0.312

[K ] 369 359 362

[m2/s2] 0.605 0.649 0.654

[m ] 0.0475

EGR [-] 0 0.35

エ ョラR ョョョョx難aust ラララ as Rラ RRRecirculation

EGR

Case B C

[-] A

[K ] 308 310

[cc] 0.396 (0.28) 0.404 (0.303) [mm ] 0.22 (0.23) 0.197 (0.20)

[MP a] 100 150

[-] 4

[deg.] 5

[deg.] 18 17

[deg.ATDC ] -4 -5

[deg.] 23 24

Tabl e プ 次 フ

Tabl e プ 次 ブ

Tabl e プ 次 プ

プ ュFユ プフ

Fi離. プ次ブ

プ.1.フ FルRョ

Fi 離. プ次プ ュase次B

フ ピ0 フプde離.ATユュ

Fi離. プ次ブ

Fi離. プ次プ

プ ュFユ プブ

Fi離. プ次ヘ

ュase次B ュase次ュ

ュase次ュ

ュ ase次ュ

ュase次B

フ ュase次B欠 ュ

年 ユT

Soot So ot

ュase次B Fi離. プ次判 ュase次ュ

Fi離. プ次別 フ de離.

Soot

ュase次ュ ュase次B

ュase次ュ ュase次B Soot

Soo t Fi離. プ次ヘ

プ ュFユ ププ

Ca s e - B

Fi離. プ次 判 S o o t

ュ ase B

プ ュFユ プヘ

C a s e - C

Fi離. プ次 別 S o o t

ュ ase ュ

プ ュFユ プ判

プ.ピ プ.ピ プ.ピ

プ.ピ

年ユT

S難ort

ユuration Sユ Reduced Area RA ピ

1プ0 平致a

ュase次ュ Sユ RA フプ0 平致a

プ.ピ.1

ュase次ュ Tabl e 次

Table プ次ヘ

ュFユ

Fi離. プ次ホ Fi離. プ次10

Fi 離. プ次ホ Sユフプ0

RA ュ

Fi離. プ次10 RA

Sユ

C a s e C S D 2 5 0 S D 3 5 0 R A 2 5 0 R A 3 5 0

[ M P a ] 1 5 0 2 5 0 3 5 0 2 5 0 3 5 0

[m m ] 0 . 1 9 7 0 . 1 7 5 0 . 1 6

[ d e g ] 2 4 1 8 . 5 1 6 2 4

[ d e g . A T D C ] - 5

プ ュFユ プ別

F i離 . プ次 ホ

F i離 . プ次 1 0

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14

0 1 2 3 4 5 6 7

Spray penetration [m]

Crank angle [deg. ASOI]

Case C RA250 RA350 SD250 SD350

0 0.5 1 1.5 2 2.5 3 3.5

0 1 2 3 4 5 6 7

Air excess ratio at spray tip [-]

crank angle [deg. ASOI]

Case C RA250 RA350 SD250 SD350

プ ュFユ プホ

プ.ピ.ピ

Table プ次判

Fi離. プ次11 致mi

Table プ次判 Fi離. プ次1ピ Sユ Fi離. プ次1フ

RA Fi離. プ次1ピ Sユ

Fi離. プ次11 致max RA

フプ0 平致a RAフプ0

0

2 4 6 8 10 12

-40 -20 0 20 40 60 80

In-cylinder pressure [MPa]

crank angle [deg. ATDC]

Case-C SD250 SD350 Case-C RA250 RA350

-0.2 0 0.2 0.4 0.6 0.8 1

-10 0 10 20 30 40 50 60

Rate of Heat Release [kJ/deg]

crank angle [deg. ATDC]

experiment inj. P = 150 MPa validation inj. P = 150 MPa SD250

SD350

-0.2 0 0.2 0.4 0.6 0.8 1

-10 0 10 20 30 40 50 60

Rate of Heat Release [kJ/deg]

crank angle [deg. ATDC]

experiment inj. P = 150 MPa validation inj. P = 150 MPa RA250

RA350

C a s e - C R A 2 5 0 R A 3 5 0 S D 2 5 0 S D 3 5 0

( C a s e - C ) 1 0 0 9 7 . 9 9 7 . 2 9 6 . 4 9 5 . 6

Fi離. プ次11

Fi離. プ次1フ RA

Fi離. プ次1ピ Sユ

プ ュFユ ヘ0

Fi離. プ次1ブ Soot Sユ プ

10°ATユュ Soot

ュase次ュ Sユピプ0 Sユフプ0

年 ユT 別

S ユ Fi離.プ次1ピ

RA プ 10°ATユュ

ュase次ュ RAピプ0 RAフプ0

Fi離. プ次1ブ Soot

プ ュFユ ヘ1

Sユ RA

Sユピプ0 RAピプ0 フプ°ATユュ Sユフプ0 RAフプ0 フ0°ATユュ RA

Sユ

年至x Fi離. プ次1プ 年至x Sユ

年至x Sユフプ0 Sユピプ0

RA RAピプ0 RAフプ0 Table

プ次別 年至x

Table プ次別 年至x

C a s e - C R A 2 5 0 R A 3 5 0 S D 2 5 0 S D 3 5 0

N O [ p pm ]

O 1 3 7 5 7 9 6 7 9 9 1 1 1 3 3 1 3 0 6

Fi離. プ次1ヘ 致max Fi離. プ次1判 年至x Fi離. プ次1別 年至x Soot Fi離. プ次1ヘ Sユフプ0

ュase次ュ ブ 致max Fi離. プ次1判

年至x ュase次ュ 1.判 致max RA

Sユ 致max

Soot Fi 離.

プ次1別 年至x Soot RA

RA フプ0 RA ピプ0 年至x ュase次ュ 判フ ププ S oot

0.E+00 1.E-07 2.E-07 3.E-07 4.E-07 5.E-07 6.E-07 7.E-07 8.E-07 9.E-07 1.E-06

-5 15 35 55 75

in-cyinder NOx [mol]

crank angle [deg.ATDC]

Case-C RA250 RA350 SD250 SD350

Fi離. プ次1プ 年至x

プ ュFユ ヘピ

0.95 0.96 0.97 0.98 0.99 1

8 8.5 9 9.5 10 10.5 11

relative SFC [-]

Pmax [MPa]

RA series SD series

Fi離. プ次 1 ヘ 致 m ax R A3 5 0 R A2 5 0

SD 3 5 0 SD 2 5 0

C a s e C

0.95 0.96 0.97 0.98 0.99 1

0.8 1 1.2 1.4 1.6 1.8 2

relative SFC [-]

relative NOx emission [-]

RA series SD series

R A3 5 0 R A2 5 0

SD 3 5 0 SD 2 5 0

C a s e C

Fi離. プ次1判 年至x

0.5 0.6 0.7 0.8 0.9 1

0.8 1 1.2 1.4 1.6 1.8 2

relative Soot emission [-]

relative NOx emission [-]

RA series SD series

R A 3 5 0 R A2 5 0

SD 3 5 0 SD 2 5 0

Fi離. プ次1別 年至x Soot C a s e C

プ ュFユ ヘフ

RA Soot

ピ ピ.ブ

致max 年 至x

プ.フ プ.フ プ.フ

プ.フ

ブ00mm 1フヘ0mm

Table プ次ホ

Fi離. プ次1ホ フ ュAユ

T a b le 5 - 9

2

8 5 6 kW 1 7 7 r pm

1 4 0 0 m m 1 3 6 0 m m

1 . 7 M P a

プ ュFユ ヘブ

ュFユ 年ユT

年ユT

プ.フ.1

プ ピ

1別ヘ mm RA

ピ1° フ

別0 平致a ピ00 フ00 平致a

Table プ次10 Fi 離. プ次ピ0

Table プ次11

1 3 . 3 3 g C1 3H2 3

2 9 3 . 1 5 K 5 h o l e s ×2

0 . 6 7 m m 0 . 5 4 m m 0 . 4 8 m m 8 0 M P a 2 0 0 M P a 3 0 0 M P a

- 5 . 0 d e g . A T D C 2 1 d e g . A

A

ブ00mm

Side view

Section A次A 致lan view

Fi離. プ次 1 ホ

Tabl e プ 次 1 0

プ ュFユ ヘプ

1 2 3

4 5 7.5

10.2 11.3 16.3 18.0 1

2 3

4 5 7.5

10.2 11.3 16.3 18.0

11.5 12.7 12.7 15.2

1

4 5

2 3

3.4 11.5

12.7 12.7 15.2

1

4 5

2 3

3.4

T a b le 5 - 1 1

1 6 1 r pm 0 . 6 1 M P a

2 . 9 3 8 0 . 6 K

- 7 0 d e g . A T D C

プ.フ.ピ

F i離. プ次ピ1 Fi離. プ次ピピ

別0 ピ00 平致a 致max

ピ 平致a ピ00 フ00 平致a 致 max 0.プ 平致a

0 50 100 150 200 250 300 350

-10 -5 0 5 10 15 20

injection pressure [MPa]

crank angle [deg. ATDC]

inj. P = 80 MPa inj. P = 100 MPa inj. P = 200 MPa

Fi離. プ次ピ0

Fi離. プ次ピ1

プ ュFユ ヘヘ

Fi離. プ次ピフ Fi離. プ次1フ

ピ00 平致a フ00 平致a

Fi離. プ次ピブ 年至x Fi離. プ次ピプ 年至x

年至x 年 至x

0 2 4 6 8 10 12 14 16 18

-40 -20 0 20 40 60 80

in-cylinder prssure [MPa]

crank angle [deg. ATDC]

inj. P = 80MPa inj. P = 200 MPa inj. P = 300 MPa

Experiment inj. P = 80 MPa

-5 0 5 10 15 20 25 30 35 40 45

-20 0 20 40 60 80

Heat receiving rate [kJ/deg]

crank angle [deg. ATDC]

inj. P = 80MPa inj. P = 200 MPa inj. P = 300 MPa

Fi離. プ次ピピ

Fi離. プ次ピフ

プ ュFユ ヘ判

0 0.00001 0.00002 0.00003 0.00004 0.00005 0.00006 0.00007 0.00008

-20 0 20 40 60 80

amoun of NOx [mol]

crank angle [deg. ATDC]

inj. P = 80MPa inj. P = 200 MPa inj. P = 300 MPa

-2.0E-06 -1.0E-06 0.0E+00 1.0E-06 2.0E-06 3.0E-06 4.0E-06 5.0E-06 6.0E-06 7.0E-06 8.0E-06 9.0E-06

-5 5 15 25 35

NOx formation rate [mol/deg]

crank angle [deg. ATDC]

inj. P = 80MPa inj. P = 200 MPa inj. P = 300 MPa

Fi離. プ次 ピ ブ 年至x 年 至x

Fi離. プ次 ピ プ S oo t

プ ュFユ ヘ別

Fi離. プ.次ピプ Soot フ

Soot

ホ°ATユュ So ot

de離. ATユュ 1プ de離. ATユュ 別0平致a

別0平致a

Soo t

致max 年至x Soot

Table プ.フ.ブ フプ0平致a プ. 判

年 至x 1.ヘ

フ00 平致a

ピ00 平致a 別0 ピ00 平致a

Tableプ次1ピ

8 0 M P a 2 0 0 M P a 3 5 0 M P a

8 0 M P a 1 0.950 0.943

Pm a x 1 3 . 2 M P a 1 5 . 2 M P a 1 5 . 8 M P a

N O 8 0 M P a 1 1.48 1.61

S o o t 8 0 M P a 1 0.633 0.542

プ.ブプ.ブ

プ.ブプ.ブ

ュFユ Fire

Soot

フプ0 平致a

別0 ピ00 平致a

6 69

6 6 6

6

CO2 ルMO

CO2

2011 2016 NOx SOx

6

1 2

フ 2

NOx

NOx

LCO Light Cycle Oil LCO

ルMO SOx TierⅢ 201プ

LCO

LCO 2 A

6 70

LC O

ECA NOx

LCO LCO

フプ0 MPa

CFD CFD

1プ0 MPa

ブ00 mm フプ0 MPa

NOx

200MPa 6

CFD

CFD App. 1

CFD

A-1

1 1

Control Volume

UDS Upwind Difference Scheme 1

CDS Central Difference Scheme 1 1

, Table a-1

A-2 [1]

FIRE →

2 →

1 →





 −

∂ + ∂

=



∂ + ∂

= ∂ j

j j j

j cu

x D C r x

x U C t C Dt

DC ρ ρ ρ

ρ (a-1)

(

ij i j

)

j i j i j i

i uu

g x x U U t U Dt

DU ρ ρ τ ρ

ρ −

∂ + ∂

=



∂ + ∂

= ∂ (a-2)

( )



 − Θ

∂ + ∂

∂ + ∂

∂ +∂

=



∂ + ∂

= ∂ p j

j j ij j i g

j

j C u

x T U x

x t q p x U H t H Dt

DH ρ ρ τ λ ρ

ρ (a-3)

ρ C c

Table a-1

CFD App. 2

Ui

ui

τii

T Θ H p D λ Cp

ρrρr, ρgi, ρqg

* cuj

ρ

uj ρc

j iu ρu

uj ρuj

j

p u

C Θ ρ

uj ρhCpΘ

A-3 SIMPLE [1], [2]

FIRE Patankar SIMPLE Semi-Implicit Method

for Pressure-Linked Equations

SIMPLE Ui

p

1. p

2. p Ui

3. p'

4. ap

' p a p

p= + p (a-4)

5.

CFD App. 3

i'

U i

i U a U

U = + (a-5)

6.

t p i

p U C T

T C

H= + =

2

2

(a-6)

Tt:

7. p STEP 2 STEP 2 ~ STEP 6

A-4 [1], [3]~[5]

RANS Reynolds Averaged Navie Storks

k-ε

k-ε k

 

 = 2 2 1

ui ε



= ∂

j i j i

x u x ν u

ν µ kε2

t =C Cµ (a-7)

k, ε σ ε

ν ν + −









∂



 +

= ∂

∂ + ∂

k j k t j

j

j P

x k x

x U k t

k (a-8)

(

ε

)

ε ε σ ν ν ε

ε

ε

ε ε1 2

C P k C x x

U x

t j k

t j

j

j + −









 ∂



 +

= ∂

∂ + ∂

∂ (a-9)

ν Pk Cε1, Cε2, σk, σε k-ε

CFD App. 4

k-ε k-ε

k-ε k-ε

k-ε

k-ε

A-5 [1], [6], [7]

0

0.01 ~ 0.1mm

1

ρ τω

τ =

U µ q&ω

→0 τω

*

* y

U = y*<11.63 (a-10)

( )

*

* 1ln

Ey

U =κ 11.63

*>

y (a-11)

p

p U

U C k

U 2

2 1 4 1

*

τ

= µ (a-12)

µ ρ

µ kp yp

C y

2 1 4 1

*= (a-.13)

41 .

=0

κ Karman E=9 P

CFD App. 5

µ µw (a-14)

µ

µ *

*

U y

w= (a-14)

( )



 +

= Ey Y

T* T K1ln *

σ (a-15)

( )

ω µ ω

ρ q

T T k c

C

T p p p

&

= 14 12

* (a-16)







 

−

 +



  −

 

= 

T T

Y σ σ

007 Pr . 0 exp 28 . 0 1 Pr 1

24 . 9

75 . 0

(a-17)

Pr Prandtl σT Prandtl Schmidt Tω

q&ω

p p y k k y C

P U 14 12

ρ τ τ

τ

µ ω ω

ω =

≈ ∂ (a-18)

τω

k ε

ε εP

p P

P y

C k

ε = µ34κ32 (a-19)

A-6 [8], [9]

Fig. a-1

DDM Discrete Droplet Model

Fig. a-1

1

2

CFD App. 6

A-6.1 DDM [8], [9]

1 2 µm

Fig. a-2

(a-20)

ib ip ig id idr

d id

d F F F F

dt u m d a m

r r r r r

r = = + + + (a-20)

Fidr

r

Fig

r

Fip

r

Fid

r

Magnus Fidr

r Fig

r

(

ig id

)

p

idr D u u

Fr r r

= (a-21)

(

l g

)

i p

ig V g

Fr r

ρ ρ −

= (a-22)

p V Frip p r

= (a-23)

Dp

id ig D d g

p A C u u

D r r

= ρ 2

1 (a-24)

CD Reynolds Red Schiller Naumann [10]

Ad

(

d0.687

)

d

0.15Re Re 1

24 +

Red <103

44 .

0 Red ≥103

Reynolds µg

D =

C (a-25)

Fig. a-2

CFD App. 7

g d id ig g d

r u u

µ

ρ 2

Re =

r r

(a-26)

Fidr

r Fig

r

( )

i

l g D

id ig d

id ig l id g

id u u C g

r u u dt

u

a d r r r

r r r

r





 − +

− −

=

= ρ

ρ ρ

ρ 1

8

3 (a-27)

(a-27) urid

urid

Timestep∆t

=

= dt

dt u dt d a

uid id id

r r

r (a-28)

t u x

xridn+1= ridn +rid

(a-29)

A-6.2

1 2 1 Enhanced

Blob 2 KH-RT

A-6.2.1 1 Enhanced Blob [8], [9]

Blob 1

Enhanced Blob

Fig. a-3 1 2

2 2

1 2 



⋅ +

=

d l geo

C p U

p ρ

(a-30) D

R R/D L L/D Cd

Nurick [11], [12]

Cc c

Fig. a-3

1 c 2

Ugeo

Uc

Ueff Aeff Ageo

CFD App. 8

c geo

c C

U =U (a-31)

Ugeo

Cc D R R/D 1

2

2

1 2 c

l

c U

p p = + ρ ⋅

(a-32)

pc pvapor 1

'1

p C'd

2

1 2 c

l

vapor U

p

p = +ρ ⋅

(a-33)

2 1

' 1

p p

p C p

K C

Cd c c vapor

⋅ −

=

= (a-34)

geo l

vapor c

eff U

p U p

U

− −

= ρ

2 (a-35)

eff geo geo

eff U

A U

A = ⋅ (a-36)

π

eff eff

DA

= 4

(a-37)

A-6.2.2 2 KH-RT [8], [9]

KH-RT KH Kelvin Helmholtz RT Rayleigh Taylor

KH Fig. a-4

Fig. a-4 KH 2r0

Λ dnew=2C1⋅Λ

urel

CFD App. 9

Λ Ω

( )( )

(

1.67

)

0.6

7 . 0 5

. 0 0

87 . 0 1

4 . 0 1 45

. 0 02 1

. 9

Weg

T r Oh

⋅ +

⋅ +

⋅ +

=

Λ (a-38)

( ) (

0.6

)

5 . 5 1

. 3 0 0

4 . 1 1 1

38 . 0 34 . 0

T Oh

r Weg

l

⋅ + +

⋅ +





= Ω

σ

ρ (a-39)

Reynolds

l rel l l

u Re r

η ρ 0

= , Ohnesorge

l

Wel

Oh Re

5 . 0

= , Weber

σ ρl 0 rel2

g

u

We = r T=OhWel0.5

(a-38), (a-39) Λ Ω Ra τa

Λ

=C1

Ra (a-40)

= ΛΩC R

a 3.7 2

τ (a-41)

C1 C2

(a-40), (a-42) Ra τa r

bu

rnew

r dt dr

τ

− −

= (a-42)

(a-42) r Timestep rn+1

rnew

urel

a

RT Fig. a-5

a (a-27) r C u a

l rel g

d ρ

ρ 2 8

=3 (a-43)

Kt Λtt τt (a-44) ~ (a-47)

C4 C5

( )

σ ρ ρ

3

g l t

K a

= (a-44)

Fig. a-5 RT

Λ a urel

front back

CFD App. 10

t t C Kπ

= 4

Λ (a-45)

( )

[ ]

g l

g l t

a ρ ρ

ρ ρ

σ +

= − Ω

5 . 1

3 3

2 (a-46)

t

t C

= Ω1

τ 5 (a-47)

RT Λt KH

Λt

τt

Enhanced Blob KH-RT Enhanced Blob/KH-RT

Fig. a-6 RT

L L RT

2 RT

C3 0

3 d

C L

g l

ρ

= ρ (a-48)

C6 C7 2 C6

C7

C6 C7

Vnorm KH Λ KH Ω

C8

Fig. a-6 Enhanced Blob/KH-RT KH

RT

L d0

CFD App. 11

⋅ Λ

=C8

Vnorm (a-49)

A-6.3 [8], [9]

uig

k 2

Gosman Ioannidis

Gosman Ioannidis uig

k-ε u'i

3

= 2k

σ σ k

(

2 1

) (

2 1

)

3

' 2 1

2 1

 ⋅

 

= i i

i k sign Rn erf Rn

u (a-50)

Rni 0<Rni<1 erf1

u'i tturb u'i u'i

tturb





= +

d g l

turb u u u

C k C k t

' , 1

min

2 3

ε

τε (a-51)

0 .

=1

Cτ Cl =0.16432 Time step∆t tturb

tturb

A-6.4

Nordin Nordin O’Rourke

A-6.4.1 O’Rourke [8], [9]

2

CFD App. 12

Collector Droplet

1 Collector 2 Droplet ν

ν 1 Collector 2 Droplet

P ν

( )

1 2

2 2 2 1

4 d d u u

V N

cell

− +

= π

ν (a-52)

N2 2 Vcell

Collector Droplet n P Poisson

! n e n P

n n n

= (a-53)

t

n =ν⋅∆ ∆t Timestep P0 =en

1 Rn1 0≤Rn1≤1

0

1 P

Rn <

0

1 P

Rn ≥ Collector Droplet 1

1 2

2

Rn 0≤Rn2≤1 Rn2 b

(

d1 d2

)

Rn2

b= + (a-54)

bcr

b<

bcr

b

bcr bcr

Weber Wed

( ) [ ( ( )

d

) ]

cr d d f We

b2 = 12 2min1.0,2.4 γ / (a-55)

( )

γ =γ3−2.4γ2+2.7γ f

1 2

d

= d

γ , d1>d2 (a-56)

1 2 2 1

2 u d

Wed dud d σ

ρ −

= (a-57)

2

Rn Collector n

=

=

<

n

k k n

n

k

k R P

P

0 2 1

0

(a-58)

Collector n

CFD App. 13

Collector n

n N2

1 N

N N1 N2

( )

3 2 3 1

3 2 1 3 2 3 2 2 3 1

* 1

1 d d

R u u d d u d

ud ud d d d n

+

− +

= + (a-59)

3

Rn 3

( )

cr

cr

n d d b

b R b

− +

= −3

2 3 1

3 (a-60)

Collector Droplet A-6.4.2 Nordin [8], [9]

Nordin O’Rourke Nordin

( )

0

1 2

1 2 2

1

12 >

⋅ −

= x x

x U x

U

U r r

r r r

r

(a-61)

U r

xr

1 2

(

2 1

)

1 2

12 t x x r r

U ∆ > r −r − −

(a-62)

r (a-62)

P C1

( )



⋅ −



 

+

= +

t C D

r r

r P r

C 2α β

min 1 2

1

2 exp

, max

1

(a-63) β

α− Dmin

X P

A-6.6 [8], [9], [13]

Dukowicz Dukowicz

CFD App. 14

Lewis Le=1

dt Q Ldm dt c dT

md pd d = d + (a-73)

Q

(

s

)

s T T

A

Q − (a-74)

α As (a-74) α Nusselt Nu

Q

(

s

)

d NuT T

D

Q= πλ − (a-75)

Nusselt Nu Reynolds Re Prandtl Pr E1

(

2 0.6Re1d/2Pr1/3

)

E1

Nu= + (a-76)

(a-77)

2 Ts

T T +

= (a-77)

q&s

f&vs

s vs d

q Q f dt dm

&

&

= (a-78)

(a-73), (a-78)





 +

=

s vs d

pd

d q

L f dt Q

c dT

m &

&

1 (a-79)

(a-79) q&s f&vs

E2

2

1 1

E

s v s vs s

vs

T Y Y k q f





∇



= ρβ −

&

&

(a-80)

(a-80)

T Y

s v s



 

 − +

= −

gs vs vs v

s p s

v s

h Y h

Y h Le h

c T

Y (a-81)

Lewis

λ ρc D

Le= p (a-82)

CFD App. 15

=1

Le (a-80) q&s

f&vs

( ) ( )

E2

vs v gs vs s

y s

vs

Y Y h h h h

B q

f





= −

&

&

(a-83)

vs v vs

y Y

Y B Y

= −

1 (a-84)

(a-84) By

(a-75), (a-79), (a-83)

( ) ( ) ( ) ( )







− + −

⋅ +

=

2

1 1

6 . 0

6 2 1/2 1/3 2

E

vs v gs vs s

y s

E d

pd d d d

Y Y h h h h L B T T Pr

c Re dt D

dT ρ

λ (a-85)

(a-78) (a-86) (a-87)

s vs d

d d

q Q f dt r dr dt

dm

&

&

=

=ρ 4π 2 (a-86)

(

2 0.6 1/2 1/3

)

1

( ) ( ) ( )

2

2

E

vs v gs vs s

y s

E d

d

d h h h h Y Y

T B T Pr

r Re dt

dr





− −

⋅ +

=

ρ

λ (a-87)

A-7

ECFM-3Z

A-7.1 CFM ECFM-3Z [8], [14], [18] ~ [23]

ECFM-3Z 3-Zones Extended Coherent Flame Model CFM Coherent

Flame Model ECFM-3Z CFM

FIRE CFM-2A, MCFM Modified CFM , ECFM Extended CFM

CFM

Laminar Flamelet Model [15], [16]

CFM

Colin ECFM [17]

EGR NO

ECFM

ECFM-3Z 3

2

CFD App. 16

6

ECFM-3Z CFM ECFM

A-7.2 ECFM-3Z [8], [14], [18] ~ [23]

ECFM-3Z 3

F Fuel A Air+EGR

M Mixed

b burned gas

u unburned gas 2 Fb, Fu, Mb, Mu, Ab, Au Fig.

a-8 6 F=Fu+Fb, M=Mu+Mb, A=Au+Ab

4 Fig. a-9

Case-1 Fu

Case-2 Au Fu Mu

Case-3 Ab, Fb, Mb Mu Mu

Mb

Case-4 Ab, Fb Mb Mb

Fig. a-7 ECFM-3Z

A A

M M

Fu Fb

CFD App. 17

A-7.3 ECFM-3Z

Z c ~

[8], [14], [20] ~ [23]

M Z M c~

A-7.2 (a-88) Z 3

(a-88) 1 2 3 A F M

Z 3 CMC

Conditional Moment Closure

( )

Z =a

( )

Z +b

(

ZZ

)

+c

(

Z1

)

P δ δ M δ (a-88)

Z M M

c~ 0 1 0

1

A-7.4 Tracer [8], [14], [20] ~ [23]

ECFM-3Z Fu , O2, N2, H2, NO, CO2, H2O, CO, O, H, N, OH X (a-89)

X i X t t i

i X i X

x Y Sc Sc x x

Y u t

Y ρ µ µ ω

ρ + &



∂



 +

= ∂

∂ +∂

∂ ~ ~~ ~

(a-89) Y~X

X µ µt Sc Sct

ω&X X

Y~X

ρ ρX

X X X

V m

V m m

Y~ =m = =

X

X Y~

ρ

ρ = (a-90)

Fig. a-8 ECFM-3Z A

u

F

u

Case Case

A

F

u

M

A

M

F

A

M

F

Case Case

A

u

M

u

F A

b

M

F

CFD App. 18

m V ρ =mV

X 2 X

u

Y~X

X Y~Xb b

X u X

X Y Y

Y~ ~ ~ +

=

F(A) X Y~XF

(Y~XA

) Y~Xu,F

(Y~Xu,A ), Y~Xb,F

(Y~Xb,A

) Y~XF Y~Xu,F Y~Xb,F +

= (Y~XA Y~Xu,A Y~Xb,A +

= )

b Fu u Fu

Fu Y Y

Y~ ~ ~ +

= , Y~FuF Y~Fuu,F Y~Fub,F +

= , YOA YOu,A YOb,A

2 2 2

~

~

~ = +

M X ρXM

A X X A X X M X M

X Y~ Y~ Y~

ρ ρ ρ ρ ρ

ρ = = − = − (a-91)

F u Fu u Fu M u

Fu, Y~ Y~ ,

ρ ρ

ρ = − , Fub,M Y~Fub Y~Fub,F ρ ρ

ρ = −

u

Y~X b

Y~X

u b ρS&Fuu , ρS&Fub

u b ω&Fuu , ω&Fub u b ω&Fuub

b u Fu u Fu u Fu i

u Fu t t i

i u Fu i u

Fu S

x Y Sc Sc x x

Y u t

Y + + −



∂



 +

= ∂

∂ +∂

∂ρ ρ µ µ ρ& ω& ω&

~

~~

~

(a-92)

b u Fu b Fu b Fu i

b Fu t t i

i b Fu i b

Fu S

x Y Sc Sc x x

Y u t

Y + + +



∂



 +

= ∂

∂ +∂

∂ρ ρ µ µ ρ& ω& ω&

~

~~

~

(a-93)

u

S&Fu, S&Fub

S&Fu c~

(

c

)

S

S&Fuu = &Fu1−~ (a-94)

c S

S&Fub = &Fu~ (a-95)

u

ω&Fu ω&Fub

ECFM-3Z M ZM

ZM (a-96) ZM Tracer

Y~TFu

M O M Fu

M M Fu

m m Z m

+ 2

= (a-96)

M

mFu M mOM

2 M Y~TFu

F Fu

TFu Y

Y~ ~

Y~TFu

X

Tracer Y~TX

CFD App. 19

TX i

TX t t i

i TX i

TX S

x Y Sc Sc x x

Y u t

Y ρ µ µ ρ&

ρ +



∂



 +

= ∂

∂ +∂

∂ ~ ~~ ~

(a-97) c~

Y~TFu

TFu b Fu TFu

u Fu u

Y Y Y

Y m

c m ~

~

~

~ 1

~=1− = − = (a-98)

M M M

X

M M

ρM M X

M M

ρX M

X M

M

Y~X

A-8

NOx Soot

A-8.1 NOx [8],[24]

NOx Zeldovich [25]

Thermal NOx 1800K

Zeldovich

N2 + O NO + N (R14)

O2 + N NO + O (R15)

N + OH NO + H (R16)

(R14) ~ (R16) k1f ~ k3f k1b ~ k3b NO N

(a-135), (a-136)

] H ][

NO [ ] OH ][

N [ ] O ][

NO [ ] N ][

O [ ] N ][

NO [ ] O ][

N ] [

NO [

3 3

2 2

2 1

2

1f kb k f k b k f k b

dt k

d = − + − + − (a-99)

] H ][

NO [ ] OH ][

N [ ] O ][

NO [ ] N ][

O [ ] N ][

NO [ ] O ][

N ] [

N [

3 3

2 2

2 1

2

1f kb k f k b k f kb

dt k

d = − − + − + (a-100)

(

T

)

k1f =6.63×107exp−37765 , k1b =1.55×107 , k2f =8980T×exp

(

−3281T

)

, k2b=1950T×exp

(

−19343T

)

,

7 3b =4.20×10

k , k3b =1.20×108exp

(

−24395 T

)

[m3/(mol·s)]

] N

[ d[N] dt 0 N (a-100) [N]

(a-99) NO

] OH [ ] O [ ] NO [

] H ][

NO [ ] O ][

NO [ ] O ][

N ]} [ OH [ ] O [ ] NO [ {

] H ][

NO [ ] O ][

NO [ ] O ][

N ] [

NO [

3 2 2 1

3 2

2 1 3

2 2 1

3 2

2 1

f f

b

b b

f f

f b

b b

f

k k

k

k k

k k k

k

k k

dt k d

+ +

+

× + +

+

− +

=

(a-101)

CFD App. 20

] NO

[ (a-137)

(R16) [N2] [O2] [NO]

(a-137) [NO]=k3f =k3b=0 ] O ][

N [ ] 2 NO [

2 1f

dt k

d = (a-102)

O 2O

1

2⇔ (R17)

2 1 2] O [ ] O

[ =KfO KfO

2 1 2 2

1 [N ][O ]

] 2 NO [

fO fK dt k

d = (a-103)

fO fK k

k=2 1 N2 + 1/2O2

Zeldovich NOx O N H OH

Zeldovich stable molecules

NO NO NO O O2

OH H H2

NO

3 2

1 2

1

1 1 2

R R

R c

c c R c

dt c

e e

NO NO

NO NO

NO

+ +









−

∂ =

e

e N

NO

bc c

k R1 = 1

e Oe

N f

c c k

R

2

=

2 2

e

e OH

N fc c k

R3 = 3 cie i

A-8.2 Soot

A-8.2.1 Soot [24]

Soot Soot

PAH Polynuclear Aromatic Hydrocarbon

C2H2 C3H3

+, CHO+

mm ~ mm

Soot

Soot

CFD App. 21

A-8.2.2 Soot [8], [26], [27]

Soot Soot ~ys

( ) ( )

ys

j eff s j s j j

s S

x y Sc y x

x u

t y ~

~ ~ +



= ∂

∂ + ∂

∂ µ

ρ

ρ (a-104)

µeff Sc S~ys Soot

ys

S~

2

~ n g O

y S S S

S s = + + (a-105)

Sn Soot Sg Soot

O2

S Soot

Soot Kennedy-Hiroyasu-Magnussen

Soot Cn fn

fn

Soot Soot

Soot Magnussen Eddy Dissipation

Kennedy-Hiroyasu-Magnussen Soot

( )









− −

= 2

2

exp

n n n

n

f C f

S σ (a-106)

Cn [1/(m3s)] f fn σn fn

Kennedy-Hiroyasu-Magnussen Soot

( )





−

= RT

p E y f F A

Sg ,~s 0.5 exp a (a-107)

A p [bar] Ea R [J/(mol K)] T [K]

(

f ys

)

F ,~

Kennedy-Hiroyasu-Magnussen Soot

Soot O2 OH O2 OH

Soot k-ε

1 Soot

Soot

Soot

2 Magnussen Hjertager Magnussen Eddy

Dissipation Soot









 +



⋅ 

=

fu fu s s

s s s

O s

O y m y m

m y m

y y

S A ~ ~

~ ~

~ ,

min 2

2 τ (a-108)

CFD App. 22

A y~fu

ms Soot mfu

[1] AVL FIRE Version 2008 CFD Solver, AVL , 2008 6

[2] V. ,

, , 1983

[3] , , , 1999

[4] , , 1999

[5] , , , , , , 3,

, 1995

[6] Gunter P. Merkerc, et al. Simulating Combustion Simulation of Combustion and Pollutant formation for engine-development with 242 figures pp.307 ~ 309, Springer

[7] Computational Fluid Dynamics Software STAR-CD Version 3.2 [6-3 ~ 6-6], CDAJ

[8] AVL FIRE Version 2008 ICE Phsics & Chemistry, AVL , 2008 6

[9] C. Baumgarten Mixture Formation in Internal Combustion Engines , Springer [10] Schiller L., Naumann A.Z., VDI 77, pp.318 ~ 320, 1933

[11] Nurick W.H. Orifice Cavitation and its Effects on Spray Mixing , J. Fluids Eng. Vol.90 pp.681 ~ 687, 1976

[12] v. Kunsberg-Sarre C., Kong S.C., Reitz R.D. Modeling the Effects of Injector Nozzle Geometry on Diesel Sprays , SAE paper 1999-01-0912, 1999

[13] John K. Dukowicz "Internal Report - Quasi-Steady Droplet Phase Change in the Presence of Convection", LA-7997-MS, LOS ALAMOS SCIENTIFIC LABORATORY

[14] O. Colin, A. Benkenida The 3-Zone Extended Coherent Flame Model (ECFM3Z) for Computing Premixed / Diffusion Combustion , Oil & Gas Science and Technology Rev. IFP vol.59 No.6 pp.593 ~ 609, 2004

[15] , , flamelet approach , 18

JSFM [B7-4], 2004

[16] ŞEVKET A. BAYKAL M.Sc., METU A hybrid unsteady flamelet model for large eddy simulation of turbulent diffusion flames , Doctor Thesis in ETH Zurich University pp.27 ~ 34, 2005

[17] O. Colin, A. Benkenida, C. Angelberger 3D Modeling of Mixing, Ignition and Combustion Phenomena in Highly Stratified Gasoline Engines , Oil & Gas Science and Technology Rev. IFP vol.58 No.1 pp.47 ~ 62, 2003 [18] Marc ZELLAT, Driss ABOURI, Thierry CON Advanced modeling of DI Diesel Engine Investigations on Combustion, High EGR level and multiple-injection Application to DI Diesel Combustion Optimization , CD-adapco Group

[19] Julien Bohbot, et al. Three Dimensional Modelling of Combustion in a Direct Injection Diesel Engine Using a New Unstructured Parallel Solver

[20] Bruno Dillies, et al. Diesel Engine Combustion Modeling Using the Coherent Flame Model in Kiva- , SAE paper 930074, 1993

CFD App. 23

[21] Xiuyong Shi, Guoxiang Li DI Diesel Engine Combustion Modeling Based on ECFM-3Z Model , SAE paper 2007-01-4138

[22] P. Priesching, et al. 3D-CFD Modeling of Conventional and Alternative Diesel Combustion and Pollutant Formation A Validation Study , SAE paper 2007-01-1907

[23] Moritz Frobenius, Roland Pittermann Investigations of measures to reduce soot emissions of medium speed ship diesel engines using optical measurements and CFD , AVL 3 AST , AVL List GmbH, 2007

[24] 2 pp.211 ~ 219, , 1989

[25] J. Warnatz, U. Maas, R. W. Dibble Combustion 3rd edition 17.1, 2001

[26] pp.126 ~ 127, , 1980

[27] F. Magnussen, B. H. Hjertager. On mathematical modeling of turbulent combustion with special emphasis on soot formation and combustion , In Sixteenth Symposium (International) on Combustion pp.719 ~ 729, 1977

ドキュメント内 九州大学学術情報リポジトリ (ページ 47-100)

関連したドキュメント