• 検索結果がありません。

121

Figure 8.12 (a) STM image of the area around the MoS2/WS2 heterointerface (Vs = -2.5 V, It = 0.1 nA). (b) A dI/dV map acquired at a sample bias voltage of Vs = -2.19 V over the same area as in (a) (Vs = -2.5 V, It = 0.1 nA).

122

Chapter 9:

Conclusions

In this work, TMDCs were mainly synthesized on exfoliated graphite with atomically-flat and clean surfaces by CVD. The substrate-dependent optical properties of TMDC monolayers demonstrate that crystals on graphite surfaces are less affected by defects and strain. Such systems assist in elucidating the electronic states of these materials based on STM/STS observations. Various TMDC heterostructures were fabricated on graphite, and the electronic states around the heterointerface were assessed. The results show that bilayer heterostructures possess unique band structure modulations along the heterostructure interface. Prior theoretical work has not identified this modulation, which might therefore be attributable to lattice strain and fixed charges. Future studies using various structures in addition to monolayers would be interesting from a band structure control perspective.

This work also developed a new method of fabricating TMDC heterostructures using organic liquid precursors, which is termed MOCVD. MOCVD allows the precursor supply to be controlled, which is challenging in conventional CVD. Using this approach, multiple heterostructures exhibiting atomically-steep, linear interfaces were successfully produced. In addition, MoS2 nanoribbons with widths of less than 20 nm were obtained using heteroepitaxy. This MOCVD method represents a novel means of fabricating a wide variety of in-plane and vertical superlattices, nanoribbons and nanowires, as a first step towards examining the unique electronic and optical properties of such materials.

123

Acknowledgements

During four and a half years after I came to Department of Physics, Tokyo Metropolitan University as a graduate student, I was able to do this research with guidance and cooperation from various people. Here, I would like to express my deep appreciation.

Assoc. Prof. Miyata, thank you for taking me into your group. You taught me everything since I entered the Shinohara Laboratory at Nagoya University as an undergraduate student. You were the big motivator that I decided to enter the graduate school. The discussions with you were so exciting and fun for me. I appreciate your honesty for me during these years. Prof. Maniwa, your valuable comments and suggestions to my works have become helpful in progress and brushing my research. Also, Asst. Prof. Sakamoto and Assoc. Prof. Nakai (currently at University of Hyogo), I thankful for your kind advices for my works.

Besides, my research was able to be done with the cooperation of many cooperative researchers. They contributed greatly to part of the work done in this thesis. Prof.

Shigekawa and Asst. Prof. Yoshida (University of Tsukuba, Japan), you did excellent STM/STS measurements to observe atomic resolution structures and reveal the band structures of TMDC heterostructures. Dr. Suenaga and Dr. Liu from the national Institute of Advanced Industrial Science and Technology, thank you for performing the atomic resolution TEM observations. And, Prof. Hibino (Kwansei Gakuin University, Japan), you did special LEEM and LEED observations. Furthermore, Dr. Akinaga and Ms.

Hayama (AIST) performed the great manipulations of TMDC crystals on van der Walls substrates.

Not to forget, Assoc. Prof. Yamamoto, Dr. Takashima (Tokyo University of Science, Japan), Assoc. Prof. Konabe (Hosei University, Japan), Prof. Okada and Dr. Maruyama (University of Tsukuba, Japan), who did excellent calculations on TMDC heterostructures.

Prof. Takenobu and Asst. Prof. Pu (Nagoya University, Japan), you did unique electronic and optoelectronic measurements by using ion gels. Special thanks to Prof. Matsuda, Assoc. Prof. Miyauchi (Kyoto University, Japan), Asst. Prof. Mouri (Ritsumeikan University, Japan) for the use of lab-made optical measurement systems. The same goes to Assoc. Prof. Kitaura (Nagoya University, Japan) and Dr. Okada for very useful and interesting discussions. I would like to take this opportunity to express my gratitude to all of you.

I am grateful to all the members in the NanoScience Research Lab, who are kind and

124

helpful. Not only active discussions and experiments raise my motivations, but also there are a lot of fun. The sports event every Friday is so delightful, and the parties sometimes held in Lab room is convivial. Special mention to our devoted secretaries, Ms. Nonaka, Ms. Yamada and the staffs I the department (especially, Ms. Iwamoto), who have been helping me in many aspects.

Finally, I would like to express my gratitude to my father, mother, grandmother, brothers, and friends who supported me for my university life and encouragement every day. You always believe my decisions, and it always become my power. I’ll make you be proud of me to give back to your kindness and loves.

Yu Kobayashi August 2018

125

List of Publications

Main publications

1. "Growth and Optical Properties of High-Quality Monolayer WS2 on Graphite"

Y. Kobayashi, S. Sasaki, S. Mori, H. Hibino, Z. Liu, K. Watanabe, T. Taniguchi, K.

Suenaga, Y. Maniwa, Y. Miyata ACS Nano, 9 (2015) 4056-4063.

2. "Bandgap-tunable lateral and vertical heterostructures based on monolayer Mo1-xWxS2

alloys"

Y. Kobayashi, S. Mori, Y. Maniwa, Y. Miyata Nano Res., 8 (2015) 3261-3271.

3. "Modulation of electrical potential and conductivity in an atomic-layer semiconductor heterojunction"

Y. Kobayashi, S. Yoshida, R. Sakurada, K. Takashima, T. Yamamoto, T. Saito, S.

Konabe, T. Taniguchi, K. Watanabe, Y. Maniwa, O. Takeuchi, H. Shigekawa, Y. Miyata Sci. Rep., 6 (2016) 31223-1-8.

4. "Slidable atomic layers in van der Waals heterostructures"

Y. Kobayashi, T. Taniguchi, K. Watanabe, Y. Maniwa, Y. Miyata Appl. Phys. Express, 10 (2017) 045201-1-4.

5. "Continuous heteroepitaxy of two-dimensional heterostructures based on layered chalcogenides"

Y. Kobayashi, S. Yoshida, M. Maruyama, K. Murase, Y. Maniwa, O. Takeuchi, S. Okada, H. Shigekawa, Y. Miyata

In submitted.

126

Reference publications

1. "Microscopic basis for the band engineering of Mo1-xWxS2-based heterojunction"

S. Yoshida, Y. Kobayashi, R. Sakurada, S. Mori, Y. Miyata, H. Mogi, T. Koyama, O. Takeuchi, H. Shigekawa

Sci. Rep., 5 (2015) 14808-1-6.

2. "Local optical absorption spectra of h-BN-MoS2 van der Waals heterostructure revealed by scanning near-field optical microscopy"

J. Nozaki, Y. Kobayashi, Y. Miyata, Y. Maniwa, K. Watanabe, T. Taniguchi, K. Yanagi Jpn. J. Appl. Phys., 55 (2016) 06GB01-1-3.

3. "Growth and optical properties of Nb-doped WS2 monolayers"

S. Sasaki, Y. Kobayashi, Z. Liu, K. Suenaga, Y. Maniwa, Y. Miyauchi, Y. Miyata Appl. Phys. Express, 9 (2016) 071201-1-4.

4. "Orientation-controlled growth of hexagonal boron nitride monolayers templated from graphene edges"

E. Maeda, Y. Miyata, H. Hibin, Y. Kobayashi, R. Kitaura, H. Shinohara Appl. Phys. Express, 10 (2017) 055102-1-4.

5. "Scanning tunneling microscopy/spectroscopy on MoS2 embedded nanowire formed in CVD-grown Mo1-xWxS2 alloy"

H. Mogi, Y. Kobayashi, A. Taninaka, R. Sakurada, T. Takeuchi, S. Yoshida1, O.

Takeuchi, Y. Miyata, H. Shigekawa

Jpn. J. Appl. Phys., 56 (2017) 08LB06-1-4.

6. "Direct and Indirect Interlayer Excitons in a van der Waals Heterostructure of hBN/WS2/MoS2/hBN"

M. Okada, A. Kutana, Y. Kureishi, Y. Kobayashi, Y. Saito, T. Saito, K. Watanabe, T. Taniguchi, S. Gupta, Y. Miyata, B. I. Yakobson, H. Shinohara, R. Kitaura

127

ACS Nano, 12 (2018) 2498-2505.

International conferences

1. "Combinatorial synthesis of single-layer Mo1-xWxS2 by sulfurization of patterned oxide thin films"

Y. Kobayashi, S. Mori, Y. Maniwa, Y. Miyata

2014 Recent Progress in Graphene Research, Taipei, Taiwan (Sep. 21-25, 2014)

2. "Growth and optical properties of high-quality monolayer WS2 on graphite"

Y. Kobayashi, S. Sasaki1, S. Mori, H. Hiroki, K. Watanabe, T. Taniguchi, Y. Maniwa, Y. Miyata

The Grobal Human Resource Program Bridging across Physics and Chemistry 2015, Tokyo, Japan (Jun. 30, 2015)

3. "Growth of high-quality monolayer WS2 on graphite"

Y. Kobayashi, S. Sasaki, S. Mori, H. Hiroki, K. Watanabe, T. Taniguchi, Y. Maniwa, Y. Miyata

International Winterschool on Electronic Properties of Novel Materials 2015, Kirchberg in Tirol, Austria (Mar. 8-15, 2015)

4. "Growth and optical properties of high-quality monolayer WS2 on graphite"

Y. Kobayashi, S. Sasaki, S. Mori, H. Hiroki, K. Watanabe, T. Taniguchi, Y. Maniwa, Y. Miyata

Sixth Graphene and 2D Materials Satellite Symposium 2015, Nagoya, Japan (Jun. 28, 2015)

5. "Bandgap-tunable lateral and vertical heterostructures based on monolayer Mo1-xWxS2

alloys"

Y. Kobayashi, S. Mori, Y. Maniwa, Y. Miyata

128

The Sixteenth International Conference on the Science and Application on Nanotubes, Nagoya, Japan (Jun. 29- Jul. 3, 2015)

6. "Growth and optical properties of high-quality monolayer WS2 on graphite"

Y. Kobayashi, S. Sasaki, S. Mori, H. Hiroki, K. Watanabe, T. Taniguchi, Y. Maniwa, Y. Miyata

The Sixteenth International Conference on the Science and Application on Nanotubes, Nagoya, Japan (Jun. 29- Jul. 3, 2015)

7. "Growth and optical properties of high-quality monolayer WS2 on graphite"

Y. Kobayashi, S. Sasaki, S. Mori, H. Hiroki, K. Watanabe, T. Taniguchi, Y. Maniwa, Y. Miyata

JSAP-OSA Joint Symposia, Nagoya, Japan (Sep. 15, 2015)

8. "Growth and optical properties of high-quality monolayer WS2 on graphite"

Y. Kobayashi, S. Sasaki, S. Mori, H. Hiroki, K. Watanabe, T. Taniguchi, Y. Maniwa, Y. Miyata

MRS Fall Meeting, Boston, Massachusetts, USA (Nov. 29- Dec. 4, 2015)

9. "Growth and optical properties of high-quality monolayer WS2 on graphite"

Y. Kobayashi, S. Sasaki, S. Mori, H. Hiroki, K. Watanabe, T. Taniguchi, Y. Maniwa, Y. Miyata

Pacifichem 2015, Honolulu, Hawaii, USA (Dec. 15-20, 2015)

9. "Fabrication and manipulation of slidable atomic layers"

Y. Kobayashi, K. Watanabe, T. Taniguchi, Y. Maniwa, Y. Miyata

The Grobal Human Resource Program Bridging across Physics and Chemistry 2016, Tokyo, Japan (Jun. 29, 2016)

10. "Growth and characterization of MoS2/WS2 lateral heterostructures"

Y. Kobayashi, S. Yoshida, R. Sakurada, T. Saito, K. Watanabe, T. Taniguchi, Y.

129

Maniwa, H. Shigekawa, Y. Miyata

ATI NanoCarbon Zao Meeting, Yamagata, Japan (Jul. 19-20, 2016)

11. "Growth and characterization of transition metal dichalcogenides using halide-assisted MOCVD"

Y. Kobayashi, S. Yoshida, K. Murase, N. Okada, T. Irisawa, Y. Maniwa, H. Shigekawa, Y. Miyata

8th A3 Symposium of Emerging Materials: Nanomaterials for Energy and Electronics, Suzhou, China (Oct. 25-28, 2017)

12. "Growth and characterization of transition metal dichalcogenides using halide-assisted MOCVD"

Y. Kobayashi, S. Yoshida, K. Murase, N. Okada, T. Irisawa, Y. Maniwa, H. Shigekawa, Y. Miyata

2017 The Workshop on Innovative Nanoscale Devices and Systems, Kohala Coast, Hawaii, USA (Nov. 26- Dec. 1, 2017)

130

Bibliography

1. Chen, J.-H.; Jang, C.; Xiao, S.; Ishigami, M.; Fuhrer, M. S., Intrinsic and extrinsic performance limits of graphene devices on SiO2. Nature Nanotechnology 2008, 3, 206-209.

2. Kubota, Y.; Watanabe, K.; Tsuda, O.; Taniguchi, T., Deep Ultraviolet Light-Emitting Hexagonal Boron Nitride Synthesized at Atmospheric Pressure. Science 2007, 317 (5840), 932.

3. Chhowalla, M.; Shin, H. S.; Eda, G.; Li, L.-J.; Loh, K. P.; Zhang, H., The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nature Chemistry 2013, 5, 263.

4. Xiao, D.; Liu, G.-B.; Feng, W.; Xu, X.; Yao, W., Coupled Spin and Valley Physics in Monolayers of MoS2 and Other Group-VI Dichalcogenides. Physical Review Letters 2012, 108 (19), 196802.

5. Cao, T.; Wang, G.; Han, W.; Ye, H.; Zhu, C.; Shi, J.; Niu, Q.; Tan, P.; Wang, E.;

Liu, B.; Feng, J., Valley-selective circular dichroism of monolayer molybdenum disulphide. Nature Communications 2012, 3, 887.

6. Mak, K. F.; Shan, J., Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides. Nature Photonics 2016, 10, 216.

7. Splendiani, A.; Sun, L.; Zhang, Y.; Li, T.; Kim, J.; Chim, C.-Y.; Galli, G.; Wang, F., Emerging Photoluminescence in Monolayer MoS2. Nano Letters 2010, 10 (4), 1271-1275.

8. Mak, K. F.; Lee, C.; Hone, J.; Shan, J.; Heinz, T. F., Atomically Thin MoS2: A New Direct-Gap Semiconductor. Physical Review Letters 2010, 105 (13), 136805.

9. Ross, J. S.; Wu, S.; Yu, H.; Ghimire, N. J.; Jones, A. M.; Aivazian, G.; Yan, J.;

Mandrus, D. G.; Xiao, D.; Yao, W.; Xu, X., Electrical control of neutral and charged excitons in a monolayer semiconductor. Nature Communications 2013, 4, 1474.

10. Mak, K. F.; He, K.; Lee, C.; Lee, G. H.; Hone, J.; Heinz, T. F.; Shan, J., Tightly bound trions in monolayer MoS2. Nature Materials 2012, 12, 207.

11. Tongay, S.; Suh, J.; Ataca, C.; Fan, W.; Luce, A.; Kang, J. S.; Liu, J.; Ko, C.;

Raghunathanan, R.; Zhou, J.; Ogletree, F.; Li, J.; Grossman, J. C.; Wu, J., Defects

131

activated photoluminescence in two-dimensional semiconductors: interplay between bound, charged, and free excitons. Scientific Reports 2013, 3, 2657.

12. Radisavljevic, B.; Radenovic, A.; Brivio, J.; Giacometti, V.; Kis, A., Single-layer MoS2 transistors. Nature Nanotechnology 2011, 6, 147.

13. Huang, J.-K.; Pu, J.; Hsu, C.-L.; Chiu, M.-H.; Juang, Z.-Y.; Chang, Y.-H.; Chang, W.-H.; Iwasa, Y.; Takenobu, T.; Li, L.-J., Large-Area Synthesis of Highly Crystalline WSe2 Monolayers and Device Applications. ACS Nano 2014, 8 (1), 923-930.

14. Kazuma, F.; Jiang, P.; Ming-Yang, L.; Lain-Jong, L.; Yoshihiro, I.; Taishi, T., Large-area WSe2 electric double layer transistors on a plastic substrate. Japanese Journal of Applied Physics 2015, 54 (6S1), 06FF06.

15. Ito, M.; Matsubara, Y.; Kozuka, Y.; Takahashi, K. S.; Kagawa, F.; Ye, J. T.; Iwasa, Y.; Ueno, K.; Tokura, Y.; Kawasaki, M., Electric double layer transistors with ferroelectric BaTiO3 channels. Applied Physics Letters 2014, 104 (22), 222101.

16. Perera, M. M.; Lin, M.-W.; Chuang, H.-J.; Chamlagain, B. P.; Wang, C.; Tan, X.;

Cheng, M. M.-C.; Tománek, D.; Zhou, Z., Improved Carrier Mobility in Few-Layer MoS2

Field-Effect Transistors with Ionic-Liquid Gating. ACS Nano 2013, 7 (5), 4449-4458.

17. Ye, J. T.; Zhang, Y. J.; Akashi, R.; Bahramy, M. S.; Arita, R.; Iwasa, Y., Superconducting Dome in a Gate-Tuned Band Insulator. Science 2012, 338 (6111), 1193.

18. Yu, S.; Tsutomu, N.; Yoshihiro, I., Gate-induced superconductivity in two-dimensional atomic crystals. Superconductor Science and Technology 2016, 29 (9), 093001.

19. Sunao, S.; Takahiko, I.; Kaito, K.; Jiang, P.; Kazuhiro, Y.; Taishi, T.; Yoshihiro, I., Thermoelectric Detection of Multi-Subband Density of States in Semiconducting and Metallic Single-Walled Carbon Nanotubes. Small 2016, 12 (25), 3388-3392.

20. Wang, Q. H.; Kalantar-Zadeh, K.; Kis, A.; Coleman, J. N.; Strano, M. S., Electronics and optoelectronics of two-dimensional transition metal dichalcogenides.

Nature Nanotechnology 2012, 7, 699.

21. Geim, A. K.; Grigorieva, I. V., Van der Waals heterostructures. Nature 2013, 499, 419.

22. Lee, G.-H.; Yu, Y.-J.; Cui, X.; Petrone, N.; Lee, C.-H.; Choi, M. S.; Lee, D.-Y.;

Lee, C.; Yoo, W. J.; Watanabe, K.; Taniguchi, T.; Nuckolls, C.; Kim, P.; Hone, J., Flexible

132

and Transparent MoS2 Field-Effect Transistors on Hexagonal Boron Nitride-Graphene Heterostructures. ACS Nano 2013, 7 (9), 7931-7936.

23. Ueno, K., Introduction to the Growth of Bulk Single Crystals of Two-Dimensional Transition-Metal Dichalcogenides. Journal of the Physical Society of Japan 2015, 84 (12), 121015.

24. Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A., Electric Field Effect in Atomically Thin Carbon Films. Science 2004, 306 (5696), 666.

25. Dean, C.; Young, A. F.; Wang, L.; Meric, I.; Lee, G. H.; Watanabe, K.; Taniguchi, T.; Shepard, K.; Kim, P.; Hone, J., Graphene based heterostructures. Solid State Communications 2012, 152 (15), 1275-1282.

26. Li, X.; Cai, W.; An, J.; Kim, S.; Nah, J.; Yang, D.; Piner, R.; Velamakanni, A.;

Jung, I.; Tutuc, E.; Banerjee, S. K.; Colombo, L.; Ruoff, R. S., Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils. Science 2009, 324 (5932), 1312.

27. Miyata, Y.; Maeda, E.; Kamon, K.; Kitaura, R.; Sasaki, Y.; Suzuki, S.; Shinohara, H., Fabrication and Characterization of Graphene/Hexagonal Boron Nitride Hybrid Sheets. Applied Physics Express 2012, 5 (8), 085102.

28. Kitaura, R.; Miyata, Y.; Xiang, R.; Hone, J.; Kong, J.; Ruoff, R. S.; Maruyama, S., Chemical Vapor Deposition Growth of Graphene and Related Materials. Journal of the Physical Society of Japan 2015, 84 (12), 121013.

29. Wu, S.; Huang, C.; Aivazian, G.; Ross, J. S.; Cobden, D. H.; Xu, X., Vapor–Solid Growth of High Optical Quality MoS2 Monolayers with Near-Unity Valley Polarization.

ACS Nano 2013, 7 (3), 2768-2772.

30. van der Zande, A. M.; Huang, P. Y.; Chenet, D. A.; Berkelbach, T. C.; You, Y.;

Lee, G.-H.; Heinz, T. F.; Reichman, D. R.; Muller, D. A.; Hone, J. C., Grains and grain boundaries in highly crystalline monolayer molybdenum disulphide. Nature Materials 2013, 12, 554.

31. Yi-Hsien, L.; Xin-Quan, Z.; Wenjing, Z.; Mu-Tung, C.; Cheng-Te, L.; Kai-Di, C.; Ya-Chu, Y.; Tse-Wei, W. J.; Chia-Seng, C.; Lain-Jong, L.; Tsung-Wu, L., Synthesis of Large-Area MoS2 Atomic Layers with Chemical Vapor Deposition. Advanced Materials

133

2012, 24 (17), 2320-2325.

32. Dean, C. R.; Young, A. F.; Meric, I.; Lee, C.; Wang, L.; Sorgenfrei, S.; Watanabe, K.; Taniguchi, T.; Kim, P.; Shepard, K. L.; Hone, J., Boron nitride substrates for high-quality graphene electronics. Nature Nanotechnology 2010, 5, 722.

33. Rivera, P.; Schaibley, J. R.; Jones, A. M.; Ross, J. S.; Wu, S.; Aivazian, G.;

Klement, P.; Seyler, K.; Clark, G.; Ghimire, N. J.; Yan, J.; Mandrus, D. G.; Yao, W.; Xu, X., Observation of long-lived interlayer excitons in monolayer MoSe2–WSe2

heterostructures. Nature Communications 2015, 6, 6242.

34. Rivera, P.; Seyler, K. L.; Yu, H.; Schaibley, J. R.; Yan, J.; Mandrus, D. G.; Yao, W.; Xu, X., Valley-polarized exciton dynamics in a 2D semiconductor heterostructure.

Science 2016, 351 (6274), 688.

35. Huang, C.; Wu, S.; Sanchez, A. M.; Peters, J. J. P.; Beanland, R.; Ross, J. S.;

Rivera, P.; Yao, W.; Cobden, D. H.; Xu, X., Lateral heterojunctions within monolayer MoSe2–WSe2 semiconductors. Nature Materials 2014, 13, 1096.

36. Gong, Y.; Lin, J.; Wang, X.; Shi, G.; Lei, S.; Lin, Z.; Zou, X.; Ye, G.; Vajtai, R.;

Yakobson, B. I.; Terrones, H.; Terrones, M.; Tay, Beng K.; Lou, J.; Pantelides, S. T.; Liu, Z.; Zhou, W.; Ajayan, P. M., Vertical and in-plane heterostructures from WS2/MoS2

monolayers. Nature Materials 2014, 13, 1135.

37. Sahoo, P. K.; Memaran, S.; Xin, Y.; Balicas, L.; Gutiérrez, H. R., One-pot growth of two-dimensional lateral heterostructures via sequential edge-epitaxy. Nature 2018, 553, 63.

38. Li, M.-Y.; Shi, Y.; Cheng, C.-C.; Lu, L.-S.; Lin, Y.-C.; Tang, H.-L.; Tsai, M.-L.;

Chu, C.-W.; Wei, K.-H.; He, J.-H.; Chang, W.-H.; Suenaga, K.; Li, L.-J., Epitaxial growth of a monolayer WSe2-MoS2 lateral p-n junction with an atomically sharp interface.

Science 2015, 349 (6247), 524.

39. Plechinger, G.; Nagler, P.; Kraus, J.; Paradiso, N.; Strunk, C.; Schüller, C.; Korn, T., Identification of excitons, trions and biexcitons in single-layer WS2. physica status solidi (RRL) – Rapid Research Letters 2015, 9 (8), 457-461.

40. Zhao, W.; Ghorannevis, Z.; Chu, L.; Toh, M.; Kloc, C.; Tan, P.-H.; Eda, G., Evolution of Electronic Structure in Atomically Thin Sheets of WS2 and WSe2. ACS Nano 2013, 7 (1), 791-797.

134

41. Gutiérrez, H. R.; Perea-López, N.; Elías, A. L.; Berkdemir, A.; Wang, B.; Lv, R.;

López-Urías, F.; Crespi, V. H.; Terrones, H.; Terrones, M., Extraordinary Room-Temperature Photoluminescence in Triangular WS2 Monolayers. Nano Letters 2013, 13 (8), 3447-3454.

42. Jorio, A.; Souza Filho, A. G.; Dresselhaus, G.; Dresselhaus, M. S.; Saito, R.;

Hafner, J. H.; Lieber, C. M.; Matinaga, F. M.; Dantas, M. S. S.; Pimenta, M. A., Joint density of electronic states for one isolated single-wall carbon nanotube studied by resonant Raman scattering. Physical Review B 2001, 63 (24), 245416.

43. Berkdemir, A.; Gutiérrez, H. R.; Botello-Méndez, A. R.; Perea-López, N.; Elías, A. L.; Chia, C.-I.; Wang, B.; Crespi, V. H.; López-Urías, F.; Charlier, J.-C.; Terrones, H.;

Terrones, M., Identification of individual and few layers of WS2 using Raman Spectroscopy. Scientific Reports 2013, 3, 1755.

44. Bardeen, J., Tunnelling from a Many-Particle Point of View. Physical Review Letters 1961, 6 (2), 57-59.

45. Tersoff, J.; Hamann, D. R., Theory and Application for the Scanning Tunneling Microscope. Physical Review Letters 1983, 50 (25), 1998-2001.

46. Tersoff, J.; Hamann, D. R., Theory of the scanning tunneling microscope.

Physical Review B 1985, 31 (2), 805-813.

47. Hamers, R. J.; Tromp, R. M.; Demuth, J. E., Surface Electronic Structure of Si (111)-(7 × 7) Resolved in Real Space. Physical Review Letters 1986, 56 (18), 1972-1975.

48. Hamers, R. J.; Tromp, R. M.; Demuth, J. E., Electronic and geometric structure of Si(111)-(7 × 7) and Si(001) surfaces. Surface Science 1987, 181 (1), 346-355.

49. Ovchinnikov, D.; Allain, A.; Huang, Y.-S.; Dumcenco, D.; Kis, A., Electrical Transport Properties of Single-Layer WS2. ACS Nano 2014, 8 (8), 8174-8181.

50. Zhao, W.; Ghorannevis, Z.; Chu, L.; Toh, M.; Kloc, C.; Tan, P.-H.; Eda, G., Evolution of Electronic Structure in Atomically Thin Sheets of WS2 and WSe2. ACS Nano 2012, 7 (1), 791-797.

51. Mak, K. F.; Lee, C.; Hone, J.; Shan, J.; Heinz, T. F., Atomically Thin MoS2 : A New Direct-Gap Semiconductor. Phys. Rev. Lett. 2010, 105 (13), 136805.

52. Eda, G.; Yamaguchi, H.; Voiry, D.; Fujita, T.; Chen, M.; Chhowalla, M., Photoluminescence from Chemically Exfoliated MoS2. Nano Letters 2011, 11 (12),

5111-135

5116.

53. Zhang, Y. J.; Oka, T.; Suzuki, R.; Ye, J. T.; Iwasa, Y., Electrically Switchable Chiral Light-Emitting Transistor. Science 2014, 344 (6185), 725.

54. Zeng, H.; Dai, J.; Yao, W.; Xiao, D.; Cui, X., Valley polarization in MoS2

monolayers by optical pumping. Nat. Nanotechnol. 2012, 7 (8), 490-493.

55. Mak, K. F.; He, K.; Shan, J.; Heinz, T. F., Control of Valley Polarization in Monolayer MoS2 by Optical Helicity. Nat. Nanotechnol. 2012, 7 (8), 494-498.

56. Huang, X.; Zeng, Z.; Zhang, H., Metal dichalcogenide nanosheets: preparation, properties and applications. Chemical Society Reviews 2013, 42 (5), 1934-1946.

57. Zhou, W.; Zou, X.; Najmaei, S.; Liu, Z.; Shi, Y.; Kong, J.; Lou, J.; Ajayan, P. M.;

Yakobson, B. I.; Idrobo, J.-C., Intrinsic Structural Defects in Monolayer Molybdenum Disulfide. Nano Letters 2013, 13 (6), 2615-2622.

58. Mitioglu, A. A.; Plochocka, P.; Jadczak, J. N.; Escoffier, W.; Rikken, G. L. J. A.;

Kulyuk, L.; Maude, D. K., Optical manipulation of the exciton charge state in single-layer tungsten disulfide. Physical Review B 2013, 88 (24), 245403.

59. Jones, A. M.; Yu, H.; Ghimire, N. J.; Wu, S.; Aivazian, G.; Ross, J. S.; Zhao, B.;

Yan, J.; Mandrus, D. G.; Xiao, D.; Yao, W.; Xu, X., Optical generation of excitonic valley coherence in monolayer WSe2. Nature Nanotechnology 2013, 8, 634.

60. Castellanos-Gomez, A.; Roldán, R.; Cappelluti, E.; Buscema, M.; Guinea, F.;

van der Zant, H. S. J.; Steele, G. A., Local Strain Engineering in Atomically Thin MoS2. Nano Letters 2013, 13 (11), 5361-5366.

61. Orofeo, C. M.; Suzuki, S.; Sekine, Y.; Hibino, H., Scalable synthesis of layer-controlled WS2 and MoS2 sheets by sulfurization of thin metal films. Applied Physics Letters 2014, 105 (8), 083112.

62. Okada, M.; Sawazaki, T.; Watanabe, K.; Taniguch, T.; Hibino, H.; Shinohara, H.;

Kitaura, R., Direct Chemical Vapor Deposition Growth of WS2 Atomic Layers on Hexagonal Boron Nitride. ACS Nano 2014, 8 (8), 8273-8277.

63. Ge, W.; Kawahara, K.; Tsuji, M.; Ago, H., Large-scale synthesis of NbS2

nanosheets with controlled orientation on graphene by ambient pressure CVD. Nanoscale 2013, 5 (13), 5773-5778.

64. Ling, X.; Lee, Y.-H.; Lin, Y.; Fang, W.; Yu, L.; Dresselhaus, M. S.; Kong, J., Role

136

of the Seeding Promoter in MoS2 Growth by Chemical Vapor Deposition. Nano Letters 2014, 14 (2), 464-472.

65. Shi, Y.; Zhou, W.; Lu, A.-Y.; Fang, W.; Lee, Y.-H.; Hsu, A. L.; Kim, S. M.; Kim, K. K.; Yang, H. Y.; Li, L.-J.; Idrobo, J.-C.; Kong, J., van der Waals Epitaxy of MoS2

Layers Using Graphene As Growth Templates. Nano Letters 2012, 12 (6), 2784-2791.

66. Zhang, C.; Johnson, A.; Hsu, C.-L.; Li, L.-J.; Shih, C.-K., Direct Imaging of Band Profile in Single Layer MoS2 on Graphite: Quasiparticle Energy Gap, Metallic Edge States, and Edge Band Bending. Nano Letters 2014, 14 (5), 2443-2447.

67. Taniguchi, T.; Watanabe, K., Synthesis of high-purity boron nitride single crystals under high pressure by using Ba–BN solvent. Journal of Crystal Growth 2007, 303 (2), 525-529.

68. Miyauchi, Y.; Saito, R.; Sato, K.; Ohno, Y.; Iwasaki, S.; Mizutani, T.; Jiang, J.;

Maruyama, S., Dependence of exciton transition energy of single-walled carbon nanotubes on surrounding dielectric materials. Chemical Physics Letters 2007, 442 (4), 394-399.

69. Wang, Y.; Cong, C.; Qiu, C.; Yu, T., Raman Spectroscopy Study of Lattice Vibration and Crystallographic Orientation of Monolayer MoS2 under Uniaxial Strain.

Small 2013, 9 (17), 2857-2861.

70. Rice, C.; Young, R. J.; Zan, R.; Bangert, U.; Wolverson, D.; Georgiou, T.; Jalil, R.; Novoselov, K. S., Raman-scattering measurements and first-principles calculations of strain-induced phonon shifts in monolayer MoS2. Physical Review B 2013, 87 (8), 081307.

71. Yun, W. S.; Han, S. W.; Hong, S. C.; Kim, I. G.; Lee, J. D., Thickness and strain effects on electronic structures of transition metal dichalcogenides: 2H-MX2

semiconductors (M = Mo, W; X = S, Se, Te). Physical Review B 2012, 85 (3), 033305.

72. Nelson, J. B.; Riley, D. P., The thermal expansion of graphite from 15°C. to 800°C.: part I. Experimental. Proceedings of the Physical Society 1945, 57 (6), 477.

73. Matthäus, A.; Ennaoui, A.; Fiechter, S.; Tiefenbacher, S.; Kiesewetter, T.;

Diesner, K.; Sieber, I.; Jaegermann, W.; Tsirlina, T.; Tenne, R., Highly Textured Films of Layered Metal Disulfide 2H‐ WS2 : Preparation and Optoelectronic Properties. Journal of The Electrochemical Society 1997, 144 (3), 1013-1019.

74. Paszkowicz, W.; Pelka, J. B.; Knapp, M.; Szyszko, T.; Podsiadlo, S., Lattice

137

parameters and anisotropic thermal expansion of hexagonal boron nitride in the 10–

297.5 K temperature range. Applied Physics A 2002, 75 (3), 431-435.

75. Zhao, J.-H.; Ryan, T.; Ho, P. S.; McKerrow, A. J.; Shih, W.-Y., Measurement of elastic modulus, Poisson ratio, and coefficient of thermal expansion of on-wafer submicron films. Journal of Applied Physics 1999, 85 (9), 6421-6424.

76. Young, A. F.; Dean, C. R.; Meric, I.; Sorgenfrei, S.; Ren, H.; Watanabe, K.;

Taniguchi, T.; Hone, J.; Shepard, K. L.; Kim, P., Electronic compressibility of layer-polarized bilayer graphene. Physical Review B 2012, 85 (23), 235458.

77. Fontanella, J.; Andeen, C.; Schuele, D., Low‐frequency dielectric constants of α‐

quartz, sapphire, MgF2, and MgO. Journal of Applied Physics 1974, 45 (7), 2852-2854.

78. Cardona, M.; Meyer, T. A.; Thewalt, M. L. W., Temperature Dependence of the Energy Gap of Semiconductors in the Low-Temperature Limit. Physical Review Letters 2004, 92 (19), 196403.

79. Zhang, H., Ultrathin Two-Dimensional Nanomaterials. ACS Nano 2015, 9 (10), 9451-9469.

80. Britnell, L.; Ribeiro, R. M.; Eckmann, A.; Jalil, R.; Belle, B. D.; Mishchenko, A.; Kim, Y. J.; Gorbachev, R. V.; Georgiou, T.; Morozov, S. V.; Grigorenko, A. N.; Geim, A. K.; Casiraghi, C.; Neto, A. H. C.; Novoselov, K. S., Strong Light-Matter Interactions in Heterostructures of Atomically Thin Films. Science 2013, 340 (6138), 1311.

81. Hunt, B.; Sanchez-Yamagishi, J. D.; Young, A. F.; Yankowitz, M.; LeRoy, B. J.;

Watanabe, K.; Taniguchi, T.; Moon, P.; Koshino, M.; Jarillo-Herrero, P.; Ashoori, R. C., Massive Dirac Fermions and Hofstadter Butterfly in a van der Waals Heterostructure.

Science 2013, 340, 1427.

82. Wang, L.; Meric, I.; Huang, P. Y.; Gao, Q.; Gao, Y.; Tran, H.; Taniguchi, T.;

Watanabe, K.; Campos, L. M.; Muller, D. A.; Guo, J.; Kim, P.; Hone, J.; Shepard, K. L.;

Dean, C. R., One-Dimensional Electrical Contact to a Two-Dimensional Material.

Science 2013, 342 (6158), 614.

83. Koma, A.; Sunouchi, K.; Miyajima, T., Fabrication and characterization of heterostructures with subnanometer thickness. Microelectronic Engineering 1984, 2 (1), 129-136.

84. Ueno, K.; Saiki, K.; Shimada, T.; Koma, A., Epitaxial growth of transition metal

138

dichalcogenides on cleaved faces of mica. Journal of Vacuum Science & Technology A 1990, 8 (1), 68-72.

85. Kobayashi, Y.; Mori, S.; Maniwa, Y.; Miyata, Y., Bandgap-tunable lateral and vertical heterostructures based on monolayer Mo1-xWxS2 alloys. Nano Research 2015, 8 (10), 3261-3271.

86. Kobayashi, Y.; Sasaki, S.; Mori, S.; Hibino, H.; Liu, Z.; Watanabe, K.; Taniguchi, T.; Suenaga, K.; Maniwa, Y.; Miyata, Y., Growth and Optical Properties of High-Quality Monolayer WS2 on Graphite. ACS Nano 2015, 9 (4), 4056-4063.

87. Hirano, M.; Shinjo, K., Atomistic locking and friction. Physical Review B 1990, 41 (17), 11837-11851.

88. Dienwiebel, M.; Verhoeven, G. S.; Pradeep, N.; Frenken, J. W. M.; Heimberg, J.

A.; Zandbergen, H. W., Superlubricity of Graphite. Physical Review Letters 2004, 92 (12), 126101.

89. Hirano, M.; Shinjo, K.; Kaneko, R.; Murata, Y., Observation of Superlubricity by Scanning Tunneling Microscopy. Physical Review Letters 1997, 78 (8), 1448-1451.

90. Cumings, J.; Zettl, A., Low-Friction Nanoscale Linear Bearing Realized from Multiwall Carbon Nanotubes. Science 2000, 289 (5479), 602.

91. Kolmogorov, A. N.; Crespi, V. H., Smoothest Bearings: Interlayer Sliding in Multiwalled Carbon Nanotubes. Physical Review Letters 2000, 85 (22), 4727-4730.

92. Seiji, A.; Yoshikazu, N., Interlayer Sliding Force of Individual Multiwall Carbon Nanotubes. Japanese Journal of Applied Physics 2003, 42 (7S), 4830.

93. Kawai, S.; Benassi, A.; Gnecco, E.; Söde, H.; Pawlak, R.; Feng, X.; Müllen, K.;

Passerone, D.; Pignedoli, C. A.; Ruffieux, P.; Fasel, R.; Meyer, E., Superlubricity of graphene nanoribbons on gold surfaces. Science 2016, 351 (6276), 957.

94. Watanabe, K.; Taniguchi, T.; Kanda, H., Direct-bandgap properties and evidence for ultraviolet lasing of hexagonal boron nitride single crystal. Nature Materials 2004, 3, 404.

95. Schutte, W. J.; De Boer, J. L.; Jellinek, F., Crystal structures of tungsten disulfide and diselenide. Journal of Solid State Chemistry 1987, 70 (2), 207-209.

96. Howe, J. Y.; Rawn, C. J.; Jones, L. E.; Ow, H., Improved crystallographic data for graphite. Powder Diffraction 2003, 18 (2), 150-154.

関連したドキュメント