• 検索結果がありません。

105

106

sedimenti の近縁種であることが分かった。各種同定試験から耐アルカリ性、好

塩性を示し、近縁種との遺伝子型、表現性状の差違から、Haloparvum 属に属す る耐アルカリ性好塩性古細菌の新種であると判断し、Haloparvum alkalitolerans としてInternational Journal of Systematic and Evolutionary Microbiology (IJSEM) 誌 に提唱した。

MK206-1株は16S rRNA遺伝子塩基配列に基づく系統解析の結果Halopenitus

salinusの近縁種であることが分かった。各種同定試験の結果から耐アルカリ性、

好塩性示した。しかしMK206-1株とHalopenitus salinusの間には表現型、化学的 分類、遺伝子型において明確な差違がみられなかった。以上のことからMK206-1 株は耐アルカリ性、好塩性を示す高度好塩性古細菌として得られたものの Halopenitus salinusと同一の種であると考えた。

第4 章では第 2 章、第 3章で得られた菌株についてアストロバイオロジー的 な視点からそれらの微生物の宇宙環境適応評価として、火星に多量に存在する 過塩素酸塩と紫外線に着目し、分離菌株および既知の高度好塩性古細菌の UV 耐性及び過塩素酸塩耐性を評価を行った。

MK13-1株は他の既知のHalorubrum属に比べて高い紫外線耐性を有していた。

MK62-1株は比較対象とした MK13-1株、既知の Halorubrum属よりも低い紫外

線耐性を示した。MK13-1T 株は高い紫外線耐性を有していることが分かり、好 アルカリ性、好塩性だけでなく、紫外線にも耐性を示し Polyextremophiles の新 たな知見を得た。

過塩素酸塩耐性評価の結果では、MK13-1及びMK62-1株は過塩素酸塩に対す る耐性をほとんど有しなかった。しかし、MK13-1 T株のように同じHalorubrum 属内の種でも過塩素酸塩耐性に大きな違いが見られた。この結果は新規高度好 塩性古細菌の獲得に過塩素酸塩を用いた新たな微生物分離法を可能とする知見 となった。

本研究は複数の極限環境に適応する Polyextremophiles の一種として好アルカ リ性好塩性微生物を研究対象として、好アルカリ性好塩性微生物の探索及び分 類同定を目的として行った。本研究を通して新規好アルカリ性好塩性古細菌の

107

発見と、分離源としての市販塩の有用性を示すことができたといえる。また、

好アルカリ性好塩性古細菌の複合的極限環境耐性に対する知見となり、過塩素 酸塩を用いた新たな微生物分離法の可能性を示した。高度好塩性古細菌の様々 な極限環境適応能力を解明することで、アストロバイオロジーへの展開、地球 外生物の生態系モデルとしての有意性を示した。本研究で得られた結果が今後 の微生物研究、工学研究等に貢献できれば幸いである。

108

参考文献

Amoozegar MA, Makhdoumi-Kakhki A, Shahzedeh Fazeli SA, Azarbaijani R and Ventosa A. (2012).Halopenitus persicus gen. nov., sp. nov., a novel archaeon from an inland salt lake in Iran. Int J Syst Evol Microbiol. 2011 Oct 14. Epub ahead of print.

Anderson H. (1954). The reddening of salted hides and fish. Appl. Microbiol. 2, 64-69.

Baliga NS, Bjork SJ, Bonneau R, Pan M, Iloanusi C, Kottemann MC, Hood L and DiRuggiero J. (2004). Systems level insights into the stress response to UV radiation in the halophilic archaeon Halobacterium NRC-1. Genome Res 14(6), 1025–1035.

Barron L, Nesterenko PN and Paull B. (2006). Rapid on-line preconcentration and suppressed micro-bore ion chromatography of part per trillion levels of perchlorate in rainwater samples. Anal Chim Acta. 567(1), 127-134.

Bowman JP. (2002). "Encyclopedia of Evironmental Microbiology," (Bitton G. ed.), John Wiley & Sons. 2639.

Breezee J, Cady N and Staley JT. (2004). Subfreezing growth of the sea ice bacterium

"Psychromonas ingrahamii". Microbial Ecorogy. 47, 300-304.

Brock TD and Freeze H. (1969). Thermus aquaticus gen. n. and sp. n., a nonsporulating extreme thermophile. J Bacteriol 98, 289–297

Campanella L, Russo MV and Avino P. (2002). Free and total amino acid composition in blue-green algae. Ann Chim. 92(4), 343-352.

Castillo AM, Gutiérrez, MC, Kamekura M, Xue Y, Ma Y, Cowan DA, Jones B E, Grant WD & Ventosa A. (2006). Halorubrum orientale sp. nov., a halophilic archaeon

109

isolated from Lake Ejinor, Inner Mongolia, China. Int J Syst Evol Microbiol. 56, 2559–2563.

Castillo AM, Gutiérrez MC, Kamekura M, Xue Y, Ma Y, Cowan DA, Jones BE, Grant WD & Ventosa A. (2007). Halorubrum ejinorense sp. nov., isolated from Lake Ejinor, Inner Mongolia, China. Int J Syst Evol Microbiol. 57, 2538–2542.

Catling DC, Claire MW, Zahnle KJ, Quinn RC, Clark BC, Hecht MH, Kounaves S.

(2010). Atmospheric origins of perchlorate on Mars and in the Atacama. J Geophys Res.

115, E00–E11.

Chen S, Liu HC, Zhou J and Xiang H. (2016). Haloparvum sedimenti gen. nov., sp.

nov., a new member of the family Haloferacaceae. J Syst Evol Microbiol. 66, 2327-2334.

Chevrier VF, Hanley J and Altheide TS. (2009). Stability of perchlorate hydrates and their liquid solutions at the Phoenix landing site, Mars. Geophys Res. Lett 36, L10202.

Chien A, Eegar DB and Trela JM. (1976). Deoxyribonucleic acid polymerase from the extreme thermophile Thermus aquaticus. J Bacteriol. 127 (3), 1550-1557.

Clayton W, and Gibbs WE. (1927). Wxamination for halophilic microorganisms.

Analyst. 52, 395-397.

Cline SW, Schalkwyk LC & Doolittle WF. (1989). Transformation of the archaebacterium Halobacterium volcanii with genomic DNA. J Bacteriol. 171, 4987-4991.

Cui H-L, Tohty D, Zhou P-J & Liu S-J (2006). Halorubrum lipolyticum sp. nov. and Halorubrum aidingense sp. nov., isolated from two salt lakes in Xin-Jiang, China. Int J

110 Syst Evol Microbiol. 56, 1631–1634.

Cui HL, Tohty D, Liu HC, Liu SJ, Oren A and Zhou PJ. (2007). Natronorubrum sulfidifaciens sp. nov., an extremely haloalkaliphilic archaeon isolated from Aiding salt lake in Xin-Jiang, China. Int J Syst Evol Microbiol. 57, 738-740.

Cui H-L, Lin Z-Y, Dong Y, Zhou P-J & Liu S-J. (2007). Halorubrum litoreum sp.

nov., an extremely halophilic archaeon from a solar saltern. Int J Syst Evol Microbiol.

57, 2204–2206.

Dasgupta PK, Martinelango PK, Jackson WA, Anderson TA, Tian K, Tock RW and Rajagopalan S. (2005). The origin of naturally occurring perchlorate: the role of atmospheric processes. Environ Sci Technol. 39(6), 1569-1575.

David RB, Richard WC & George MG. (2001). Bergey’s Manual of Systematic Bacteriology 2nd Edition. Springer.

Deguchi S, Shimoshige H, Tsudome M, Mukai S, Corkery RW, Ito S and Horikoshi K. (2011). Microbial growth at hyperaccelerations up to 403,627 x g. Proc. Natl. Acad.

Sci. USA. 108, 7997-8002.

Dussault HP. (1955). An improved technique for staining red halophilic bacteria. J Bacteriol. 70, 484-485.

Edwards KJ, Bond PL, Gihring TM and Banfield JF. (2000). An archaeal iron-oxidizing extreme acidophile important in acid mine drainage. Science. 287(5459), 1796-1799.

Fan H, Xue Y, Ma Y, Ventosa A & Grant WD. (2004). Halorubrum tibetense sp. nov., a novel haloalkaliphilic archaeon from Lake Zabuye in Tibet, China. Int J Syst Evol

111 Microbiol. 54, 1213–1216.

Farlow WD. (1880). On the nature of the peculiar reddening of salted codfish during the summer season. U.S. Fish Comm. Report 969-974.

Fendrihan S, Be´rces A, Lammer H, Musso M, Ronto´ G, Polacsek TK, Holzinger A, Kolb C and Stan-Lotter H. (2009). Investigating the effect of simulated Martian ultraviolet radiation on Halococcus dombrowskii and other extremely halophilic Archaebacteria. Astrobiology. 9, 104–112.

Felsenstein J. (1985). Confidence limits on phylogenies: An approach using the bootstrap. Evolution. 39, 783-791.

Felsenstein J. (2002). PHYLIP (phylogeny inference package), version 3.6a.

Distributed by the author, University of Washington, Seattle.

Feng J, Zhou P-J & Liu S-J. (2004). Halorubrum xinjiangense sp. nov., a novel halophile isolated from saline lakes in China. Int J Syst Evol Microbiol 54, 1789–1791.

Feng J, Zhou P, Zhou Y-G, Liu S-J & Warren-Rhodes K. (2005). Halorubrum alkaliphilum sp. nov., a novel haloalkaliphile isolated from a soda lake in Xinjiang, China. Int J Syst Evol Microbiol. 55, 149–152.

Forsyth MP, Shindler DB, Gochnauer MB & Kushner DJ. (1971). Salt tolerance of intertidal marine bacteria. Can. J. Microbiol. 17, 825-828.

Franzmann PD, Stackebrandt E, Sanderson K, Volkman JK, Cameron DE, Stevenson PL, McMeekin TA & Burton HR. (1988). Halobacterium lacusprofundi sp.

nov., a halophilic bacterium isolated from Deep Lake, Antarctica. Syst Appl Microbiol.

11, 20–27.

112

Fukushima T, Mizuki T, Echigo A, Inoue A and Usami R. (2005). Organic solvent tolerance of halophilic alpha-amylase from a Haloarchaeon, Haloarcula sp. strain S-1.

Extremophiles. 9(1), 85-89.

Gibbons NE. (1936). Bacteria associated with reddening of salt fish. J. Biol. Board Can.

3, 70-76.

Gibbons NE. (1969). Isolation, growth and requirements of halophilic bacteria. In Methods in Microbiology, vol. 3, pp. 169-183, London, New York: Academic Press Inc.

Gonzalez C, Gutierrez C & Ramirez C. (1978). Halobacterium vallismortis sp. nov.

An amylolytic and carbohydrate-metabolizing, extremely halophilic bacterium. Can J Microbiol. 24, 710-715.

Gunde-Cimerman N, Oren A & Plemenitas A. (2005). Adaptation to Life at High Salt Concentrations in Archaea, Bacteria, and Eukarya. Springer.

Gupta RS, Naushad S and Baker S. (2015). Phylogenomic analyses and molecular signatures for the class Halobacteria and its two major clades: a proposal for division of the class Halobacteria into an emended order Halobacteriales and two new orders, Haloferacales ord. nov. and Natrialbales ord. nov., containing the novel families Haloferacaceae fam. nov. and Natrialbaceae fam. nov. Int J Syst Evol Microbiol. 65(3), 1050-1069.

Gutiérrez MC, Castillo AM, Pagaling E, Heaphy S, Kamekura M, Xue Y, Ma Y, Cowan DA, Jones BE, Grant WD & Ventosa A. (2008). Halorubrum kocurii sp. nov., an archaeon isolated from a saline lake. Int J Syst Evol Microbiol. 58, 2031-2035.

Gutiérrez MC, Castillo AM, Corral P, Minegishi H and Ventosa A. (2010).

113

Natronorubrum sediminis sp. nov., an archaeon isolated from a saline lake. Int J Syst Evol Microbiol. 60, 1802-1806.

Gutiérrez MC, Castillo AM, Corral P, Kamekura M & Ventosa A. (2011).

Halorubrum aquaticum sp. nov., an archaeon isolated from hypersaline lakes. Int J Syst Evol Microbiol. 61, 1144-1148.

Han D, Cui HL and Li ZR. (2014). Halopenitus salinus sp. nov., isolated from the brine of salted brown alga Laminaria. Antonie Van Leeuwenhoek. 106(4), 743-749.

Hanzawa H and Takeda S. (1931). On the reddening of boned codfish. Arch Mikrobiol.

2, 1-22.

Harrison FC and Kennedy ME. (1922).The red discolouration of cured codfish.

Proceedings of the Royal Society of Canada, Section 5, 16, 101-152.

Hawksworth DL. (1991). The fungal dimension of biodiversity: magnitude, significance, and conservation. Mycol Res. 95, 641–655.

Hecht MH, Kounaves SP, Quinn RC, West SJ, Young SMM, Ming DW, Catling DC, Clark BC, Boynton WV, Hoffman J, DeFlores LP, Gospodinova K, Kapit J and Smith PH. (2009). Detection of perchlorate and the soluble chemistry of Martian soil at the Phoenix Lander site. Science. 325, 64–67

Hess E. (1942a). Studies on salt fish. VIII. Effects of various salts on preservation . J.

Fisheries Research Board Can. 6, 1-9.

Hess E. (1942b). Studies on salt fish. IX. Effects of environment upon the growth of red halophilic bacteria. J. Fisheries Research Board Can. 6, 10-16.

114

Horikoshi K & Grant WD. (1998). Extremophiles - Microbial Life in Extreme Environments. New York: Wiley.-Liss.

Horikoshi, K. (1999). Alkaliphiles: some applications of their products for biotechnology. Microbiol. Mol. Biol. Rev. 63, 735-750.

Horikoshi K, Antranikian G, Bull AT, Robb FT and Stetter KO. (2011).

Extremophiles Handbook. Springer.

Hornsey HC and Mallows JH. (1955). Beef curing brines. II. Bacterial and chemical changes occurring in a long-life, acid brine. J.Sci. Food Agr. 6, 705-712.

Hu L, Pan H, Xue Y, Ventosa A, Cowan DA, Jones BE, Grant WD & Ma Y. (2008).

Halorubrum luteum sp. Nov., isolated from Lake Chagannor, Inner Mongolia, China. Int J Syst Evol Microbiol. 58, 1705-1709.

Imshenetsky AA, Lysenko SV, Kazakov GA and Ramkova NV. (1976). On micro-organisms of the stratosphere. Life Sci. Space Res. 14, 359-362

Itoh T, Yamaguchi T, Zhou P and Takashina T. (2005). Natronolimnobius baerhuensis gen. nov., sp. nov. and Natronolimnobius innermongolicus sp. nov., novel haloalkaliphilic archaea isolated from soda lakes in Inner Mongolia, China.

Extremophiles. 9(2), 111-116.

Iwabe N, Kuma K, Hasegawa M, Osawa S and Miyata T. (1989). Evolutionary relationship of archaebacteria, eubacteria, and eukaryotes inferred from phylogenetic trees of duplicated genes. Proc Natl Acad Sci U S A. 86(23), 9355-9359.

Kamekura M & Dyall-Smith ML. (1955). Taxonomy of the family Halobacteriaceae and the description of two new genera Halorubrobacterium and Natrialba. J. Gen. Appl.

115 Microbiol. 41, 333-350.

Kamekura M, Oesterhelt D, Wallace R, Anderson P and Kushner DJ. (1988). Lysis of halobacteria in bacto-peptone by bile acids. Appl Environ Microbiol. 54(4 ), 990-995.

Kamekura M. (1993). Lipids of extreme halophiles. In The Biology of Halophilic Bacteria, pp. 135-161. Edited by R. H. Vreeland & L. I. Hochstein. Boca Raton, FL:

CRC Press.

Kamekura M & Dyall-Smith ML. (1995). Taxonomy of the family Halobacteriaceae and the description of two new genera Halorubrobacterium and Natrialba. J Gen Appl Microbiol. 41, 333–350.

Kamekura M, Dyall-Smith ML, Upasani V, Ventosa A & Kates M. (1997). Diversity of alkaliphilic halobacteria: proposals for transfer of Natronobacterium vacuolatum, Natronobacterium magadii, and Natronobacterium pharaonis to Halorubrum, Natrialba, and Natronomonas gen. nov., respectively, as Halorubrum vacuolatum comb. nov., Natrialba magadii comb. nov., and Natronomonas pharaonis comb. nov., respectively.

Int J Syst Bacteriol. 47, 853-857.

Kamekura M. (1998). Diversity of extremely halophilic bacteria. Extremophiles. 2, 289-295.

Kanal H, Kobayashi T, Aono R, Kudo T. (1995). Natronococcus amylolyticus sp. nov., a haloalkaliphilic archaeon. Int J Syst Bacteriol. 45(4), 762-766.

Kelner A. (1949). PHOTOREACTIVATION OF ULTRAVIOLET-IRRADIATED ESCHERICHIA COLI, WITH SPECIAL REFERENCE TO THE DOSE-REDUCTION PRINCIPLE AND TO ULTRAVIOLET-INDUCED MUTATION. Journal of Bacteriology. 58(4), 511-522

116

Kharroub K, Quesada T, Ferrer R, Fuentes S, Aguilera M, Boulahrouf A, Ramos-Cormenzana A & Monteoliva-Sánchez M. (2006). Halorubrum ezzemoulense sp. nov., a halophilic archaeon isolated from Ezzemoul sabkha, Algeria. Int J Syst Evol Microbio.56, 1583–1588.

Kirk AB, Martinelango PK, Tian K, Dutta A, Smith EE and Dasgupta PK. (2005).

Perchlorate and iodide in dairy and breast milk. Environ Sci Technol. 39(7), 2011-2017.

Kish A, Kirkali G, Robinson C, Rosenblatt R, Jaruga P, Dizdaroglu M and DiRuggiero J. (2009). Salt shield: intracellular salts provide cellular protection against ionizing radiation in the halophilic archaeon, Halobacterium salinarum NRC-1. Environ Microbiol. 5, 1066–1078.

Kounaves SP, Stroble ST, Anderson RM, Moore Q, Catling DC, Douglas S, McKay CP, Ming DW, Smith PH, Tamppari LK and Zent AP. (2010). Discovery of natural perchlorate in the Antarctic Dry Valleys and its global implications. Environ Sci Technol.

44, 2360–2364.

Kottemann M, Kish A, Iloanusi C, Bjork S and DiRuggiero J. (2005). Physiological responses of the halophilic archaeon Halobacterium sp. strain NRC1 to desiccation and gamma irradiation. Extremophiles. 9, 219–227.

Krynitsky AJ, Niemann RA, Williams AD and Hopper ML. (2006). Streamlined sample preparation procedure for determination of perchlorate anion in foods by ion chromatography-tandem mass spectrometry. Anal Chim Acta. 567(1), 94-99.

Kurr M, Huber R, Konig H, Jannasch HW, Fricke H, Trincone A, Kristjansson JK and Stetter KO. (1991). Methanopyrus kandleri, gen. and sp. nov. represents a novel group of hyperthermophilic methanogens, growing at 110°C. Arch. Microbiol. 156, 239–247.

117

Kushner DJ & Kamekura M. (1988). physiology of halophilic eubaeteria. In Halophilic Bacteria, vol. I, pp. 109-140, Edited by F. Rodrfguez-Valera, Boca Raton:

CRC Press.

Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ & Higgins DG. (2007). Clustal W and Clustal X version 2.0. Bioinformatics. 23, 2947-2948.

Lemee L, Peuchant E, Clerc M, Brunner M, and Pfander H. (1997). “Deinoxanthin:

A new carotenoid isolated from Deinococcus radiodurans,” Tetrahedron, vol. 53, no. 3, 919–926.

Lizama C, Monteoliva-Sánchez M, Suárez-Garciá A, Roselló-Mora R, Aguilera M, Campos V & Ramos-Cormenzana A. (2002). Halorubrum tebenquichense sp. nov., a novel halophilic archaeon isolated from the Atacama Saltern, Chile. Int J Syst Evol Microbiol. 52, 149–155.

Lonsdale P. (1977). Clustering of suspension-feeding macrobenthos near abyssal hydrothermal vents at oceanic spreading centers. Deep-Sea Res. 24, 857–863.

McKay CP. (2001). "Subsurface Microbiology and Biogeochemistry," (Fredrickson JK, Fletcher M. eds), Wiley-Liss. 315.

Mancinelli RL, Landheim R, Sánchez-Porro C, Dornmayr-Pfaffenhuemer M, Gruber C, Legat A, Ventosa A, Radax C, Ihara K, White MR & Stan-Lotter, H.

(2009). Halorubrum chaoviator sp. nov., a haloarchaeon isolated from sea salt in Baja California, Mexico, Western Australia and Naxos, Greece. Int J Syst Evol Microbiol 59, 1908-1913.

Margosch D, Ehrmann MA, Buckow R, Heinz V, Vogel RF and Gänzle MG. (2006).

118

High-pressure-mediated survival of Clostridium botulinum and Bacillus amyloliquefaciens endospores at high temperature. Appl. Environ. Microbiol. 72, 3476-3481.

Marion GM, Fritsen CH, Eicken H and Payne MC. (2003). The search for life on Europa: limiting environmental factors, potential habitats, and Earth analogues.

Astrobiology. 3, 785–811.

Matsuzawa M, Kawano M, Nkamura N and Horikoshi K. (1975). Animproved method for the production of Schardinger beta-dextrin on an industrial scale by cyclodextrin glcosyltransferase of an alkalophilic Bacillus sp.. Starch. 27: 410-413.

McGenity T & Grant WD. (1995). Transfer of Halobacterium saccharovorum, Halobacterium sodomense, Halobacterium trapanicum NRC 34021 and Halobacterium lacusprofundi to the genus Halorubrum gen. nov., as Halorubrum saccharovorum comb.

nov., Halorubrum sodomense comb. nov., Halorubrum trapanicum comb. nov., and Halorubrum lacusprofundi comb. nov. Syst Appl Microbiol. 18, 237–243.

McGenity TJ & Grant WD. (2001). Genus VII. Halorubrum. In Bergey's Manual of Systematic Bacteriology, 2nd edn, vol. 1, pp. 320–324. Edited by D. R. Boone, R. W.

Castenholz & G. M. Garrity. New York: Springer.

Mesbah NM, Cook GM and Wiegel J. (2009). The halophilic alkalithermophile Natranaerobius thermophilus adapts to multiple environmental extremes using a large repertoire of Na(K)/H antiporters. Mol Microbiol. 74(2), 270-281.

Minegishi H, Kamekura M, Itoh T, Echigo A, Usami R and Hashimoto T. (2010).

Further refinement of the phylogeny of the Halobacteriaceae based on the full-length RNA polymerase subunit B’ (rpoB’) gene. Int J Syst Evol Microbiol. 60, 2398-2408.

119

Minegishi H, Kamekura M, Kitajima-Ihara T, Nakasone K, Echigo A, Shimane Y, Usami R, Itoh T and Ihara K. (2012). Gene orders in the upstream of 16S rRNA genes divide genera of the family Halobacteriaceae into two groups. Int J Syst Evol Microbiol.

62, 188-195.

Miyazaki S, Sugawara H, Gojobori T & Tateno Y. (2003). DNA Data Bank of Japan (DDBJ) in XML. Nucl Acids Res. 30, 13-16.

Mwatha WE & Grant WD. (1993). Natronobacterium vacuolata sp. nov., a haloalkaliphilic archaeon isolated from Lake Magadi, Kenya. Int J Syst Bacteriol. 43, 401–404.

Monnier A. (1916). Sur l’emploi du blue de me´thyle`ne comme re´actif dans l’analyse chimique et application du proce´de´ a` la recherche et au dosage des perchlorates dans le salpeˆtre du Chili. Arch Sci Phys Nat (Gene`ve). 42, 210–216.

Nagaoka S, Minegishi H, Echigo A and Usami R. (2010a). Halostagnicola kamekurae sp. nov., an extremely halophilic archaeon from solar salt. Int J Syst Evol Microbiol.

60, 2828-2831.

Nagaoka S, Minegishi H, Echigo A Shimane Y, Kamekura M & Usami R.

(2010b).Halostagnicola alkaliphila sp. nov., an alkaliphilic haloarchaeon from commercial rock salt. Int J Syst Evol Microbiol. 61, 1149-1152.

Ochsenreiter T, Pfeifer F & Schleper C. (2002). Diversity of Archaea in hypersaline environments characterized by molecular-phylogenetic and cultivation studies.

Extremophiles. 6, 267–274.

Onishi H, Fuchi H, Konomi K, Hidaka O & Kamekura M. (1980). Isolation and distribution of a variety of halophilic bacteria and their classification by salt-response.

120 Agric. Biol. Chem. 44, 1253-1258

Oren A. (1983). Halobacterium sodomense sp. nov., a Dead Sea halobacterium with an extremely high magnesium requirement. Int J Syst Bacteriol. 33, 381–386.

Oren A. (1991). Anaerobic growth of halophilic archaeobacteria by reduction of fumarate. J. Gen. Microboiol. 137, 1387-1390.

Oren A & Ventosa A. (1996). A proposal for the transfer of Halorubrobacterium distributum and Halorubrobacterium coriense to the genus Halorubrum as Halorubrum distributum comb. nov. and Halorubrum coriense comb. nov., respectively. Int J Syst Bacteriol. 46, 1180

Oren A, Ventosa A & Grant WD. (1997). Proposed minimal standards for description of new taxa in the order Halobacteriales. Int J Syst Bacteriol 47, 233-238.

Oren A, Elevi R, Watanabe S, Ihara K and Corcelli A. (2002a). Halomicrobium mukohataei gen. nov., comb. nov., and emended description of Halomicrobium mukohataei. Int J Syst Evol Microbiol. 52, 1831-1835.

Oren A. (2002b). Diversity of halophilic microorganisms: environments, phylogeny, physiology, and applications. J Ind Microbiol Biotechnol. 28, 56–63.

Oren A. (2002c). Molecular ecology of extremely halophilic Archaea and Bacteria.

FEMS Microbiol Ecol. 39, 1-7.

Oren A. (2005). A hundred years of Dunaliella research: 1905-2005. Saline Systems. 1, 2.

Oren A, Arahal DR & Ventosa A. (2009). Emended descriptions of genera of the

121

family Halobacteriaceae. Int J Syst Evol Microbiol. 59, 637-642.

Oren A, Elevi Bardavid R and Mana L. (2014). Perchlorate and halophilic prokaryotes: implications for possible halophilic life on Mars. Extremophiles. 18(1), 75-80.

Parrilli E, Sannino F, Marino G and Tutino ML (2011). Life in icy habitats: new insights supporting panspermia theory. Rend Fis Acc Lincei. 22, 375–383.

Parro V, de Diego Castilla G, Moreno-Paz M, Blanco Y, Cruz-Gil P, Rodrı´guez-Manfredi JA, Ferna´ndez-Remolar D, Go´mez F, Go´mez MJ, Rivas LA, Demergasso C, Echeverria A, Urtuvia VN, Ruiz-Bermejo M, Garcı´a- Villagangos M, Postigo M, Sa´nchez-Roma´n M, Chong-Dı´az G and Go´mez-Elvira J. (2011). A microbial oasis in the hypersaline Atacama subsurface discovered by a life detector chip: implications for the search for life on Mars.

Astrobiology. 11, 969–996.

Pearson WR & Lipman DJ. (1988). Improved tools for biological sequence comparison. Proc Natl Acad Sci USA. 85, 2444-2448.

Pedersen K, Nilsson E, Arlinger J, Hallbeck L and O'Neill A. (2004). Distribution, diversity and activity of microorganisms in the hyper-alkaline spring waters of Maqarin in Jordan. Extremophiles. 8(2),151-164.

Pesenti PT, Sikaroodi M, Gillevet PM, Sanchez-Porro C, Ventosa A & Litchfield CD. (2008). Halorubrum californiense sp. nov., an extreme archaeal halophile isolated from a crystallizer pond at a solar salt plant in California, USA. Int J Syst Evol Microbiol. 58, 2710-2715.

Rainey FA & Oren A. (2006). Extremophiles - Methods in Microbiology, Vol 35.

Amsterdam: Elsevier/Academic Press.

関連したドキュメント