• 検索結果がありません。

超高齢化社会を迎えた現代において、生体材料や再生医学の分野に対する社会的要請 は非常に高い。しかし、これらの分野はやや停滞の様相を呈しており、その原因としては経験 論や現象論に基づいた応用研究が主流となっていることが挙げられる。そこで本研究では、

HA がなぜ骨伝導を示すのかという極めて基本的な事象を解明することで、これらの分野に対 するブレークスルーの提案を目指した。実際に、タンパク質の吸着特性ならびに細胞応答の 観点から、骨伝導を示す材料であるHAと骨伝導を示さない材料である-Al2O3との差異を解 析することにより、骨伝導材料が満たすべき条件について以下の5つの知見を得た。

1) アルブミン吸着能が低いこと。本研究で調べた限りでは、材料のアルブミン吸着能が生体

環境下で3 mg/m2未満の場合に、その材料は骨伝導を示した。

2) 局所的に正に帯電した部位を有し、その結果として以下のa)およびb)を満たすこと。

a) その部位とアルブミンが有するグルタミン酸残基やアスパラギン酸残基の COO-基と の間にイオン間相互作用を及ぼし、アルブミンを特異的に吸着すること。

b) その部位と OPN が有するポリアスパラギン酸配列の COO-基との間にイオン間相互 作用を及ぼし、OPN を特異的に吸着すること。またその結果として、OPN が有する RGD配列を露出させること。

HAであればa面のCa2+サイトが、-Al2O3であればルイス酸サイトがこの部位に該当する と考えられる。

3) インプラント時に、アルブミンを吸着するよりも先に骨芽細胞を接着すること。これは、アル ブミンが示す骨芽細胞接着阻害作用を回避することに相当する。本研究で調べた限りで は、インプラント開始から1時間以内に2000 cells/cm2程度(見かけ面積)の骨芽細胞を接 着すると、その材料は骨伝導を示した。

4) アルブミンの吸着によって、単球・マクロファージ系細胞の接着が阻害されないこと。この 要因としては、2)で述べたアルブミンの特異的な吸着が考えられる。

- 67 -

5) OPN吸着能が低いこと。本研究で調べた限りでは、材料のOPN吸着能が生体環境下で

5 mg/m2未満の場合に、その材料は骨伝導を示した。

しかし、上記の知見はあくまでも骨伝導機構のごく一端を解明したに過ぎない。今後の課題 としては大きく分けて以下の2点が挙げられる。1つは他のタンパク質に関する検討である。表 1の中で我々は4 種類のタンパク質に着目したが、本報告では主にアルブミンしか取り扱って いない。そこで今後は、フィブロネクチン、オステオポンチンならびにオステオカルシンについ てアルブミンと同様の実験を施行し、それぞれのタンパク質が骨伝導の発現においてどの様 な役割を果たしているかを検討する必要がある。

2 つめは他の材料に関する検討である。本報告の中では、骨伝導を示す材料としては主に

HA、骨伝導を示さない材料としては-Al2O3しか取り扱っていない。しかし、他にも骨伝導を示

す(可能性のある)材料としては-Al2O3、-TCP ならびにリン酸八カルシウムなどが挙げられ、

一方の骨伝導を示さない材料は数多く存在する。そこで今後は、これらの材料について HA や-Al2O3 と同様に実験を施行し、それぞれの材料が示す特徴を比較することで、骨伝導材 料に求められる条件を絞り込む必要がある。

- 68 -

参考文献

[1] 占部憲, “整形外科における骨移植の動向,” 著: 臨床整形外科, 1 編, 第 巻44, 医学

書院, 2009, pp. 5-8.

[2] 中村孝志, “臨床において運動器再建に要求されるマテリアルの特性,” 著: バイオマテ

リアル-生体材料-, 4 編, 第 巻28, 日本医学館, 2010, pp. 232-240.

[3] 総務省, “国勢調査,” 2010.

[4] 厚生労働省, “介護保険事業状況報告,” 2010.

[5] 厚生労働省, “医療費の動向,” 2010.

[6] 厚生労働省, “国民生活基礎調査,” 2010.

[7] J. T. Tiffit, "The Organic Matrix of Bone Tissue," in Fundamental and clinical Bone Physiology, J. B. Lippincott Co., 1980.

[8] M. Jarcho, J. F. Kay, H. P. Drobeck and R. H. Doremus, "Tissue Cellular and Subcellular Events at Bone-ceramic Hydroxyapatite Interface," J. Bioeng., pp. 79-92, 1977.

[9] H. Aoki, K. Kato and T. Tabata, "Osteocompatibility of apatite ceramics in dog's mandibles," Rep. Inst. Med. Dent. Eng. Japan, vol. 11, pp. 33-35, 1977.

[10] S. Kotani, Y. Fujita, T. Kitsugi, T. Nakamura, T. Yamamuro, C. Ohtsuki and T. Kokubo,

"Bone bonding mechanism of b-tricalcium phosphate," J. Biomed. Mater. Res., vol. 25, pp.

1303-1315, 1991.

[11] M. Kobayashi, T. Kikutani, T. Kokubo and T. Nakamura, "Direct bone formation on alumina bead composite," J. Biomed. Mater Res., vol. 37, no. 4, pp. 554-565, 1997.

[12] L. L. Hench, "Bioceramics," J. Am. Ceram. Soc., vol. 81, no. 7, pp. 1705-1728, 1998.

[13] U. Ripamonti, "Osteoinduction in porous hydroxyapatite implanted in heterotopic sites of different animal models," Biomaterials, vol. 17, pp. 31-35, 1996.

[14] D. A. Puleo and A. Nanci, "Understanding and controlling the bone implant interface,"

Biomaterials, vol. 20, pp. 2311-2321, 1999.

[15] M. Nakamura, Y. Sekijima, S. Nakamura, T. Kobayashi, K. Niwa and K. Yamashita, "Role of blood coagulation components as intermediators of high osteoconductivity of electrically polarized hydroxyapatite," J. Biomed. Mater. Res. A, vol. 79, no. 3, pp. 627-634, 2006.

[16] D. G. Castner and B. D. Ratner, "Biomedical surface science: Foundations to frontiers,"

Surface Science, vol. 500, pp. 28-60, 2002.

- 69 -

[17] M. Tirrell, E. Kokkoli and M. Biesalski, "The role of surface science in bioengineered materials," Surface Science, vol. 500, pp. 61-83, 2002.

[18] S. Curry, P. Brick and N. P. Franks, "Fatty acid binding to human serum albumin: new insights from crystallographic studies," Biochim. Biophys. Acta, vol. 1441, pp. 131-140, 1999.

[19] L. Ming, K. Chen and C. J. Xian, "Functions and action mechanisms of flavonoids genistein and icariin in regulating bone remodeling," J. Cell. Physiol., vol. 228, no. 3, pp.

513-521, 2013.

[20] H. X. Liu, R. S. Zhang, X. J. Yao, M. C. Liu, Z. D. Hu and B. T. Fan, "Prediction of the isoelectric point of an amino acid based on GA-PLS and SVMs," J. Chem. Inf. Comput.

Sci., vol. 44, pp. 161-167, 2004.

[21] M. Kawano and J. Hwang, "Enhancement of dissolution rates of amorphous silica by interaction with bovine serum albumin at different pH conditions," Clay. Clay. Miner., vol.

58, no. 2, pp. 272-279, 2010.

[22] M. Bergkvist, J. Carlsson and S. Oscarsson, "Surface-dependent conformations of human plasma fibronectin adsorbed to silica, mica, and hydrophobic surfaces, studied with use of Atomic Force Microscopy," J. Biomed. Mater. Res. A, vol. 64, no. 2, pp. 349-356, 2003.

[23] A. D. Pirouz, T. H. Jensen, K. Kolind, C. Bunger, M. Kassem, M. Foss and F. Besenbacher,

"Cell shape and spreading of stromal (mesenchymal) stem cells cultured on fibronectin coated gold and hydroxyapatite surfaces," Colloids Surf. B: Biointerfaces, vol. 84, pp.

18-25, 2011.

[24] A. Oldberg, A. Franzen and D. Heinegard, "Cloning and sequence analysis of rat bone sialoprotein (osteopontin) cDNA reveals an Arg-Gly-Asp cell-binding sequence," Proc.

Natl. Acad. Sci. USA, vol. 83, pp. 8819-8823, 1986.

[25] J. Sodek, B. Ganss and M. D. McKee, "Osteopontin," Crit. Rev. Oral Biol. Med., vol. 11, pp. 279-303, 2000.

[26] P. V. Hauschka, J. B. Lian, D. E. Cole and C. M. Gundberg, "Osteocalcin and matrix Gla protein: vitamin K-dependent proteins in bone," Physiol. Rev., vol. 69, no. 3, pp. 990-1047, 1989.

[27] Q. Q. Hoang, F. Sicheri, A. J. Howard and D. S. Yang, "Bone recognition mechanism of porcine osteocalcin from crystal structure," Nature, vol. 425, pp. 977-980.

[28] J. L. Dewez, A. Doren, Y. J. Schneider and P. G. Rouxhet, "Competitive adsorption of proteins: Key of the relationship between substratum surface properties and adhesion of

- 70 -

epithelial cells," Biomaterials, vol. 20, pp. 547-559, 1999.

[29] S. R. Sousa, M. Lamghari, P. Sampaio, P. Moradas-Ferreira and M. A. Barbosa, "Osteoblast adhesion and morphology on TiO2 depends on the competitive preadsorption of albumin and fibronectin," J. Biomed. Mater. Res. A, vol. 84, no. 2, pp. 281-290, 2008.

[30] M. A. Jawad, G. Fragneto, J. Liu, S. R. Chang and B. Clarkson, "Fibronectin adsorption studied using neutron reflectometry and complementary techniques," Eur. Phys. J. E, vol.

30, pp. 175-179, 2009.

[31] C. J. Pendegrass, M. E. Husseiny and G. W. Blunn, "The development of fibronectin-functionalised hydroxyapatite coatings to improve dermal fibroblast attachment in vitro," J. Bone. Joint Surg., Vols. 94-B, no. 4, pp. 564-569, 2012.

[32] H. Kojima, T. Ueda and T. Uemura, "In vitro and in vivo effects of the overexpression of osteopontin on osteoblast differentiation using a recombinant adenoviral vector," J.

Biochem., vol. 136, pp. 377-386, 2004.

[33] I. Nakamura, L. T. Duong, S. B. Rodan and G. A. Rodan, "Involvement of avb3 integrins in osteoclast function," J. Bone Miner. Metab., vol. 25, pp. 337-344, 2007.

[34] M. Kajiya, G. Giro, M. A. Taubman, X. Han, M. P. Mayer and T. Kawai, "Role of periodontal pathogenic bacteria in RANKL-mediated bone destruction in periodontal disease," J. Oral Microbiol., vol. 2, pp. 5532-5547, 2010.

[35] D. Aeschlimann and B. Evans, "The vital osteoclast: how is it regulated?," Cell Death Differ., vol. 11, pp. S5-S7, 2004.

[36] T. Kawasaki, S. Takahashi and K. Ikeda, "Hydroxyapatite high-performance liquid chromatography: column performance for proteins," Eur. J. Biochcm., vol. 152, pp.

361-371, 1985.

[37] T. Kawasaki, K. Ikeda, S. Takahashi and Y. Kuboki, "Further study of hydroxyapatite high-performance liquid chromatography using both proteins and nucleic acids, and a new technique to increase chromatographic efficiency," Eur. J. Biochem., vol. 155, pp. 249-257, 1986.

[38] E. Mavropoulos, A. M. Costa, L. T. Costa, C. A. Achete, A. Mello, J. M. Granjeiro and A.

M. Rossi, "Adsorption and bioactivity studies of albumin onto hydroxyapatite surface,"

Colloids Surf. B: Biointerfaces, vol. 83, pp. 1-9, 2011.

[39] H. M. Kowalczynska, M. Nowak-Wyrzykowska, A. A. Szczepankiewicz, J. Dobkowski, M.

Dyda, J. Kaminski and R. Kolos, "Albumin adsorption on unmodified and sulfonated polystyrene surfaces, in relation to cell–substratum adhesion," Colloids Surf. B:

- 71 - Biointerfaces, vol. 84, pp. 536-544, 2011.

[40] H. Urano and S. Fukuzaki, "Conformation of Adsorbed Bovine Serum Albumin Governing Its Desorption Behavior at Alumina-Water Interfaces," J. Biosci. Bioeng., vol. 90, no. 1, pp.

105-111, 2000.

[41] S. Brunauer, P. H. Emmett and E. Teller, "Adsorption of gases in multimolecular layers," J.

Am. Chem. Soc., vol. 60, pp. 309-319, 1938.

[42] M. M. Bradford, "A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding," Anal. Biochem., vol.

72, pp. 248-254, 1976.

[43] I. Langmuir, "The adsorption of gases on plane surfaces of glass, mica and platinum," J.

Am. Chem. Soc., vol. 40, pp. 1361-1403, 1918.

[44] M. Hamid, M.-N. Mohsen and A. Leila, "Adsorption of bovine serum albumin onto hydroxylapatite: theoretical modeling and measurements," J. Chem. Chem. Eng., vol. 29, no. 4, pp. 125-133, 2010.

[45] A. D. Pirouz, N. Kolman, A. Arpanaei, T. Jensen, M. Foss, J. Chevallier, P. Kingshott, J.

Baas, K. Soballe and F. Besenbacher, "The adsorption characteristics of osteopontin on hydroxyapatite and gold," Mater. Sci. Eng. C, vol. 31, pp. 514-522, 2011.

[46] J. Deere, E. Magner, G. J. Wall and K. B. Hodnett, "Adsorption and activity of cytochrome C on mesoporous silicates," Chem. Commun., vol. 5, pp. 465-466, 2001.

[47] P. H. Yiu, H. C. Botting, P. N. Botting and A. P. Wright, "Size selective protein adsorption on thiol-functionalised SBA-15 mesoporous molecular sieve," Phys. Chem. Chem. Phys., vol. 3, pp. 2983-2985, 2001.

[48] H. Neurath, "Evolution of proteolytic enzymes," Science, vol. 224, no. 4647, pp. 350-357, 1984.

[49] M. J. Page and E. D. Cera, "Serine peptidases: Classification, structure and function," Cell.

Mol. Life Sci., vol. 65, pp. 1220-1236, 2008.

[50] K. Hirayama, S. Akashi, M. Furuya and K. Fukuhara, "Rapid confirmation and revision of the primary structure of bovine serum albumin by esims and FRIT-FAB LC/MS,"

Biochem. Bioph. Res. Co., vol. 173, no. 2, pp. 639-646, 1990.

[51] K. Murayama and M. Tomida, "Heat-induced secondary structure and conformation change of bovine serum albumin investigated by fourier transform infrared spectroscopy,"

Biochemistry, vol. 43, pp. 11526-11532, 2004.

[52] L. Liu, S. Chen, C. M. Giachelli, B. D. Ratner and S. Jiang, "Controlling osteopontin

- 72 -

orientation on surfaces to modulate endothelial cell adhesion," J. Biomed. Mater. Res. A, vol. 74, no. 1, pp. 23-31, 2005.

[53] M. T. Bernards, C. Qin, B. D. Ratner and S. Jiang, "Adhesion of MC3T3-E1 cells to bone sialoprotein and bone osteopontin specifically bound to collagen I," J. Biomed. Mater. Res.

A, vol. 86, no. 3, pp. 779-787, 2008.

[54] Y. U. Kim, R. Z. LeGeros, K. N. Kim, K. M. Kim and Y. K. Lee, "Effect of calcium phosphate glass on proliferation and differentiation of MG-63 cells in HA scaffolds,"

Mater. Sci. Forum, Vols. 539-543, no. 1, pp. 731-736, 2007.

[55] M. T. Bernards, C. Qin and S. Jiang, "MC3T3-E1 cell adhesion to hydroxyapatite with adsorbed bone sialoprotein, bone osteopontin, and bovine serum albumin," Colloids Surf.

B: Biointerfaces, vol. 64, pp. 236-247, 2008.

[56] B. Lassen and M. Malmsten, "Competitive protein adsorption at radio frequency plasma polymer surfaces," J. Mater. Sci. Mater. Med., vol. 5, pp. 662-665, 1994.

[57] J. L. Dewez, V. Berger, Y. J. Schneider and P. G. Rouxhet, "Influence of substrate hydrophobicity on the adsorption of collagen in the presence of pluronic F68, albumin, or calf serum," J. Coll. Interf. Sci., vol. 191, pp. 1-10, 1997.

[58] M. S. Hughes, C. S. Hall, J. N. Marsh, G. H. Brandenburger and J. G. Miller,

"Kramers–Kronig relations applied to finite bandwidth data from suspensions of encapsulated microbubbles," J. Acoust. Soc. Am., vol. 108, no. 5, pp. 2091-2106, 2000.

[59] J. Zhou, X. Zhang, J. Chen, S. Zeng and K. D. Groot, "High temperature characteristics of synthetic hydroxyapatite," J. Mater. Sci., vol. 4, pp. 83-85, 1993.

[60] A. Finoli, D. McKeel, J. Gerlach and I. Nettleship, "Phase transformation behaviour of hydroxyapatite foams subject to heat treatment," Biomed. Mater., vol. 5, pp. 1-5, 2010.

[61] Z. Xia, L. M. Grover, Y. Huang, I. E. Adamopoulos, U. Gbureck, J. T. Triffitt, R. M.

Shelton and J. E. Barralet, "In vitro biodegradation of three brushite calcium phosphate cements by a macrophage cell-line," Biomaterials, vol. 27, pp. 4557-4565, 2006.

[62] L. L. Hench, R. J. Splinger, W. C. Allen and T. K. Greenlee, "Bonding Mechanisms at the Interface of Ceramic Prosthetic Materials," J. Biomed. Mater. Res. Symp., vol. 2, pp.

117-141, 1972.

[63] T. Kokubo, M. Shigematsu, Y. Nagashima, M. Tashiro, T. Nakamura, T. Yamamuro and S.

Higashi, "Apatite- and Wollastonite-Containing Glass-Ceramics for Prosthetic Application," Bull. Inst. Chem. Res., Kyoto Univ., vol. 60, pp. 260-268, 1982.

[64] T. Kokubo, H. Kushitani, S. Sakka, T. Kitsugi and T. Yamamuro, "Solutions able to

- 73 -

reproduce in vivo surface-structure changes in bioactive glass-ceramic A-W," J. Biomed.

Mater. Res., vol. 24, pp. 721-734, 1990.

[65] T. Kokubo and H. Takadama, "How useful is SBF in predicting in vivo bone bioactivity?,"

Biomaterials, vol. 27, pp. 2907-2915, 2006.

[66] C. Ohtsuki, Y. Aoki, T. Kokubo, Y. Fujita, S. Kotani and T. Yamamuro, "Bioactivity of limestone and abalone shell," Transactions of the 11th annual meeting of Japanese Society for Biomaterials, p. 12, 1989.

[67] Y. Fujita, T. Yamamuro, T. Nakamura, S. Kotani, T. Kokubo and C. Ohtsuki, "The bonding behavior of limestone and abalone shell to bone," Transactions of the 11th annual meeting of Japanese Society for Biomaterials, p. 3, 1989.

[68] C. Ohtsuki, T. Kokubo, M. Neo, S. Kotani, T. Yamamuro, T. Nakamura and Y. Bando,

"Bone-Bonding Mechanism of Sintered," Phos. Res. Bull., vol. 1, pp. 191-196, 1991.

[69] R. Metivier, I. Leray, J. P. Lefevre, M. R. Auberger, N. Z. Szydliwski and B. Valeur,

"Characterization of alumina surfaces by fluorescence spectroscopy," Phys. Chem. Chem.

Phys., vol. 5, pp. 758-766, 2003.

[70] R. Wischert, P. Laurent, C. Coperet, F. Delbecq and P. Sautet, "γ-Alumina: The essential and unexpected role of water for the structure, stability, and reactivity of “defect” sites," J.

Am. Chem. Soc., vol. 134, no. 5, pp. 14430-14449, 2012.

[71] W. T. Butler, "Structural and functional domains of osteopontin," Ann. N. Y. Acad. Sci., vol.

760, pp. 6-11, 1995.

[72] P. H. Anborgh, J. C. Mutrie, A. B. Tuck and A. F. Chambers, "Role of the metastasis-promoting protein osteopontin in the tumour microenvironment," J. Cell. Mol.

Med., vol. 14, no. 8, pp. 2037-2044, 2010.

[73] L. Schack, A. Lange, J. Kelsen, J. Agnholt, B. Christensen, T. E. Petersen and E. S.

Sorensen, "Considerable variation in the concentration of osteopontin in human milk, bovine milk, and infant formulas," J. Dairy Sci., vol. 92, pp. 5378-5385, 2009.

[74] Y. Ayukawa, F. Takeshita, T. Inoue, M. Yoshinari, M. Shimono, T. Suetsugu and T. Tanaka,

"An immunoelectron microscopic localization of noncollagenous bone proteins (osteocalcin and osteopontin) at the bone–titanium interface of rat tibiae," J. Biomed.

Mater. Res., vol. 1, no. 111-119, p. 41, 1998.

[75] M. C. Siebers, P. J. Brugge, X. F. Walboomers and J. A. Jansen, "Integrins as linker proteins between osteoblasts and bone replacing materials. A critical review," Biomaterials, vol. 26, pp. 137-146, 2005.

- 74 -

[76] J. Takagi, "Structural basis for ligand recognition by integrins," Curr. Opin. Cell. Biol., vol.

19, no. 5, pp. 557-564, 2007.

[77] L. Liu, C. Qin, W. T. Butler, B. D. Ratner and S. Juang, "Controlling the orientation of bone osteopontin via its specific binding with collagen I to modulate osteoblast adhesion,"

J. Biomed. Mater. Res. A, vol. 80, no. 1, pp. 102-110, 2007.

[78] T. Jensen, A. D. Pirouz, M. Foss, J. Baas, J. Lovmand, M. Duch, F. S. Pedersen, M.

Kassem, C. Bunger, K. Soballe and F. Besenbacher, "Interaction of human mesenchymal stem cells with osteopontin coated hydroxyapatite surfaces," Colloids Surf. B:

Biointerfaces, vol. 75, no. 1, pp. 186-193, 2010.

[79] T. Uemura, A. Nemoto, Y. Liu, H. Kojima, J. Dong, T. Yabe, T. Yoshikawa, H. Ohgushi, T.

Ushida and T. Tateishi, "Osteopontin involvement in bone remodeling and its effects on in vivo osteogenic potential of bone marrow-derived osteoblasts/porous hydroxyapatite constructs," Mater. Sci. Eng. C, vol. 17, pp. 33-36, 2001.

[80] C. L. Duvall, W. R. Taylor, D. Weiss, A. M. Wojtowicz and R. E. Guldberg, "Impaired angiogenesis, early callus formation, and late stage remodeling in fracture healing of osteopontin-deficient mice," J. Bone. Miner. Res., vol. 22, no. 2, pp. 286-297, 2007.

[81] L. W. Fisher, D. A. Torchia, B. Fohr, M. F. Young and N. S. Fedarko, "Flexible structures of SIBLING proteins, bone sialoprotein, and osteopontin," Biochem. Bioph. Res. Co., vol.

280, no. 2, pp. 460-465, 2001.

[82] C. C. Kazanecki, D. J. Uzwiak and D. T. Denhardt, "Control of osteopontin signaling and function by post-translational phosphorylation and protein folding," J. Cell. Biochem., vol.

102, pp. 912-924, 2007.

[83] E. S. Sorensen, P. Hojrup and T. E. Petersen, "Posttranslational modifications of bovine osteopontin: Identification of twenty-eight phosphorylation and three 0-glycosylation sites," Protein Sci., vol. 4, pp. 2040-2049, 1995.

[84] P. V. Azzopardi, J. O'Young, G. Lajoie, M. Karttunen, H. A. Goldberg and G. K. Hunter,

"Roles of electrostatics and conformation in protein-crystal interactions," PLoS ONE, vol.

5, no. 2, pp. 1-11, 2010.

関連したドキュメント