1) Soerensen, A. L. et al.: An improved global model for air-sea exchange of mercury: High concentrations over the North Atlantic, Environ. Sci. Technol., 44, 8574-8580 (2010).

2) Ferriss, B. E. and Essington, T. E.: Can fish consumption rate estimates be improved by linking bioenergetics and mercury mass balance models? Application to tunas, Ecol. Model., 272, 232–241 (2014).

3) Kawai, T. et al.: A New Metric for Long-Range Transport Potential of Chemicals, Environ. Sci.

Technol., 48(6), 3245-3252 (2014).

4) Handoh, I. C. and Kawai, T.: Modelling exposure of oceanic higher trophic-level consumers to polychlorinated biphenyls: Pollution 'hotspots' in relation to mass mortality events of marine mammals, Mar. Pollut. Bull., 85(2), 824-830 (2014).

5) Li, Y. and Chang, J. S.: A mass-conservative, positive-definite, and efficient Eulerian advection scheme in spherical geometry and on a nonuniform grid system, J. Appl. Meteorol., 35(10), 1897-1913 (1996).

6) Hong, S. Y. and Noh, Y.: A new vertical diffusion package with an explicit treatment of entrainmen t process, Mon. Wea. Rev., 134(9), 2318-2341 (2006).

7) Large, W. G. et al.: Oceanic vertical mixing: A review and a model with nonlocal boundary layer parameterization, Rev. Geophys., 32(4), 363-403 (1994).

8) Stramska, M.: Particulate organic carbon in the glo bal ocean derived from SeaWiFS ocean color, Deep-Sea Res., 56(9), 1459-1470 (2009).

9) Dunne, J. P. et al.: Empirical and mechanistic models for the particle export ratio, Global Biogeochem.

Cy., 19, GB4024 (2005).

10) Lutz, M. et al.: Regional variability in the vertical flux of particulate organic carbon in the ocean interior, Global Biogeochem. Cy., 16(3), 1037 (2002).

11) Dunne, J. P. et al.: A synthesis of global particle export from the surface ocean and cycling through the ocean interior and on the seafloor, Global Biogeochem. Cy., 21(4), GB4006 (2007).

12) Jennings, S. et al.: Global scale predictions of community and ecosystem properties from simple ecological theory, Proc. Roy. Soc. B, 275, 1375-1383 (2008).

13) Westberry, T. et al.: Carbon-based primary productivity modeling with vertically resolved photoacclimation, Global Biogeochem. Cy., 22(2), GB2024 (2008).

14) Savage, V. M. et al.: Effects of Body Size and Temperature on Population Growth, Am. Nat., 163(3), 429-441 (2004).

15) Seigneur, C. et al.: Atmosphric mercury chemistry: Sensitivity of global model simulations to chemical reactions, J. Geophys. Res., 111, D22306 (2006).

16) Shia, R. L.: Global simulation of atmospheric mercury concentrations and deposition fluxes, J.

Geophys. Res., 104(D19), 23747-23760 (1999).

17) Poissant, L. et al.: Mercury water-air exchange over the upper St. Lawrence river and lake Ontario, Environ. Sci. Technol., 34, 3069-3078 (2000).

18) Liss, P. S. and Merlivat, L.: Air -sea gas exchange rates: Introduction and synthesis, in The Role of Air-Sea Exhange in Geochemical Cycling, edited by P. Buat-Menard, pp. 113-127, D. Reidel, Dordrecht, Netherlands (1986).

19) Brutsaert, W.: Mean profiles and similarity in a stationary and horizontally -uniform ABL. In

Evaporation into the atmosphere: Theory, history, and a pplications (environmental fluid mechanics);

Csanady, G. T., Davenport, A. J., Fischer, H. B., Hicks, B. B., Hilst G. R., Munn, R. E., Smith, J. D., Eds.; D. Reidel, Dordrecht: Boston, Lancaster, pp 57 -112 (1982).

20) Louis, J. F.: A parametric model of vertical eddy fluxes in the atmosphere, Bound.-Layer Meteorol., 17(2), 187-202 (1979).

21) Giorgi, F.: A particle dry-deposition parameterization scheme for use in tracer transport models, J.

Geophys. Res., 91, 9794-9806 (1986).

22) Whitby, K. T.: The Physical Characteristics of Sulfur Aerosols, Atmos. Environ., 12, 135-159 (1978).

23) Sandu, A. and Sander R.: Technical note: Simulating chemical systems in Fortran90 and Matlab with the Kinetic PreProcessor KPP-2.1, Atmos. Chem. Phys., 6, 187-195 (2006).

24) van der Velden, S. et al.: Basal mercury concentrations and biomagnification rates in freshwater and marine food webs: Effects on Arctic charr (Salvelinus alpinus) from eastern Canada, Sci. Tot.

Environ., 444, 531-542 (2013).

25) Irigoien, X. et al.: Global biodiversity patterns of marine phytoplankton and zooplankton, Nature, 429, 863-867 (2004).

26) Miller, M. J.: A low trophic position of Japanese eel larvae indicates feeding on marine snow, Biol.

Lett., 9(1), 20120826 (2012).

27) AMAP/UNEP, 2013. Technical Background Report for the Glo bal Mercury Assessment 2013. Arctic

Monitoringand Assessment Programme, Oslo, Norway/UNEP ChemicalsBranch, Geneva, Switzerland.

vi + 263 pp

28) Spivakovsky, C. M. et al.: Three-dimensional climatological distribution of tropospheric OH: Update and evaluation, J. Geophys. Res., 105(D7), 8931-8980 (2000).

29) 小野征一郎: マグロの科学その生産から消費まで—. 成山堂書店: 東京, 2004; p 337.

30) Brett, J. R. and Groves, T. D. D.: Physiological energetics. In Fish Physiology Volume VIII

Bioenergetics and Growth, Hoar, W. S.; Randall, D. J.; Brett, J. R., Eds. Academic Press: New York, 1979; pp 279–352.

31) Gosnell, K. J. and Mason, R. P.: Mercury and methylmercury incidence and bioaccumulation in plankton from the central Pacific Ocean, Mar. Chem., 177(5), 772-780 (2015).

32) Choy, C. A. et al.: The influence of depth on mercury levels in pelagic fishes and their prey, Proc.

Natl. Acad. Sci. U. S. A., 106, 13865–13869 (2009).

33) 厚生労働省 妊婦への魚介類の摂食と水銀に関する注意事項の見直しについて; 2005.

34) Hinke, J. T. et al.: Visualizing the food-web effects of fishing for tunas in the Pacific Ocean, Ecol.

Soc., 9, (2004).

35) Batrakova, N. et al.: Chemical and physical transformation of mercury in the ocean: a review, Ocean Sci., 10, 1047-1063 (2015).

36) Lehnherr, I. et al.: Methylation of inorganic mercury in polar marine waters, Nat. Geosci., 4, 298–302 (2011).

37) Monperrus, M. et al.: Mercury methylation, demethylation and reduction rates in coastal and marine surface waters of the Mediterranean Sea, Mar. Chem., 107, 49–63 (2007).

38) Sunderland, E. M. et al.: Response of a Macrotidal Estuary to Changes in Anthr opogenic Mercury Loading between 1850 and 2000, Environ. Sci. Technol., 44, 1698-1704 (2010).

39) Mason, R. P. and Fitzgerald, W. F.: The distribution and cycling of mercury in the equatorial Pacific Ocean, Deep-Sea Res. Pt. I, 40, 1897–1924 (1993).

40) Pickhardt, P. C. et al.: Algal bloom reduce the uptake of toxic methylmercury in freshwater food webs, Proc. Natl. Acad. Sci. U.S.A., 99(7): 4419-4423 (2002).

41) Hammerschmidt, C. R. and Bowman, K. L.: Vertical methylmercury distribution in the subtropical North Pacific Ocean, Mar. Chem., 132-133, 77-82 (2012).

42) Hammerschmidt, C. R. et al.: Methylmercury accumulation in plankton on the continental margin of the Northwest Atlantic Ocean, Environ. Sci. Technol., 47, 3671-3677 (2013).

43) Lavoie, R. A. et al.: Biomagnification of mercury in aquatic food webs: A worldwide meta -analysis, Environ. Sci. Technol., 47, 13385-13394 (2013).

44) Kehrig, H. A. et al.: Mercury and selenium biomagnification in a Brazilian coastal food web using nitrogen stable isotope analysis: A case study in an area under the influence of the Paraiba do Sul River plume, Mar. Pollut. Bull., 75, 283-290 (2013).

45) Coelho, J. P. et al.: Mercury biomagnification in a contaminated estuary food web: Effects of age and trophic position using stable isotope analyses, Mar. Pollut. Bull., 69, 110-115 (2013).

46) Muto, E. Y. et al.: Biomagnification of mercury through the food web of the Santos continental shelf,

subtropical Brazil, Mar. Ecol. Prog. Ser., 512, 55-69 (2014).

47) Clayden, M. G. et al.: Mercury bioaccumulation and biomagnification in a small Arctic polynya ecosystem, Sci. Tot. Environ., 509-510, 206-215 (2015).

48) McMeans, B. C. et al.: Impact of food web structure and feeding behavior on mercury exposure in Greenland Sharks (Somniosus microcephalus), Sci. Tot. Environ., 509-510, 216-225 (2015).

49) Sakata, M. et al.: Relationships between trace element concentrations and the stable nitrogen isotope ratio in biota from Suruga Bay, Japan, J. Oceanogr., 71, 141-149 (2015).

50) Campbell, L. M. et al.: Mercury and other trace elements in a pelagic Arctic marine food web (Northwater Polynya, Baffin Bay), Sci. Tot. Environ., 351-352: 247-263 (2005).

51) Andersson, M. E. et al.: Seasonal and daily variation of mercury evasion at coastal and off shore sites from the Mediterranean Sea, Mar. Chem., 104, 214–226 (2007).

52) Ci, Z. J. et al.: Distribution and air-sea exchange of mercury (Hg) in the Yellow Sea, Atmos. Chem.

Phys., 11, 2881–2892 (2011).

53) Cossa, D. et al.: The distribution and cycling of mercury species in the western Med iterranean, Deep-Sea Res. Pt. II, 44(3–4), 721–740 (1997).

54) Cossa, D. et al.: Total mercury in the water column near the shelf edge of the European continental margin, Mar. Chem., 90, 21–29 (2004).

55) Cossa, D. et al.: Mercury in the Southern Ocean, Geochim. Cosmochim. Ac., 75(14), 4037-4052 (2011).

56) Ferrara, R. et al.: Profiles of dissolved gaseous mercury concentration in Mediterranean Sea water, Atmos. Environ., 37(S1), S82-S92 (2003).

57) Fu, X. et al.: Mercury in the marine boundary layer and seawater of the South China Sea:

Concentrations, sea/air flux, and implication for land outflow, J. Geophys. Res., 115, D06303 (2010).

58) Gårdfeldt, K. et al.: Evasion of mercury from coastal and open waters of the A tlantic Ocean and Mediterranean Sea, Atmos. Environ., 37 (Supplement 1), S73–S84, 2003 (2003).

59) Horvat, M. et al.: Speciation of mercury in surface and deep -sea waters in the Mediterranean Sea, Atmos. Environ., 37(S1), S93–S108 (2003).

60) Kim, J. P. and Fitzgerald, W.F.: Sea-Air Partitioning of Mercury in the Equatorial Pacific Ocean, Science, 231, 1131-1133 (1986).

61) Kotnik, J. et al.: Mercury speciation in surface and deep waters of the Mediterranean Sea, Mar. Chem., 107, 13–30 (2007).

62) Kuss, J. and Schneider, B.: Variability of the Gaseous Elemental Mercury Sea –Air Flux of the Baltic Sea, Environ. Sci. Technol., 41, 8018–8023 (2007).

63) Kuss, J. et al.: Atlantic mercury emission determined from continuous analysis of the elemental mercury sea-air concentration difference within transects between 50°N and 50°S, Global Biogeochem. Cy., 25, GB3021 (2011).

64) Lamborg, C. H. et al.: Vertical distribution of mercury species at two sites in the Western Black Sea, Mar. Chem., 111, 77–89 (2008).

65) Laurier, F. J. G. et al.: Mercury distributions in the North Pacific Ocean: 20 years of observations,

Mar. Chem., 90, 3–19 (2004).

66) Mason, R. P. et al.: Mercury in the North Atlantic, Mar. Chem., 61, 37–53 (1998).

67) Mason, R. P. and Sullivan, K. A.: The distribution and speciation of mercury in the south and equatorial Atlantic, Deep-Sea Res. Pt. II, 46, 937–956 (1999).

68) Mason, R. P. et al.: Mercury in the Atlantic Ocean: factors controlling air –sea exchange of mercury and its distribution in the upper waters, Deep-Sea Res. Pt II, Top. Stud. Oceanogr., 48, 2829–2853 (2001).

69) Soerensen, A. L. et al.: Drivers of Surface Ocean Mercury Concentrations and Air−Sea Exchange in the West Atlantic Ocean, Environ. Sci. Technol., 47, 7757−7765 (2013).

70) Wängberg, I. et al.: Estimates of air–sea exchange of mercury in the Baltic Sea, Atmos. Environ., 35, 5477–5484 (2001).

71) World Health Organization: Environmental Health Criteria 1 Mercury. World Health Organization:

Geneva, 1976.

72) Trudel, M. and Rasmussen, J. B.: Predicting mercury concentration in fish using mass balance models, Ecol. Appl., 11, 517–529 (2001).

73) Wang, R. et al.: In vivo mercury methylation and demethylation in freshwater tilapia quantified by mercury stable isotopes, Environ. Sci. Technol., 47, 7949–7957 (2013).

74) Morel, F. M. M. et al.: The chemical cycle and bioaccumulation of mercury, Annu. Rev. Ecol. Syst., 29, 543–566 (1998).

75) Skyllberg, U.: Chemical Speciation of Mercury in Soil and Sediment. In Environmental Chemistry and Toxicology of Mercury, Liu, G.; Cai, Y.; O'Driscoll, N., Eds. John Wiley & Sons, Inc.: Hoboken, New Jersey, USA, 2012; pp 219–258.

76) Sunderland, E. M.: Mercury exposure from domestic and imported estuarine and marine fish in the US seafood market, Environ. Health Perspect., 115, 235–242 (2007).

77) Norstrom, R. J. et al.: A bioenergetics-based model for pollutant accumulation by fish. Simulation of PCB and methylmercury residue levels in Ottawa River yellow perch (Perca flavescens), J. Fish. Res.

Board Can., 33, 248–267 (1976).

78) Thomann, R. V. and Connolly, J. P.: Model of PCB in the Lake Michigan lake trout food chain, Environ. Sci. Technol., 18, 65–71 (1984).

79) Pennacchioni, A. et al.: Inability of fish to methylate mercuric chloride in vivo, J. Environ. Qual., 5, 451–454 (1976).

80) Huckabee, J. W. et al.: Methylated mercury in brook trout (Salvelinus fontinalis): Absence of an in vivo methylating process, Trans. Am. Fish. Soc., 107, 848–852 (1978).

81) Rudd, J. W. et al.: Mercury methylation by fish intestinal contents, Appl. Environ. Microbiol., 40, 777–782 (1980).

82) Ludwicki, J.: In vitro methylation and demethylation of mercury compounds by the intestinal contents, Bull. Environ. Contam. Toxicol., 44, 357–362 (1990).

83) Pan-Hou, H. S. K. and Imura, N.: Relationship b etween the total vitamin B12 content and the mercury methylating activity in yellowfin tuna liver, Eisei Kagaku, 27, 184–186 (1981).

84) Mason, R. P. et al.: Uptake, toxicity, and trophic transfer of mercury in a coastal diatom, Environ. Sci.

Technol., 30, 1835–1845 (1996).

85) Wang, W.-X. and Wong, R. S. K.: Bioaccumulation kinetics and exposure pathways of inorganic mercury and methylmercury in a marine fish, the sweetlips Plectorhinchus gibbosus, Mar. Ecol. Prog.

Ser., 261, 257–268 (2003).

86) Sunderland, E. M. et al.: Mercury sources, distribution, and bioavailability in the North Pacific Ocean: Insights from data and models, Global Biogeochem. Cycles, 23, GB2010 (2009).

87) Holland, K. N. et al.: Horizontal and vertical movements of yellowfin and bigeye tuna associa ted with fish aggregating devices, Fish. Bull., 88, 493–507 (1990).

88) Musyl, M. K. et al.: Vertical movements of bigeye tuna (Thunnus obesus) associated with islands, buoys, and seamounts near the main Hawaiian Islands from archival tagging data, Fish. Oceanogr., 12, 152–169 (2003).

89) Hampton, J. et al. A summary of current information on the biology, fisheries and stock assessement of bigeye tuna (Thunnus obesus) in the Pacific Ocean, with recommendations for data requirements and future research; Noumea, New Caledonia, 1998.

90) Graham, J. B. and Dickson, K. A.: Anatomical and physiological specializations for endothermy. In Fish Physiol., Barbara, B.; Stevens, E., Eds. Academic Press: 2001; Vol. 19, pp 121 –165.

91) Mason, R. P. et al.: Mercury biogeochemical cycling in the ocean and policy implications, Environ.

Res., 119, 101–117 (2012).

92) King, J. E. and Ikehara, I. I.: Comparative study of food of bigeye and yellowfin tuna in the central pacific, Fish. Bull., 57, 61–85 (1956).

93) 藤田清: マグロの種類と生態. In マグロの科学その生産から消費まで—, 小野征一郎, Ed. 成山堂 書店: 東京, 2004; pp 1–55.

94) 渡辺久也: 西部太平洋赤道海域に於けるキハダとメバチの食餌組成の相異について, 南海区水産 研究所報告, 7, 72–81 (1958).

95) Boddington, M. J. et al.: A respirometer to measure the uptake efficiency of waterborne contaminants in fish, Ecotoxicol. Environ. Saf., 3, 383–393 (1979).

96) Zhu, G. et al.: Growth and mortality of bigeye tuna Thunnus obesus (Scombridae) in the eastern and central tropical Pacific Ocean, Environ. Biol. Fishes, 85, 127–137 (2009).

97) Brill, R. W.: On the standard metabolic rates of tropical tunas, including the effect of body size and acute temperature change, Fish. Bull., 85, 25–35 (1987).

98) Magnuson, J. J.: Comparative study of adaptations for continuous swimming and hydrostatic equilibrium of scombroid and xiphoid fishes, Fish. Bull., 71, 337–356 (1973).

99) Essington, T. E. et al.: Alternative fisheries and the predation rate of yellowfin tuna in the eastern Pacific Ocean, Ecol. Appl., 12, 724–734 (2002).

100) Olson, R. J. and Boggs, C. H.: Apex predation by yellowfïn tuna (Thunnus albacares): Independent estimates from gastric evacuation and stomach contents, bioenergetics, and cesium concentrations, Can. J. Fish. Aquat. Sci., 43, 1760–1775 (1986).

101) Kitchell, J. F. et al.: Bioenergetic spectra of skipjack and yellowfin tunas (Chapter 6 -III). In The

Physiological Ecology of Tunas, Academic Press: 1978; pp 357–368.

102) Trudel, M. and Rasmussen, J. B.: Modeling the elimination of mercury by fish, Environ. Sci. Technol., 31, 1716–1722 (1997).

103) Korsmeyer, K. E. and Dewar, H.: Tuna metabolism and energetics. In Fish Physiol., Barbara, B.;

Stevens, E., Eds. Academic Press: 2001; Vol. 19, pp 35 –78.

104) Harris, R. C. and Snodgrass, W. J.: Bioenergetic simulations of mercury uptake and retention in walleye (Stizostedion vitreum) and yellow perch (Perca flavescens), Water Qual. Res. J. Can., 28, 217–236 (1993).

105) Rodgers, D. W.: You are what you eat and a little bit more: Bioenergetics -based models of methylmercury accumulation in fish revisited. In Mercury Pollution: Integration and Synthesis, Watras, C. J.; Huckabee, J. W., Eds. Lewis Publishers: Boca Raton, 1994; pp 427 –439.



環境計測研究センター 柴田 康行

環境計測研究センター 基盤計測化学研究室 武内 章記




水銀の多媒体モデルの構築と、海洋生物に蓄積していることが知られているメチル水銀の発生 源を推定するためには、詳細な水銀の環境動態を把握する必要がある。特に、近年の分析技術の 向上により、水銀の安定同位体比を高精度に計測することが可能となり、天然の追跡指標と反応 機構解析指標として有用されている。そこで本研究では水銀の安定同位体分析技術の高度化から 開始して、遠洋と沿岸魚類に蓄積している水銀、特にメチル水銀の発生源推定および反応機構の 解析を行った。外洋の表層回遊魚の筋肉中の202Hgは約0.2から1.3‰で、199Hgは約2.0から3.0‰で あった。また外洋の中深層海水回遊魚の筋肉中の202Hgは約-0.1から1.3‰で、199Hgは約1.7から


による脱メチル化反応の痕跡を示し、さらに無機水銀の起源の差を示した。得られた199Hgの変動 幅は光による脱メチル化反応の影響を受けた水銀しか示さないために、光脱メチル化反応の痕跡 を示した。遠洋域では、得られた水銀同位体比の鉛直構造から、中深海水層でのメチル水銀の生 成を示す結果となった。その一方、沿岸域に生息する魚類の水銀同位体比は、水深30メートル以 下の水俣湾で、202Hgが約-0.75から0.4‰、199Hgが約0.0から0.6‰、そして水深200メートル以下の 玄界灘で、202Hgが約0.25から1.3‰、199Hgが約0.8から1.6‰であった。これらの地域では同魚種 でも水銀同位体比が異なることから、それぞれの環境で蓄積している水銀の起源、または生物移 行における反応機構が異なることを示唆している。最後に遠洋および沿岸域の底質中の水銀同位 体比は、202Hgが約-0.4から-1.3‰、199Hgが約0から0.1‰であった。上記のことから、生物に蓄積 している水銀は、生息環境毎に同位体比が異なり、沿岸と遠洋では水銀の起源が異なることに加 えて、生物移行プロセスにおける反応機構が異なる事を示す。




近年、水銀は地球環境汚染物質として対策および研究が進められている1)。水銀は環境中で複数 の物理的な状態と化学形態で存在しており、自然界でおこる酸化還元反応によって循環している2)。 水銀は一般的に有害金属として知られているが、特に有害なメチル水銀はその循環の過程で、微 生物による生物地球化学的なプロセスの影響を受けて生成される2)。そのために水銀の全球多媒体 モデルを構築するためには、自然界でおこる様々なプロセスを把握する必要がある。

In document Environment Research and Technology Development Fund 環境省環境研究総合推進費終了研究等成果報告書 水銀の全球多媒体モデル構築と海洋生物への移行予測に関する研究 (5-1405) 平成 26 年度 ~ 平成 28 年度 Study on Globa (Page 39-124)

Related documents