Volume 2012, Article ID 363879,25pages doi:10.1155/2012/363879
Research Article
Periodic Wave Solutions and Their Limits for the Generalized KP-BBM Equation
Ming Song
1, 2and Zhengrong Liu
11Department of Mathematics, South China University of Technology, Guangzhou 510640, China
2Department of Mathematics, Faculty of Sciences, Yuxi Normal University, Yuxi 653100, China
Correspondence should be addressed to Ming Song,songming12 15@163.com Received 17 April 2012; Accepted 15 May 2012
Academic Editor: Junjie Wei
Copyrightq2012 M. Song and Z. Liu. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
We use the bifurcation method of dynamical systems to study the periodic wave solutions and their limits for the generalized KP-BBM equation. A number of explicit periodic wave solutions are obtained. These solutions contain smooth periodic wave solutions and periodic blow-up solutions.
Their limits contain periodic wave solutions, kink wave solutions, unbounded wave solutions, blow-up wave solutions, and solitary wave solutions.
1. Introduction
The Benjamin-Bona-MahonyBBMequation1,
utuxuux−uxxt0, 1.1
has been proposed as a model for propagation of long waves where nonlinear dispersion is incorporated.
The Kadomtsov-PetviashviliKPequation2is given by
utauxuxxxxuyy0, 1.2
which is a weekly two-dimensional generalization of the KdV equation in the sense that it accounts for slowly varying transverse perturbations of unidirectional KdV solitons moving along thex-direction.
Wazwaz 3 presented the Kadomtsov-Petviashvili-Benjamin-Bona-Mahony KP- BBMequation
utuxau2x−buxxtxruyy0, 1.3
and the generalized KP-BBM equation
utuxau3x−buxxtxruyy0. 1.4
Wazwaz 3, 4 obtained some solitons solution and periodic solutions of 1.3 by using the sine-cosine method and the extended tanh method. Abdou5used the extended mapping method with symbolic computation to obtain some periodic solutions of 1.3, solitary wave solution, and triangular wave solution. Song et al.6obtained exact solitary wave solutions of1.3by using bifurcation method of dynamical systems.
The aim of this paper is to study the traveling wave solutions and their phase portraits for1.4by using the bifurcation method and qualitative theory of dynamical systems6–15.
Through some special phase orbits, we obtain a number of smooth periodic wave solutions and periodic blow-up solutions. Their limits contain periodic wave solutions, kink wave solutions, unbounded solutions, blow-up wave solutions, and solitary wave solutions.
The remainder of this paper is organized as follows. In Section 2, by using the bifurcation theory of planar dynamical systems, two phase portraits for the corresponding traveling wave system of1.4are given under different parameter conditions. InSection 3, we present our main results and their proofs. A short conclusion will be given inSection 4.
2. Phase Portraits
To derive our results, we give some preliminaries in this section. For given positive constant wave speedc, substitutinguϕξwithξxy−ctinto the generalized KP-BBM equation 1.4, it follows that
−cϕϕ−aϕ3bcϕrϕ0. 2.1
Integrating2.1twice and letting the first integral constant be zero, we have
r−c1ϕ−aϕ3bcϕg1, 2.2
whereg1is the second constant of integration.
Lettingφϕ, we get the following planar system:
dϕ dξ φ, dφ
dξ αϕ3−βϕg,
2.3
whereαa/bc,β r1−c/bcandg g1/bc.
Obviously, the system2.3is a Hamiltonian system with Hamiltonian function
H ϕ, φ
φ2−α
2ϕ4βϕ2−2gϕh, 2.4
wherehis Hamiltonian.
Now we consider the phase portraits of system2.3. Set
f0 ϕ
αϕ3−βϕ, f
ϕ
αϕ3−βϕg. 2.5
Obviously,f0ϕhas three zero points,ϕ−,ϕ0andϕ, which are given as follows:
ϕ−−
β
α, ϕ00, ϕ
β
α. 2.6
It is easy to obtain two extreme points off0ϕas follows:
ϕ∗− −
β
3α, ϕ∗
β
3α. 2.7
Letting
g0f0
ϕ∗−f0
ϕ∗ 2β 3
β
3α, 2.8
then it is easily seen thatg0is the extreme values off0ϕ.
Letϕi,0be one of the singular points of system2.3, then the characteristic values of the linearized system of system2.3at the singular pointsϕi,0are
λ± ± f
ϕi
. 2.9
From the qualitative theory of dynamical systems, we therefore know that iiffϕi>0,ϕi,0is a saddle point.
iiiffϕi<0,ϕi,0is a center point.
iiiiffϕi 0,ϕi,0is a degenerate saddle point.
Therefore, we obtain the phase portraits of system2.3in Figures1and2.
φ
ϕ
g <−g0 g=−g0 −g0< g <0 g=0
Γ1
φ
ϕ
0< g < g0 g=g0
Γ3
Γ4
Γ6
Γ5
Γ2
Γ7
φ
ϕ φ
ϕ ϕ
φ φ
ϕ ϕ
Γ8
Γ10Γ13
Γ14
Γ11
Γ12
Γ9
Γ17Γ15 Γ16Γ18
g > g0
ϕ1
ϕ3 ϕ4 ϕ5 ϕ6
ϕ7
ϕ8
ϕ10 ϕ13
ϕ14
ϕ11 ϕ12
ϕ9
ϕ17
ϕ15
ϕ16 ϕ18
ϕ2
ϕ− ϕ+
ϕ∗7 ϕ∗+
ϕ∗7
Figure 1: The phase portraits of system2.3whenα >0,β >0.
g <−g0 g=−g0 −g0< g <0
g=0 0< g < g0 g=g0 g > g0
φ
ϕ
φ φ
ϕ ϕ ϕ
φ φ φ φ
ϕ ϕ ϕ
∼ ϕ24
∼ ϕ22
∼
ϕ26 ϕ∼23
∼ ϕ25
∼ ϕ18
∼ ϕ20
∼ ϕ14
∼ ϕ12 ϕ∼10
∼ ϕ11
∼ ϕ16
∼
ϕ15 ϕ∼17
∼ ϕ21
∼
ϕ9 ϕ∼19
∼
ϕ1 ϕ∼2
∼ ϕ3 ϕ∼4
∼ ϕ8
∼ ϕ5 ϕ∼6
∼ ϕ7
∼ ϕ13
Γ∼13
Γ∼14 ∼Γ15
Γ∼6
∼Γ7
Γ∼8
∼Γ9
Γ∼10
Γ∼11 ∼Γ12
∼Γ1
Γ∼2 ∼Γ3
∼Γ4 ∼Γ5
ϕ∗+
Figure 2: The phase portraits of system2.3whenα <0,β <0.
3. Main Results and Their Proofs
In this section, we state our main results.
Proposition 3.1. For given positive constants c and g0, 1.4 has the following periodic wave solutions whenα >0 andβ >0.
1Ifg0, we get eight periodic blow-up wave solutions
u1±
x, y, t ±
2β
α csc
βξ, 3.1
u2±
x, y, t ±
2β
α sec
βξ, 3.2
u3±
x, y, t
± ϕ6
sn ϕ6
α/2ξ, ϕ5/ϕ6
, 3.3
u4±
x, y, t ±
ϕ26−ϕ25 sn
ϕ6
α/2ξ, ϕ5/ϕ6
2
1− sn
ϕ6
α/2ξ, ϕ5/ϕ6 2 , 3.4
two periodic wave solutions
u5±
x, y, t
±ϕ5sn
ϕ6 α
2ξ,ϕ5 ϕ6
, 3.5
two kink wave solutions
u6±
x, y, t ±
β αtanh
β
2ξ, 3.6
and two unbounded wave solutions
u7±
x, y, t ±
β αcoth
β
2ξ. 3.7
2If 0< g < g0, we get four periodic blow-up wave solutions
u8±
x, y, t
ϕ∗7− 2γ1 δ1± √η1cos
αγ1/2ξ, 3.8
u9 x, y, t
ϕ10
ϕ11−ϕ13 ϕ11
ϕ13−ϕ10
snω1ξ, k12 ϕ11−ϕ13
ϕ13−ϕ10
snω1ξ, k12 ,
u10 x, y, t
ϕ13
ϕ12−ϕ10
−ϕ12
ϕ13−ϕ10
snω1ξ, k12 ϕ12−ϕ10−
ϕ13−ϕ10
snω1ξ, k12 ,
3.9
where
ϕ∗7 1 2
⎛
⎝−ϕ7
4β α −3ϕ27
⎞
⎠, γ1
−4β3ϕ7
αϕ7
4αβ−3α2ϕ27
α ,
δ1−2ϕ72
4αβ−3α2ϕ27
α , η1
4ϕ7
αϕ7
4αβ−3α2ϕ27
α ,
ω1
α
ϕ13−ϕ11
ϕ12−ϕ10 2√
2 , k1
ϕ12−ϕ11
ϕ13−ϕ10
ϕ13−ϕ11
ϕ12−ϕ10,
3.10
a periodic wave solution
u11 x, y, t
ϕ11
ϕ10−ϕ12
ϕ10
ϕ12−ϕ11
snω1ξ, k12 ϕ10−ϕ12
ϕ12−ϕ11
snω1ξ, k12 , 3.11 a blow-up wave solution
u12
x, y, t
ϕ7 2
β−3αϕ27 2αϕ7−
2α
β−αϕ27 cosh
3αϕ27−βξ
, 3.12
a solitary wave solution
u13
x, y, t
ϕ7 2
β−3αϕ27 2αϕ7
2α
β−αϕ27 cosh
3αϕ27−βξ
, 3.13
and an unbounded wave solution
u14 x, y, t
ϕ7− 2
β−3αϕ27 csch
3αϕ27−βξ −2αβ6α2ϕ272αϕ7tanh
3αϕ27−βξ/2
. 3.14
3Ifgg0, we get three blow-up wave solutions
u15 x, y, t
18√ 2−β
3βξ3
√α
18ξ−3βξ3, u16
x, y, t 18√
2β 3βξ3
√α
−18ξ3βξ3,
u17 x, y, t
3β
92βξ2
√α
−96βξ2,
3.15
and a periodic blow-up wave solution
u18
x, y, t
−A1ϕ17B1ϕ18
A1ϕ17B1ϕ18
cn
αA1B1/2ξ, k2
−A1B1 A1B1cn
αA1B1/2ξ, k2
, 3.16
where
A1
ϕ18− c1c1
2 2
−c1−c12
4 , B1
ϕ17−c1c1
2 2
−c1−c12
4 ,
k2
A1B12−ϕ18−ϕ172 4A1B1 ,
3.17
c1andc1are conjugate complex numbers.
Proof. 1Ifg0, we will consider three kinds of orbits.
iFrom the phase portrait, we note that there are two special orbitsΓ1andΓ2, which have the same Hamiltonian with that of the center point0,0. Inϕ, φplane, the expressions of these two orbits are given as
φ± α
2ϕ2 ϕ−ϕ1
ϕ−ϕ2
, 3.18
whereϕ1−
2β/αandϕ2 2β/α.
Substituting3.18intodϕ/dξ φand integrating them along the two orbitsΓ1and Γ2, it follows that
± ∞
ϕ
1
s
s−ϕ1
s−ϕ2
ds α
2 ξ
0
ds,
± ϕ
ϕ2
1
s
s−ϕ1
s−ϕ2
ds α
2 ξ
0
ds.
3.19
From3.19and noting thatuϕξandξxy−ct, we get four periodic blow-up solutionsu1±x, y, tandu2±x, y, tas3.1and3.2.
iiFrom the phase portrait, we note that there are three special orbitsΓ3,Γ4, andΓ5
passing the pointsϕ3,0,ϕ4,0,ϕ5,0, andϕ6,0. Inϕ, φplane, the expressions of the orbit are given as
φ± α
2
ϕ−ϕ3
ϕ−ϕ4
ϕ−ϕ5 ϕ−ϕ6
, 3.20
whereϕ3−ϕ6, ϕ4−
2β/α−ϕ26, ϕ5
2β/α−ϕ26 and
β/α < ϕ6<
2β/α.
Substituting3.20intodϕ/dξφand integrating them alongΓ3,Γ4, andΓ5, we have
± ∞
ϕ
1
s−ϕ3
s−ϕ4
s−ϕ5
s−ϕ6ds α
2 ξ
0
ds,
± ϕ
ϕ6
1
s−ϕ3
s−ϕ4
s−ϕ5
s−ϕ6ds α
2 ξ
0
ds,
± ϕ
0
1 s−ϕ3
s−ϕ4
s−ϕ5
s−ϕ6
ds α
2 ξ
0
ds.
3.21
From3.21and noting thatuϕξandξxy−ct, we get four periodic blow-up wave solutionsu3±x, y, t,u4±x, y, tas3.3,3.4and two periodic solutionsu5±x, y, tas 3.5.
iii From the phase portrait, we see that there are two heteroclinic orbits Γ6 and Γ7 connected at saddle points ϕ−,0 and ϕ,0. In ϕ, φ plane, the expressions of the heteroclinic orbits are given as
φ± α
2ϕ−ϕ−2ϕ−ϕ2. 3.22
Substituting3.22intodϕ/dξφand integrating them along the heteroclinic orbits Γ6andΓ7, it follows that
± ϕ
0
1
s−ϕ−
ϕ−sds α
2 ξ
0
ds,
± ∞
ϕ
1
s−ϕ−
ϕ−sds α
2 ξ
0
ds.
3.23
From3.23and noting thatuϕξandξxy−ct, we get two kink wave solutions u6±x, y, tas3.6and two unbounded solutionsu7±x, y, tas3.7.
2If 0< g < g0, we set the largest solution offϕ 0 beϕ7
β/3α < ϕ7 <
β/α, then we can get another two solutions offϕ 0 as follows:
ϕ∗7 1 2
⎛
⎝−ϕ7
4β α −3ϕ27
⎞
⎠,
ϕ7 1 2
⎛
⎝−ϕ7−
4β α −3ϕ27
⎞
⎠.
3.24
i From the phase portrait, we see that there are two special orbits Γ8 and Γ9, which have the same Hamiltonian with that of the center pointϕ∗7,0. Inϕ, φ-plane, the expressions of the orbits are given as
φ± α
2ϕ−ϕ∗72
ϕ−ϕ8 ϕ−ϕ9
, 3.25
where
ϕ8 1 2
⎛
⎜⎝ϕ7−
4β
α −3ϕ27−2
ϕ27ϕ7
4β
α −3ϕ27
⎞
⎟⎠,
ϕ9 1 2
⎛
⎜⎝ϕ7−
4β
α −3ϕ272
ϕ27ϕ7
4β
α −3ϕ27
⎞
⎟⎠.
3.26
Substituting3.25intodϕ/dξ φ and integrating them along the orbits, it follows that
± ϕ
ϕ8
1
s−ϕ∗72 s−ϕ8
s−ϕ9
ds α
2 ξ
0
ds,
± ϕ
ϕ9
1
s−ϕ∗72 s−ϕ8
s−ϕ9
ds α
2 ξ
0
ds.
3.27
From3.27and noting thatuϕξandξ xy−ct, we get two periodic blow-up wave solutionsu8±x, y, tas3.8.
iiFrom the phase portrait, we note that there are three special orbitsΓ10,Γ11, andΓ12
passing the pointsϕ10,0,ϕ11,0,ϕ12,0, andϕ13,0. Inϕ, φplane, the expressions of the orbit are given as
φ± α
2
ϕ−ϕ10
ϕ−ϕ11
ϕ−ϕ12
ϕ−ϕ13
, 3.28
whereϕ8< ϕ10< ϕ14< ϕ7 < ϕ15< ϕ11< ϕ12< ϕ7< ϕ13 < ϕ9.
Substituting3.28intodϕ/dξ φ and integrating them along Γ10,Γ11, andΓ12, we have
ϕ10
ϕ
1
ϕ13−s
ϕ12−s
ϕ11−s
ϕ10−sds α
2 ξ
0
ds, ϕ
ϕ13
1 s−ϕ13
s−ϕ12
s−ϕ11
s−ϕ10
ds α
2 ξ
0
ds, ϕ
ϕ11
1
ϕ13−s
ϕ12−s
s−ϕ11
s−ϕ10ds α
2 ξ
0
ds.
3.29
From3.29and noting thatu ϕξandξ xy−ct, we get two periodic blow- up wave solutionsu9x, y, t,u10x, y, tas3.9and a periodic wave solutionu11x, y, tas 3.11.
iiiFrom the phase portrait, we see that there are a spacial orbitΓ13, which passes the pointϕ14,0, and a homoclinic orbitΓ14 passing the saddle pointϕ7,0. Inϕ, φplane, the expressions of the orbits are given as
φ± α
2ϕ−ϕ72
ϕ−ϕ14
ϕ−ϕ15
, 3.30
where
ϕ14 −αϕ7−
2αβ−2α2ϕ27
α ,
ϕ15 −αϕ7
2αβ−2α2ϕ27
α .
3.31
Substituting3.30intodϕ/dξ φ and integrating them along the orbits, it follows that
± ϕ
ϕ14
1
s−ϕ72
s−ϕ14
s−ϕ15ds α
2 ξ
0
ds,
± ϕ
ϕ15
1
s−ϕ72
s−ϕ14
s−ϕ15ds α
2 ξ
0
ds,
± ∞
ϕ
1
s−ϕ72
s−ϕ15
s−ϕ15ds α
2 ξ
0
ds.
3.32
From3.32and noting thatu ϕξandξ xy−ct, we get a blow-up solution u12x, y, tas3.12, a solitary wave solutionu13x, y, tas3.13, and an unbounded wave solutionu14x, y, tas3.14.
3Ifgg0, we will consider two kinds of orbits.
iFrom the phase portrait, we see that there are two orbitsΓ15andΓ16, which have the same Hamiltonian with the degenerate saddle pointϕ∗,0. Inϕ, φplane, the expressions of these two orbits are given as
φ± α
2ϕ−ϕ∗3
ϕ−ϕ16
, 3.33
where
ϕ16 −
3β
α. 3.34
Substituting3.33intodϕ/dξφand integrating them along these two orbitsΓ15and Γ16, it follows that
± ∞
ϕ
1
s−ϕ∗3
s−ϕ16ds α
2 ξ
0
ds,
± ϕ
ϕ16
1
s−ϕ∗3
s−ϕ16ds α
2 ξ
0
ds.
3.35
From3.35and noting thatuϕξandξxy−ct, we get three blow-up solutions u15x, y, t,u16x, y, t, andu17x, y, tas3.15.
iiFrom the phase portrait, we see that there are two special orbitsΓ17andΓ18passing the pointsϕ17,0andϕ18,0. Inϕ, φplane, the expressions of the orbits are given as
φ± α
2
ϕ−ϕ18
ϕ−ϕ17
ϕ−c1 ϕ−c1
, 3.36
whereϕ17< ϕ16< ϕ∗< ϕ18,c1andc1are conjugate complex numbers.
Substituting3.36intodϕ/dξφand integrating them alongΓ17andΓ18, we have
± ϕ
ϕ18
1 s−ϕ18
s−ϕ17
s−c1s−c1ds α
2 ξ
0
ds. 3.37
From3.37and noting thatu ϕξandξ xy−ct, we get a periodic blow-up wave solutionsu18x, y, tas3.16.
Thus, we obtain the results given inProposition 3.1.
Proposition 3.2. For given positive constantscandg0,1.4has the following periodic wave solution whenα <0 andβ <0.
1Ifg0, we get four periodic wave solutions
u19 x, y, t
ϕ1cn
β−αϕ21ξ,−ϕ1
α
−2β2αϕ21
, 3.38
u20 x, y, t
ϕ2cn
β−αϕ22ξ,ϕ2
α
−2β2αϕ22
, 3.39
u21 x, y, t
−κ1ϕ6λ1ϕ6sn2ω2ξ, k3
κ1λ1sn2ω2ξ, k3 , 3.40
u22 x, y, t
ϕ26−
2ϕ26− 2β α
sn2
ϕ6
−α 2ξ, k4
, 3.41
where
κ1ϕ6
2β
α −ϕ26, λ1ϕ6−
2β α −ϕ26,
ω2
√−αϕ6
−2βαϕ26 2√
2 , k3 λ1
κ1, k4
2ϕ26−2β/α
ϕ6 ,
3.42
and two solitary wave solutions
u23± x, y, t
±
2β α sech
−βξ. 3.43
2If−g0< g <0, we get six periodic wave solutions
u24
x, y, t
A2ϕ10ϕ11B2
A2ϕ10−ϕ11B2
cn
−αA2B2/2ξ, k5 A2B2 A2−B2cn
−αA2B2/2ξ, k5
, 3.44
u25 x, y, t
ϕ∗9 2θ
−μ√qcos
αθ/2ξ, 3.45 u26
x, y, t ϕ14
ϕ17−ϕ15 ϕ17
ϕ15−ϕ14
sn2ω3ξ, k6
ϕ17−ϕ15 ϕ15−ϕ14
sn2ω3ξ, k6 , 3.46
u27 x, y, t
ϕ17
−ϕ16ϕ14
−ϕ14
ϕ17−ϕ16
sn2ω3ξ, k6
−ϕ16ϕ14− ϕ17−ϕ16
sn2ω3ξ, k6 , 3.47
u28 x, y, t
A3ϕ18ϕ19B3
A3ϕ18−ϕ19B3
cn
−αA3B3/2ξ, k7 A3B3 A3−B3cn
−αA3B3/2ξ, k
, 3.48
u29
x, y, t
A3ϕ18ϕ19B3−
A3ϕ18−ϕ19B3
cn
−αA3B3/2ξ, k7 A3B3−A3−B3cn
−αA3B3/2ξ, k7
, 3.49
where
A2
ϕ11− c3c3 2
2
−c3−c32
4 , B2
ϕ10−c3c3 2
2
−c3−c32
4 ,
A3
ϕ19− c4c4
2 2
−c4−c42
4 , B3
ϕ18−c4c4
2 2
−c4−c42
4 ,
k5
ϕ11−ϕ102−A2−B22
4A2B2 , k6
ϕ17−ϕ16
ϕ15−ϕ14 ϕ17−ϕ15
ϕ16−ϕ14,
ω3 −α
ϕ17−ϕ15
ϕ16−ϕ14 2√
2 , k7
ϕ19−ϕ182−A3−B32 4A3B3 ,
ϕ∗9 −αϕ9−
4αβ−3α2ϕ29
2α , θ−4β
α 3ϕ293ϕ9
4β α −3ϕ29,
μ2ϕ9−2
4β
α −3ϕ29, q4ϕ294ϕ9
4β α −3ϕ29,
3.50
c3,c3,c4andc4are complex numbers.
And two solitary wave solutions
u30
x, y, t
ϕ9 2β−6αϕ29 2αϕ9
2αβ−2α2ϕ29cosh
−β3αϕ29ξ
, 3.51
u31
x, y, t
ϕ9 2β−6αϕ29 2αϕ9−
2αβ−2α2ϕ29cosh
−β3αϕ29ξ
. 3.52
3Ifg−g0, we get two periodic wave solutions as follows:
u32
x, y, t
A4ϕ22ϕ23B4
A4ϕ22−ϕ23B4
cn
−αA4B4/2ξ, k8
A4B4 A4−B4cn
−αA4B4/2ξ, k8 , 3.53
u33 x, y, t
A5ϕ24ϕ25B5
A5ϕ24−ϕ25B5
cn
−αA5B5/2ξ, k9 A5B5 A5−B5cn
−αA5B5/2ξ, k9
, 3.54
where
A4
ϕ23− c5c5
2 2
−c5−c52
4 , B4
ϕ22−c5c5
2 2
−c5−c52
4 ,
A5
ϕ25−c6c6
2 2
−c6−c62
4 , B6
ϕ24−c6c6
2 2
−c6−c62
4 ,
k8
ϕ23−ϕ222−A4−B42 4A4B4
, k9
ϕ25−ϕ242−A5−B52 4A5B5
,
3.55
c5,c5,c6andc6are complex numbers.
And a solitary wave solution
u34 x, y, t
3β α
92βξ2
−96βξ2. 3.56
Proof. 1Ifg 0, we set
ϕ2>
2β
α,
β α <ϕ6 <
2β
α. 3.57
iFrom the phase portrait, we see that there are a closed orbitΓ1passing the points ϕ1,0andϕ2,0. Inϕ, φplane, the expressions of the closed orbits are given as
φ±
−α 2
ϕ2−ϕ ϕ−ϕ1
ϕ−c2
ϕ−c2
, 3.58
whereϕ1−ϕ2,c2i
ϕ22−2β/αandc2 −i
ϕ22−2β/α.
Substituting3.58intodϕ/dξφand integrating them along the orbitΓ1, we have
± ϕ
ϕ1
1 ϕ2−s
s−ϕ1
s−c2s−c2ds
−α 2
ξ
0
ds,
± ϕ
ϕ2
1 ϕ2−s
s−ϕ1
s−c2s−c2ds
−α 2
ξ
0
ds.
3.59
From3.59and noting thatuϕξandξ xy−ct, we obtain the periodic wave solutionsu19x, y, tas3.38andu20x, y, tas3.39.
iiFrom the phase portrait, we see that there are two closed orbitsΓ2andΓ3passing the pointsϕ3,0, ϕ4,0,ϕ5,0, andϕ6,0. In ϕ, φ plane, the expressions of the closed orbits are given as
φ±
−α 2
ϕ−ϕ3
ϕ−ϕ4
ϕ−ϕ5 ϕ6−ϕ
, 3.60
whereϕ3−ϕ6,ϕ4−
2β/α−ϕ26andϕ5
2β/α−ϕ26.
Substituting3.60intodϕ/dξφand integrating them alongΓ2andΓ3, we have
± ϕ
ϕ3
1 ϕ6−s
ϕ5−s
ϕ4−s
s−ϕ3ds
−α 2
ξ
0
ds,
± ϕ
ϕ6
1 ϕ6−s
s−ϕ5
s−ϕ4
s−ϕ3ds
−α 2
ξ
0
ds.
3.61
From3.61and noting thatuϕξandξ xy−ct, we obtain the periodic wave solutionsu21x, y, tas3.40andu22x, y, tas3.41.
iiiFrom the phase portrait, we see that there are two symmetric homoclinic orbitsΓ4
andΓ5connected at the saddle point0,0. Inϕ, φplane, the expressions of the homoclinic orbits are given as
φ±ϕ
−α 2
ϕ−ϕ7 ϕ8−ϕ
, 3.62
whereϕ7−
2β/αandϕ8 2β/α.
Substituting3.62intodϕ/dξφand integrating them along the orbitsΓ4andΓ5, we have
± ϕ
ϕ7
1
s
s−ϕ7
ϕ8−sds
−α 2
ξ
0
ds,
± ϕ
ϕ8
1
s
s−ϕ7
ϕ8−sds
−α 2
ξ
0
ds.
3.63
From3.63and noting thatu ϕξandξ xy−ct, we obtain the solitary wave solutionsu23±x, y, tas3.43.
2If−g0 < g <0, we set the middle solution offϕ 0 beϕ90<ϕ9<
β/3α, then we can get another two solutions offϕ 0 as follows:
ϕ∗9 −αϕ9−
4αβ−3α2ϕ29
2α ,
ϕ9 −αϕ9
4αβ−3α2ϕ29
2α .
3.64
iFrom the phase portrait, we see that there are a closed orbitΓ6passing the points ϕ10,0andϕ11,0. Inϕ, φplane, the expressions of the closed orbits are given as
φ±
−α 2
ϕ11−ϕ
ϕ−ϕ10
ϕ−c3 ϕ−c3
, 3.65
whereϕ12<ϕ10<ϕ9<ϕ11 <ϕ13,c3andc3are conjugate complex numbers.
Substituting3.37intodϕ/dξφand integrating them alongΓ6, we have
± ϕ
ϕ10
1 ϕ11−s
s−ϕ10
s−c3s−c3ds
−α 2
ξ
0
ds. 3.66
From3.66and noting thatuϕξandξxy−ct, we get a periodic wave solution u24x, y, tas3.44.
iiFrom the phase portrait, we note that there is a special orbitΓ7, which has the same Hamiltonian with that ofϕ∗9,0. Inϕ, φplane, the expressions of the orbits are given as
φ±
−α
2ϕ−ϕ∗92
ϕ−ϕ12 ϕ13−ϕ
, 3.67
where
ϕ12
αϕ9
4αβ−3α2ϕ292
αϕ9
αϕ9−
4αβ−3α2ϕ29
2α ,
ϕ13
αϕ9
4αβ−3α2ϕ29−2
αϕ9
αϕ9−
4αβ−3α2ϕ29
2α .
3.68
Substituting3.67intodϕ/dξφand integrating them alongΓ7, it follows that
± ϕ
ϕ12
1 ϕ13−s
s−ϕ∗92
s−ϕ12ds
−α 2
ξ
0
ds. 3.69
From3.69and noting thatuϕξandξxy−ct, we get a periodic wave solution u25x, y, tas3.45.
iiiFrom the phase portrait, we note that there are two closed orbitsΓ8andΓ9passing the pointsϕ14,0,ϕ15,0,ϕ16,0, andϕ17,0. Inϕ, φplane, the expressions of the orbits are given as
φ±
−α 2
ϕ−ϕ14
ϕ−ϕ15
ϕ−ϕ16 ϕ17−ϕ
, 3.70
whereϕ20<ϕ14<ϕ12<ϕ10<ϕ9 <ϕ11<ϕ13<ϕ15<ϕ9<ϕ16 <ϕ∗9<ϕ17<ϕ21.
Substituting3.70intodϕ/dξφand integrating them alongΓ8andΓ9, we have
± ϕ
ϕ14
1 ϕ17−s
ϕ16−s
ϕ15−s
s−ϕ14ds
−α 2
ξ
0
ds,
± ϕ
ϕ17
1 ϕ17−s
s−ϕ16
s−ϕ15
s−ϕ14ds
−α 2
ξ
0
ds.
3.71
From3.71and noting thatu ϕξandξ xy−ct, we get two periodic wave solutionsu26x, y, tas3.46andu27x, y, tas3.47.
ivFrom the phase portrait, we note that there is a special orbitΓ10passing the points ϕ18,0andϕ19,0. Inϕ, φplane, the expressions of the orbit are given as
φ±
−α 2
ϕ19−ϕ ϕ−ϕ18
ϕ−c4
ϕ−c4
, 3.72
whereϕ18<ϕ20<ϕ21<ϕ19,c4andc4are conjugate complex numbers.
Substituting3.72intodϕ/dξφand integrating it alongΓ10, we have
± ϕ
ϕ18
ϕ19−s 1 s−ϕ18
s−c4s−c4ds
−α 2
ξ
0
ds. 3.73
From3.73and noting thatuϕξandξxy−ct, we get a periodic wave solution u28x, y, tas3.48.
Ifϕξ is a traveling wave solution, thenϕξ q is a traveling wave solution too.
Takingq2Kand noting that cnu2K −cnu, we get a periodic wave solutionu29x, y, t as3.49.
vFrom the phase portrait, we note that there are two homoclinic orbitsΓ11andΓ12
connected at the saddle pointϕ9,0. Inϕ, φplane, the expressions of the orbits are given as
φ±
−α
2ϕ−ϕ92 ϕ−ϕ20
ϕ21−ϕ
, 3.74
where
ϕ20 −αϕ9
2αβ−2α2ϕ29
α ,
ϕ21 −αϕ9−
2αβ−2α2ϕ29
α .
3.75
Substituting3.74intodϕ/dξ φand integrating them alongΓ11 andΓ12, it follows that
± ϕ
ϕ20
1
s−ϕ92
s−ϕ20
ϕ21−sds
−α 2
ξ
0
ds,
± ϕ
ϕ21
1
s−ϕ92
s−ϕ20
ϕ21−sds
−α 2
ξ
0
ds.
3.76
From3.76 and noting thatu ϕξand ξ xy−ct, we get two solitary wave solutionsu30x, y, tas3.51andu31x, y, tas3.52.
3Ifg−g0, we will consider two kinds of orbits.
iFrom the phase portrait, we note that there is a closed orbitΓ13 passing the points ϕ22,0andϕ23,0. Inϕ, φplane, the expressions of the orbit are given as
φ±
−α 2
ϕ23−ϕ
ϕ−ϕ22
ϕ−c5 ϕ−c5
, 3.77
where−
3β/α <ϕ22<−2
β/3α <ϕ23 <
β/3α,c5andc5are conjugate complex numbers.
Substituting3.77intodϕ/dξφand integrating it alongΓ13, we have
± ϕ
ϕ22
1 ϕ23−s
s−ϕ22
s−c5s−c5ds
−α 2
ξ
0
ds. 3.78
From3.78and noting thatuϕξandξxy−ct, we get a periodic wave solutions u32x, y, tas3.53.
iiFrom the phase portrait, we note that there is a closed orbitΓ14passing the points ϕ24,0andϕ25,0. Inϕ, φplane, the expressions of the orbit are given as
φ±
−α 2
ϕ25−ϕ
ϕ−ϕ24
ϕ−c6 ϕ−c6
, 3.79
where ϕ24 < −
3β/α < ϕ22 < −2
β/3α < ϕ23 <
β/3α < ϕ25,c6 and c6 are conjugate complex numbers.