• 検索結果がありません。

学生実験におけるフーリエ解析II

N/A
N/A
Protected

Academic year: 2021

シェア "学生実験におけるフーリエ解析II"

Copied!
8
0
0

読み込み中.... (全文を見る)

全文

(1)

ֶੜ࣮ݧʹ͓͚ΔϑʔϦΤղੳ

II

Some studies on Fourier analysis in students experiment II

େ࡚ਖ਼༤

Masao Osaki

ۄ઒େֶ޻ֶ෦ιϑτ΢ΣΞαΠΤϯεֶՊ, 194–8610 ౦ژ౎ொాࢢۄ઒ֶԂ 6–1–1 College of Engineering, Tamagawa University,

6–1–1 Tamagawa-gakuen, Machida-shi, Tokyo 194–8610

Abstract

In succession of the paper I wrote last year, here we give some troubles in teaching and their solutions occured during the Software Science Experiment II course, which is opened for the 5th semester in the Department of Software Science. One of the subjects of the experiment course is understanding the fundamentals of PCM (Pulse Code Modulation). They deal with the sampling theorem and bandwidth of communications. Some students are still not familiar with Fourier analysis while the explanation of the sampling theorem is done at the frequency region. Typical mistakes and their settlements are given.

Keywords: Students expreriment, Fourier analysis, Pulse Code Modulation, Sampling theorem.

1 ͸͡Ίʹ ຊֶ޻ֶ෦ιϑτ΢ΣΞαΠΤϯεֶՊͰ͸ ʮιϑτ΢ΣΞαΠΤϯε࣮ݧIʢҎԼɼ࣮ݧIʣʯ ͱʮιϑτ΢ΣΞαΠΤϯε࣮ݧIIʢҎԼɼ࣮ݧ IIʣʯΛඞमՊ໨ͱ࣮ͯ͠ࢪ͖ͯͨ͠ɽͦΕͧΕ̐ ηϝελʔɼ̑ηϝελʔͰ։ߨ͞Εɼ࣮ݧʹΑ Δݱ৅೺ѲͱɼͦΕΛϨϙʔτʹදٕ͢ज़ͷमಘ Λ໨ࢦ͍ͯͨ͠ɽ֤࣮ݧ͸̏ςʔϚͰߏ੒͞Εɼ ࣮ݧIIͰ͸ʮPCMʯͱ୊ͯ͠ύϧεූ߸มௐͷ جૅ஌ࣝΛमಘ͢ΔςʔϚΛஶऀ͸୲౰ͨ͠ɽ ຊߘͰ͸ɼͦͷ࣮ݧʹ͓͍ͯमಘΛ໨ࢦ߲ͨ͠ ໨ɼͦͷख๏ɼͦ͜Ͱੜͨ͡໰୊ͱͦͷղܾํ๏ ʹ͍ͭͯड़΂Δɽͦ͜ʹݟΒΕΔز͔ͭͷ޻෉͕ ࣮ݧʹݶΒͣɼεϖΫτϧղੳʹؔ࿈͢Δߨٛʹ ͓͍ͯ΋໾ཱͯ͹޾͍Ͱ͋Δɽ 2 ਺ֶతجૅ طʹ࣮ݧIΛཤम͓ͯ͠Γʢ୯Ґͷऔಘ͸อূ ͷݶΓͰ͸ͳ͍ʣɼϑʔϦΤղੳʹ͍ͭͯ࿩Λฉ ͍ͨ͜ͱ͸͋Δֶੜ͕ର৅Ͱ͋ΔɽͦͷͨΊɼج ૅ͔Βͷઆ໌͸লུ͠ɼ࣮ݧ಺Ͱ༻͍ΔͰ͋Ζ͏ ҎԼͷ߲໨ʹ͍ͭͯԋश໰୊ͱͯ͠՝ͨ͠ɽ 1) प೾਺f1 ͷਖ਼ݭ೾f(t) = A cos 2πf1tΛෳ ૉϑʔϦΤڃ਺ల։͠ɼಘΒΕͨεϖΫτϧ ΛਤࣔͤΑɽ 2) पظ T ͷۣܗ೾͸ࣜ͘ ͚ ͍ (1)Ͱද͞ΕΔɽ·ͣ ࣜ(1)ͷ࣌ؒ೾ܗΛ࣮ݧϊʔτʹඳ͖ɼଓ͍ ۣͯܗ೾ͷϑʔϦΤ܎਺am, bmΛಋग़ͤΑɽ f(t) =  1, |t| ≤ τ/2, 0, T/2 > |t| > τ/2. (1) 1)͸ඪຊԽͷఆཧʹ͓͚Δ৘ใ৴߸s(t)Λ૝ ఆ͍ͯ͠Δɽ͜ͷෳૉϑʔϦΤ܎਺ಋग़ʹ͓͍ͯɼ ΦΠϥʔͷؔ܎ࣜͱࡾ֯ؔ਺ͷ௚ަੑΛ༻͍Δɽ ͢ͳΘͪҎԼͷల։Ͱ͋Δɽ cm = T1  T/2 −T/2f(t) · exp [−2πimf1t] dt

(2)

= 1 T

 T/2

−T/2A cos 2πf1t · exp [−2πimf1t] dt

= A T  T/2 −T/2 cos 2πf1t {cos[2πmf1t] −i sin[2πmf1t]} dt = A T  T/2 −T/2cos[2πf1t] cos[2πmf1t]dt −iAT  T/2 −T/2 cos[2πf1t] sin[2πmf1t]dt. ͦͯ͠ڏ਺෦෼ʢୈೋ߲ʣΛߟ͑Δͱࡾ֯ؔ਺ͷ ௚ަੑ͔Βશͯͷmʹ͍ͭͯθϩͰ͋Δɽ࣍ʹ ࣮਺෦෼ʢୈҰ߲ʣΛߟ͑Δͱm = ±1Ҏ֎͸ࡾ ֯ؔ਺ͷ௚ަੑ͔ΒθϩʹͳΔɽ c±1 = AT  T/2 −T/2cos[2πf1t] cos[2πf1t]dt = A T  T/2 −T/2 cos[2· 2πf1t] + cos[0] 2 dt = A 2T  T/2 −T/2cos[4πf1t]dt + A 2T  T/2 −T/21· dt = A 2T  1 4πf1 sin[4πf1t] T/2 −T/2 + A 2T [t] T/2 −T/2 = A 2T · 1 4πf1  sin  4πf1T 2  − sin  4πf1−T 2  + A 2T  T 2 −T 2  = A 8πT f1 {sin[2πT f1] + sin[2πT f1]} + A 2T · T. f1 = 1/T Ͱ͋Δ͜ͱɼsin 2π = 0Ͱ͋Δ͜ͱΛ ༻͍ΔͱୈҰ߲͸θϩͱͳΓɼ࠷ऴతʹҎԼͷ݁ ՌΛಘΔɽ c±1= A2. (2) ΑͬͯɼෳૉϑʔϦΤڃ਺ల։͸࣍ࣜͱͳΔɽ f(t) = A 2 exp[2πi(−f1)t] + A 2 exp[2πif1t]. (3) ͜ΕΛਤࣔ͢Δͱਤ1ʹࣔ͢εϖΫτϧΛಘΔɽ ͔͠͠ɼΦΠϥʔͷؔ܎ࣜΛ͍֮͑ͯΔֶੜ͸ 3ׂ΄Ͳɼ௚ަੑ͸஌͍ͬͯͯ΋࢖͍͜ͳͤΔֶ ੜ͸2ׂ΄Ͳʹݮগ͢Δɽͦͷ݁Ռɼ΄ͱΜͲશ ͯͷաఔΛهड़ͯ͠ݟͤΔඞཁ͕༗ͬͨɽ஌ࣝͷ F(f) f -f 1 f 1 0 A/2 ਤ1: A cos 2πf1tͷप೾਺εϖΫτϧ ఆணΛਤΔʹ͸܁Γฦ͕͠ඞཁͰ͋ΔͱݴΘΕΔ ͕ɼݱঢ়ΑΓ΋ߋʹසൟʹࡾ֯ؔ਺ͳͲͷܭࢉΛ ܁Γฦ͢ඞཁ͕͋Δͱߟ͑Δɽ ࣍ʹ2)͸PCM৴߸͕઎༗͢ΔଳҬ෯ʹ͍ͭ ͯཧղ͢ΔͨΊʹඞཁͳ஌ࣝͰ͋Δɽ·ͣ͸࣮ݧ Iͱಉ༷ʹࣜ(1)ͷઈର஋Λ֎͢͜ͱ͕ࠔ೉ͳֶ ੜ͕4ׂ΄Ͳډͨɽͦͷઆ໌ʹج͖ͮ࡞ਤ͠ɼਤ 2ΛಘΔɽͦͯ͜͠ͷਤ2Λݩʹੵ෼۠ؒΛ෼ׂ ͠ɼϑʔϦΤ܎਺Λಋग़͢Δɽ f(t) t T/2 -T/2 -τ/2 τ/2 0 1 ਤ2: ۣܗ೾ͷ࣌ؒ೾ܗ am = T2  T/2 −T/2f(t) · cos[2π(mf1)t]dt = 2 T  −τ/2 −T/2 0· cos[2π(mf1)t]dt +2 T  τ/2 −τ/21· cos[2π(mf1)t]dt +2 T  T/2 τ/2 0· cos[2π(mf1)t]dt = 2 T  τ/2 −τ/2 cos[2π(mf1)t]dt = 2 T  1 2π(mf1)sin[2π(mf1)t] τ/2 −τ/2

(3)

= 2 T · 2π(mf1)  sin 2π(mf1)τ 2 − sin 2π(mf1)· −τ 2 = 1 πmT f1 {sin [πmf1τ] + sin [πmf1τ]} = 2 sin[πmf1τ] πmT f1 . f1= 1/Tͷؔ܎Λ༻͍Δͱ࠷ऴతʹ࣍ࣜΛಘΔɽ am= 2 sin[πm(τ/T )]πm . (4) ·ͨɼa0= 2τ/T΋ఆٛʹ͕ͨͬͯ͠ܭࢉ͢Ε͹ ಘΒΕΔɽ ࣍ʹbmΛಋग़͢Δɽ bm = T2  T/2 −T/2f(t) · sin[2π(mf1 )t]dt = 2 T  −τ/2 −T/2 0· sin[2π(mf1)t]dt +2 T  τ/2 −τ/21· sin[2π(mf1)t]dt +2 T  T/2 τ/2 0· sin[2π(mf1)t]dt = 2 T  τ/2 −τ/2sin[2π(mf1)t]dt = 0. (5) ࠷ޙ͸sinx͕حؔ਺Ͱ͋Δੑ࣭Λ࢖ͬͨɽҎ্ Λ·ͱΊΔͱ࣍ͷ݁ՌΛಘΔɽ am= 2 sin[πm(τ/T )]πm , bm= 0. (6) ࣮ࡍͷܭࢉʹ͓͍ͯbm͕θϩʹ੒Βͳֶ͍ੜ ͕3ׂ΄ͲݟΒΕͨɽ΍͸Γsinxͱcosxͷੵ෼ ͷؔ܎ʹೃછΊ͍ͯͳֶ͍ੜ͕গͳ͔ΒͣډΔɽ 3 ඪຊԽͷఆཧ ඪຊԽͷఆཧΛจষͰॻ͚͹ʰप೾਺f1[Hz]Ҏ ্ͷप೾਺੒෼Λ࣋ͨͳ͍Α͏ʹଳҬ੍ݶ͞Εͨ ৴߸͸ɼ 1 2f1[s]ΑΓ΋খִ͍ؒ͞ͷ౳ִؒඪຊ஋ ʹΑͬͯҰҙతʹܾఆͰ͖ΔʱͰ͋Δɽ͢ͳΘͪ ૹΓ͍ͨ৘ใ৴߸s(t)ͷ࠷ߴप೾਺͕f1[Hz]ͷ ৔߹ɼͦͷ2ഒҎ্ͷඪຊԽप೾਺fs[Hz]Ͱඪຊ Խ͢Ε͹৘ใ৴߸s(t)͸׬શʹ࠶ݱͰ͖Δ͜ͱʹ ͳΔɽ ҎԼͰ͸Ξφϩά৴߸Λσδλϧ৴߸ʹม׵ ͢Δաఔʹ͓͍ͯଘࡏ͢ΔʮඪຊԽग़ྗʯͱݺ͹ ΕΔ৴߸ʢਤ3ʣͷ࣌ؒ೾ܗͱप೾਺εϖΫτϧ Λղੳ͠ɼඪຊԽͷఆཧ͕ҙຯ͢Δͱ͜ΖΛཧղ ͢Δɽ f sam (t) t ਤ3: ඪຊԽग़ྗfsam(t)ͷྫ 3.1 ඪຊԽग़ྗͷ࣌ؒ೾ܗ ४උͱͯ͠Πϯύϧε৴߸δ(t)Λཧղ͓ͯ͠ ͘ɽ͜Ε͸t = 0Ͱߴ͕͞ແݶେɼ෯͕θϩɼ໘ ੵ͕1ͷؔ਺Ͱ͋Δɽ͢ͳΘͪt = 0Ҏ֎Ͱؔ਺ ͷ஋͸0ͱͳΔɽ͜ͷΠϯύϧε৴߸͕पظTsͰ ܁Γฦ͢৴߸͕Πϯύϧεྻ৴߸δTs(t)Ͱ͋Δɽ δTs(t) = n=−∞ δ(t − nTs). (7) ԋशI ͜ͷΠϯύϧεྻ৴߸δTs(t)Λ্࣌ؒ࣠Ͱਤࣔ ͤΑɽ ͜ͷԋशʹؔͯ͠͸Ҿֻ͔ͬΔֶੜ͸গͳ͔ͬ ͨɽ࣍ͷਤ4ΛಘΔɽ δ (t) t T -2T -T 0 2T Ts s s s s ਤ4: Πϯύϧεྻ৴߸δTs(t) ࣍ʹ৘ใ৴߸s(t)ʹΠϯύϧεྻ৴߸δTs(t)Λ ֻ͚߹ΘͤͯඪຊԽग़ྗfsam(t)ΛಘΔɽ fsam(t) = s(t) · δTs(t). (8)

(4)

͢ͳΘͪਤ3͕ಘΒΕΔ͜ͱʹͳΔɽ 3.2 ඪຊԽग़ྗͷप೾਺εϖΫτϧ ଓ͍ͯ͜ͷ৴߸fsam(t)ͷϑʔϦΤม׵Λߦ͍ɼ प೾਺εϖΫτϧFsam(f)Λಋग़͢Δɽ৘ใ৴߸ s(t)ͷϑʔϦΤม׵ΛS(f)Ͱද͠ɼΠϯύϧε ྻ৴߸δTs(t)ͷϑʔϦΤม׵͕T s · δfs(f)Ͱ͋Δ ͜ͱΛ༻͍Δͱ࣍ࣜΛಘΔɽ fsam(t) ⇒ Fsam(f) = 1 2π  S(f) ∗ 2Tπ sδfs(f)  = 1 Ts[S(f) ∗ δfs(f)] . (9) ͜͜Ͱه߸ʮʯ͸৞ΈࠐΈੵ෼Λද͓ͯ͠ΓɼҰ ൠʹؔ਺F1(f)ͱF2(f)ͷ৞ΈࠐΈੵ෼͸࣍ࣜͰ ఆٛ͞ΕΔɽ F1(f) ∗ F2(f) =  −∞F1(f − ξ) · F2(ξ)dξ. (10) ·ͨɼؔ਺δfs(f)͸࣍ࣜͰද͞ΕΔप೾਺্࣠ͷ Πϯύϧεྻؔ਺Λҙຯ͢Δɽ δfs(f) = n=−∞ δ(f − nfs). (11) ͜͜Ͱfs= T1 s ͕੒Γཱͭɽ ԋशII ͜ͷΠϯύϧεྻؔ਺δfs(f)Λप೾਺্࣠Ͱਤ ࣔͤΑɽ ͜ͷԋशʹؔͯ͠͸ԋशIͱಉ౳ͩͬͨͨΊ΄ ͱΜͲͷֶੜ͕ਖ਼ղʢਤ5ʣΛಘΒΕͨɽͨͩɼԣ ͕࣠tͷֶੜ΋1ׂఔ౓ډͨɽ δ (f) f f −2fs −fs 0 s 2fs fs ਤ 5: Πϯύϧεྻؔ਺δfs(f) ԋशIII ৘ใ৴߸͕s(t) = A cos 2πf1tͰ͋ͬͨ৔߹ɼ fs > 2f1ΛԾఆͯࣜ͠(9)ʹࣔ͢प೾਺εϖΫ τϧFsam(f)Λप೾਺্࣠ͰਤࣔͤΑɽͨͩ͠ ʰ৴߸͕ଘࡏ͢Δप೾਺ʱͷΈʹ஫໨͠ɼॎ࣠ͷ ஋·Ͱ͸ཁٻ͠ͳ͍ɽ ৘ใ৴߸s(t)ͷεϖΫτϧS(f)͸طʹ2ষʹ ͓͍ͯਤ1ͱͯ͠ಘ͍ͯΔɽͦͯ͠Πϯύϧεྻ ؔ਺δfs(f)΋ਤ5ͱͯ͠ಘΒΕ͍ͯΔɽΑͬͯ͜ ͷԋशͰ͸྆ऀͷ৞ΈࠐΈੵ෼ͷ࣮ߦ͢Δ͚ͩͰ ͋Δɽͨͩ͠S(f)ΛF1(f − ξ)ͱͯ͠දͨ͠৔ ߹ʹม਺f͔Βม਺ξʹมΘͬͯɼ͔ͭϚΠφε ͷූ߸͕෇͍͍ͯΔ͜ͱɼͦͯ͠֎෦ύϥϝʔλ ͱͳͬͨf͕มԽ͢Δ͜ͱʹΑͬͯԿ͕ى͖͍ͯ Δ͔Λཧղͤ͞Δඞཁ͕͋ΔɽΑͬͯҎԼͷΑ͏ ͳղઆΛࢼΈͨɽ 1) ؔ਺f(x) = ax + bΛద౰ʹඳ͘ʢa, b > 0 ΛԾఆɼਤ6ʣɽ f (x) x 0 b 1 a ਤ6: f(x) = ax + bͷάϥϑʢa, b > 0ΛԾఆʣ 2) ؔ਺f(−x)Λඳ͘ɽa > 0ΛԾఆ͍ͯ͠Δͷ ͰxΛ૿΍͢ͱf(−x)͸ݮগ͍ͯ͘͠ɽ͢ ͳΘͪɼy࣠ରশʹࠨӈΛೖΕସ͑ͨάϥϑ ͱͳΔʢਤ7ʣɽ 3) ͦͯؔ͠਺f(c − x) = f{−(x − c)}Λඳ͘ ʢc > 0ΛԾఆʣɽྫ͑͹f(c − x) = bͱͳΔ ৚݅͸c − x = 0ɼ͢ͳΘͪx = cͷͱ͖Ͱ ͋Δɽ͢ͳΘͪάϥϑ͸x࣠ɼਖ਼ʢӈʣͷํ ޲ʹc͚ͩҠಈ͢Δʢਤ8ʣɽ 4) ͜ΕʹΑΓؔ਺f(x)Λf(c − x)ͱͨ͠৔߹ ʹɼಘΒΕΔάϥϑ͕ʮy࣠ରশʹࠨӈΛೖ Εସ͑ɼcͷ෼͚ͩӈʹҠಈ͢Δʯ͜ͱΛཧ ղ͢Δɽ

(5)

f (−x) x 0 b 1 a ਤ7: f(−x)ͷάϥϑʢa, b > 0ΛԾఆʣ f (c-x) x 0 b c ਤ 8: f(c − x)ͷάϥϑʢc > 0ΛԾఆʣ Ҏ্ͷղઆΛͨ͠ޙɼ৘ใ৴߸ͷεϖΫτϧS(f) ΛS(f − ξ)ͱͯ͠ξͷؔ਺ͱͯ͠ද͢ʢਤ9ʣɽ 0 S(f - ξ) ξ -f1 A/2Ts f1 S(-ξ) f ਤ9: S(f − ξ)ͷάϥϑ ͦͯ͠Πϯύϧεྻؔ਺δfs(ξ)ͱ্Լʹฒ΂ͯ ඳ͖ɼ྆ऀͷΠϯύϧε͕ॏͳΔfͷ৔߹ʹͷΈ Fsam(f)͕஋Λ࣋ͭ͜ͱΛࣔ͢ʢਤ10ʣɽ ԋशIV ্هͷԋशIIIͰਤࣔͨ͠Fsam(f)ʹ͓͍ͯɼ प೾਺f1Λ૿Ճ͍ͯ͘͠ͱ֤प೾਺εϖΫτϧ ͸ࠨӈͷͲͪΒʹಈ͔͘ߟ͑Αɽf1ͷ૿Ճʹ൐ ͍fs = 2f1Λܦͯfs < 2f1 ͱͳΔͱप೾਺ε 0 F (f) f -f1 f1 A/2Ts sam fs -fs -2fs 2fs 3fs fs -f1 fs +f1 0 δ (ξ) ξ f fs -fs -2fs 2fs 3fs 0 S(f - ξ) ξ -f1 A/2Ts f1 S(-ξ) f s ਤ10: S(f − ξ), δfs(ξ),ͦͯ͠Fsam(f)ͷάϥϑ ϖΫτϧFsam(f)ʹ͸ͲͷΑ͏ͳݱ৅͕ݟΒΕ Δ͔આ໌ͤΑɽ ݁Ռ͸ͦΕͧΕਤ11, 12, 13ͱͳΔɽ͢ͳΘ ͪਤ11ʹ͓͍ͯ͸f1ͱfs− f1͕fs/2ʹ޲͔ͬ ͖ͯۙͮɼਤ12Ͱ͸fs/2 ʹ͓͍ͯ྆ऀ͕ॏͳ Δɽͦͯ͠ਤ13ɼ͢ͳΘͪfs < 2f1ͷ৔߹ʹ͸ ffs− f1ͷҐஔ͕ೖΕସΘΓɼf1ͷप೾਺Λ ඪຊԽͯ͠΋fs− f1ͷप೾਺͕ಘΒΕΔͱ༧૝ ͞ΕΔɽ࣮ݧͰ͸ΦγϩείʔϓͷFFTػೳΛ ༻͍ͯεϖΫτϧͷೖΕସΘΓΛ֬ೝͨ͠ɽߋʹ εϐʔΧʔ͔Βฉ͑͜ΔԻ΋ඪຊԽप೾਺ͷ൒෼ Ͱ͋Δ4kHz·Ͱ্͕ͬͯߦͬͨޙɼf1ͷ্ঢʹ ΋͔͔ΘΒͣԼ͕͍ͬͯ͘͜ͱ͕֬ೝͰ͖ͨɽఏ ग़͞Ε࣮ͨݧϨϙʔτ͔Βֶੜͷ಺༰ཧղΛਪ࡯ ͢ΔͱɼඪຊԽͷఆཧͷඞཁੑͱɼͦΕ͕ຬ଍͞ Εͳ͍৔߹ʹى͖Δݱ৅ͷཧղ͸ग़དྷ͍ͯͨͱݴ ͑Δɽ 4 PCM৴߸ͷ఻ૹଳҬ ΞφϩάมௐํࣜͰ͋ΔAM΍FMʹ͓͍ͯɼ ͦͷ఻ૹଳҬ͸৘ใ৴߸ͷ࠷ߴप೾਺Λf1Ͱද ͨ͠৔߹ʹͦΕͧΕBWAM = 2f1, BWFM =

(6)

0 F (f) f -f1 f1 sam fs fs -f1 fs +f1 ਤ11: f1Λ૿Ճͤͨ͞৔߹ͷFsam(f)ɽ 0 F (f) f -f1 f1 sam fs fs -f1 fs +f1 ਤ12: fs= 2f1৔߹ͷFsam(f)ɽ 0 F (f) f f1 sam fs fs -f1 2fs -f1 -fs +f1 ਤ13: fs< 2f1৔߹ͷFsam(f)ɽ 2(mf+ 1)f1ͱͳΔ͜ͱ͕஌ΒΕ͍ͯΔɽͨͩ͠ mf ͸FMʹ͓͚Δมௐࢦ਺Λද͢ɽ͢ͳΘͪɼ ఻ૹଳҬ͕৘ใ৴߸ͷ࠷େप೾਺Ͱܾఆ͞ΕΔɽ ҰํͰप೾਺ར༻ޮ཰ͷ఺͔Βݴ͑͹ɼ఻ૹଳҬ ͸ڱ͚Ε͹ڱ͍΄Ͳޮ཰͕ྑ͘ͳΔɽͦ͜Ͱσδ λϧ௨৴ͷ୅දͰ͋ΔPCMʹ͓͍ͯඞཁͱ͞Ε Δ఻ૹଳҬΛಋग़͠ɼΞφϩά௨৴ͷͦΕͱൺֱ ͢Δ͜ͱʹΑͬͯप೾਺ར༻ޮ཰Λٞ࿦͢Δɽ ҎԼͰ͸ɼ·ͣPCMͷ఻ૹଳҬΛಋग़͠ɼͦ Εʹଓ͍֤ͯมௐํࣜؒͷൺֱΛߦ͏ɽ 4.1 PCM఻ૹଳҬͷಋग़ σδλϧ৴߸ͷූ߸पظͱͯ͠TΛԾఆ͢Δͱɼ 8bitූ߸Խͷ৔߹ʹ୯Ұύϧεͷ෯τ͸τ = T/8 Ͱද͞ΕΔɽ͢ͳΘͪූ߸ʮ00000001ʯͷ৔߹ͷ εϖΫτϧ͸2ষͷࣜ(6)ʹ͓͍ͯτ = T/8Λ ୅ೖ͢Ε͹ಘΒΕΔɽ·ͨɼ͜ͷͱ͖ͷجຊप೾ ਺Λf0 = 1/T Ͱද͢ɽಛʹPCMʹ͓͍ͯ͸ූ ߸पظ͸ඪຊԽपظʹ౳͘͠ɼ݁Ռͱͯ͠ඪຊԽ प೾਺ͱجຊप೾਺͸Ұக͢Δʢf0 = fsʣɽ΋ ͪΖΜɼҎԼʹࣔ͢Α͏ʹූ߸ࣗମʹ܁Γฦ͕͠ ༗Δ৔߹ʹ͸ූ߸पظ͸ҰఆͰ͋ͬͯ΋جຊप೾ ਺͸มԽ͠ɼඪຊԽप೾਺ͱͷҰக͸ࣦΘΕΔɽ ͢ͳΘͪɼʮ00010001ʯͷ৔߹͸T=T/2ͱͳͬ ͯجຊप೾਺͸f0 = 1/T = 2f0ͱͳΔɽͦͯ͠ τ/T = 1/4ΛಘΔɽҰํͰʮ00000011ʯʢ4bitͷ ʮ0001ʯʹ૬౰ʣͷ৔߹ʹ΋τ =T/4Ͱ͋Δ͕ج ຊप೾਺͸f0Ͱ͋Δɽ ԋशVI 8bitූ߸ʹ͓͍ͯɼ্هͷූ߸ΛؚΊɼͦΕҎ ֎ʹʮ00001111ʯͱʮ01010101ʯͷύϫʔεϖ ΫτϧΛཧ࿦͔ΒٻΊɼͦΕͧΕΛਤࣔͤΑɽ ͜ͷ໰୊ʹؔͯ͠͸τ ͱT ͷ૊߹ͤͰϑʔϦ Τ܎਺͕มԽ͠ɼ͔ͭූ߸ͷपظੑʹΑͬͯجຊ प೾਺΋มԽ͢ΔͨΊɼຊ౰ʹཧղ͍ͯ͠Δֶੜ ͸1ׂఔ౓Ͱ͋ͬͨɽ ͜ͷ࣮ݧͷઆ໌ͱͯ͠ɼ·ͣ͸ϑʔϦΤ܎਺ͷ ෼ྨΛߦ͏ɽ্هͷঢ়گ͔ΒϑʔϦΤ܎਺amΛ ҎԼͷΑ͏ʹఆٛ͢Δɽ • 00000001ɿτ/T = 1/8ͷ৔߹ am= 2 sin(πmπm/8) (12) • 00000011ɿτ = 2τ ͢ͳΘͪτ/T = 1/4ͷ ৔߹ a m= 2 sin(πmπm/4) (13) ͜Ε͸T = T/2͢ͳΘͪτ/T = 1/4ͷ৔ ߹(00010001)΋ಉ༷Ͱ͋Δɽ • 00001111ɿτ = 4τ͢ͳΘͪτ/T = 1/2ͷ ৔߹ a m= 2 sin(πm/2) πm (14) ͜Ε͸T=T/4͢ͳΘͪτ/T= 1/2ͷ৔ ߹(01010101)ɼ͞Βʹτ = 2τ, T=T/2ͷ ৔߹(00110011)΋ಉ༷Ͱ͋Δɽ

(7)

·ͨ4Ϗοτ఻ૹͷ৔߹ɼ8Ϗοτ఻ૹͷූ߸ͱ ͸ҎԼͷؔ܎͕੒Γཱͭɽ (0001)4 ↔ (00000011)8 (15) (0011)4 ↔ (00001111)8 (16) (0101)4 ↔ (00110011)8 (17) Ҏ্ͷٞ࿦ʹج͖ͮ۩ମతʹϑʔϦΤ܎਺ΛٻΊ Δͱද1ΛಘΔɽ ද1: ֤৚݅ԼͰͷϑʔϦΤ܎਺ m 0 1 2 3

am 14 2 sin[π/8]π 2 sin[π/4] 2 sin[3π/8] a

m 12 2 sin[π/4]π 2 sin[π/2]2π 2 sin[3π/4]3π a

m 1 2 sin[π/2]π 0 2 sin[3π/2]3π

4 5 6 7

2 sin[π/2]

2 sin[5π/8]5π 2 sin[3π/4]6π 2 sin[7π/8]7π 0 2 sin[5π/4] 2 sin[3π/2] 2 sin[7π/4]

0 2 sin[5π/2] 0 2 sin[7π/2] 8 9 · · · 0 2 sin[9π/8] · · · 0 2 sin[9π/4] · · · 0 2 sin[9π/2] · · · ͨͩ͠ɼݫີʹ͸ࣜ(6)ͰಘΒΕͨϑʔϦΤ܎ ਺͸࣌ؒ೾ܗΛۮؔ਺ͱͯ͠ѻ͓ͬͯΓɼ্هͷ ූ߸ྻ͕ۮؔ਺Ͱ͋Δอূ͸ͳ͍ɽ͔͠͠ύϫʔ εϖΫτϧͷΈʹ஫໨͢Ε͹ɼ݁Ռ͸Ұக͢Δͨ Ίৄࡉͷઆ໌Λলུ͠ɼΦγϩείʔϓͷFFT ػೳͰ؍ଌ͞ΕΔ݁ՌͱͷҰகͷΈʹ஫໨࣮ͯ͠ ݧΛਐΊͨɽ ࣍ʹجຊप೾਺f0Λߟ͑ΔɽPCM࣮ݧ૷ஔʹ ͓͍ͯඪຊԽप೾਺͸fs=8[kHz]ͰݻఆͰ͋Δɽ Αͬͯූ߸ʹ܁Γฦ͕͠ແ͍৔߹͸جຊप೾਺ f0 = 8[kHz]Ͱ͋Δɽද1ͷϑʔϦΤ܎਺Λ૊Έ ߹ΘͤΔͱ(000000001), (00000011), (00001111) ͷप೾਺εϖΫτϧΛਤ14͔Βਤ16 ʹࣔ͢ɽ ࣍ʹ2ճͷ܁Γฦ͕͠༗Δ৔߹͸f0 = 16[kHz] ͱͳΓɼද1ͱ߹Θͤͯ(00010001), (00110011) ͷप೾਺εϖΫτϧͱͯ͠ਤ17 ͱਤ18ΛಘΔɽ 0 8 16 24 32 40 48 56 64 72 0.2 0. 0.2 0.4 0.6 [kHz]

a

m ਤ14: (00000001)ͷप೾਺εϖΫτϧ 0 8 16 24 32 40 48 56 64 72 0.2 0. 0.2 0.4 0.6 [kHz]

a

m ਤ15: (00000011)ͷप೾਺εϖΫτϧ 0 8 16 24 32 40 48 56 64 72 0.2 0. 0.2 0.4 0.6 [kHz]

a

m ਤ16: (00001111)ͷप೾਺εϖΫτϧ ͦͯ͠ 4 ճͷ܁Γฦ͕͠༗Δ৔߹͸ f0 = 32[kHz]ͱͳΓɼ(01010101)ͷप೾਺εϖΫτϧ ͸ਤ19ͱͯ͠ಘΒΕΔɽ ͜ΕΑΓʮ00000001ʯͷ৔߹ɼm = 8ͰॳΊ ͯam = 0ͱͳΔɽ͢ͳΘͪ఻ૹଳҬ͸64kHz Ͱ͋Δɽ࣍ʹʮ00000011ʯͷ৔߹͸m = 4Ͱॳ Ίͯam = 0ͱͳΓɼ32kHzͷଳҬ͕ඞཁͱͳ Δɽ͞Βʹʮ00001111ʯͷ৔߹͸m = 2ͰॳΊ ͯam = 0ͱͳΓɼ16kHzͷଳҬ͕ඞཁͱͳΔɽ ٯʹ8Ϗοτதʹ2ճ܁Γฦ͢ූ߸ͷʹ͓͍ͯ͸ɼ ʮ00010001ʯͷ৔߹ʹ64kHzɼʮ00110011ʯͷ৔߹ ʹ͸32kHzͷଳҬ͕ඞཁͰ͋Δɽͦͯ͠8Ϗοτ தʹ4ճ܁Γฦ͢ූ߸ɼ͢ͳΘͪʮ01010101ʯͷ ৔߹͸΍͸Γ64kHzͷ఻ૹଳҬ͕ඞཁͱݴ͑Δɽ

(8)

0 8 16 24 32 40 48 56 64 72 0.2 0. 0.2 0.4 0.6 [kHz]

a

m ਤ17: (00010001)ͷप೾਺εϖΫτϧ 0 8 16 24 32 40 48 56 64 72 0.2 0. 0.2 0.4 0.6 [kHz]

a

m ਤ18: (001110011)ͷप೾਺εϖΫτϧ ্ͨͩ͠هͷଳҬ͸ยଆଳҬ͚ͩΛߟ͓͑ͯΓɼ ͜ͷσδλϧ৴߸Λ༻͍ͯৼ෯ภҠมௐʢASKʣ Λߦͨ৔߹ɼͦͷଳҬ෯͸2ഒʹͳΔɽ ࣮ࡍͷ࣮ݧʹ͓͍ͯΦγϩείʔϓͷFFTػ ೳʹΑΓύϫʔεϖΫτϧΛଌఆͨ͠ɽ४උͨ͠ ූ߸ʹԠͯ͡ཧ࿦Ͳ͓Γͷप೾਺ʹεϖΫτϧ͕ ཱͭ͜ͱΛ֬ೝ͕ͨ͠ɼFFTͷεέʔϧͷௐ੔ ʹखؒऔΔֶੜ͕3ׂఔ౓ډͨɽͦͯ͠ཧ࿦ͱ࣮ ݧͷ݁Ռ͔Βɼಉ͡ඪຊԽप೾਺Ͱ͋ͬͯ΋ྔࢠ ԽϏοτ਺͕গͳ͍ͱ఻ૹଳҬ͕ڱ͘ͳΓɼٯʹ ࠷খύϧε෯͕ಉ͡Ͱ͋Ε͹ූ߸ͷ܁Γฦ͠ճ਺ ͕มԽͯ͠΋ඞཁͳ఻ૹଳҬ͸มԽ͠ͳ͍ͱ͍͏ ࣄ͕1ׂఔ౓ͷֶੜʹཧղ͞Εͨͱࢥ͏ɽ 0 8 16 24 32 40 48 56 64 72 0.2 0. 0.2 0.4 0.6 [kHz]

a

m ਤ19: (01010101)ͷप೾਺εϖΫτϧ 4.2 Ξφϩάมௐͱͷ఻ૹଳҬͷൺֱ ઌʹࣔͨ͠Α͏ʹɼ৘ใ৴߸ͷ࠷ߴप೾਺ Λf1 Ͱදͨ͠৔߹ʹৼ෯มௐʢAMʣͱप೾਺ มௐʢFMʣͦΕͧΕͷ఻ૹଳҬ͸ BWAM = 2f1, BWFM = 2(mf + 1)f1 ͱͳΔɽҰํͰύϧ εූ߸มௐʢPCMʣʹ͓͍ͯ͸ɼඪຊԽͷఆཧ ΑΓඪຊԽप೾਺fs= 2f1Λཁ੥͞ΕɼnϏοτ ྔࢠԽΛߦͬͨ৔߹ʹ͸BWPCM = 2· 2f1· nͱ ͳΔɽి࿩ϨϕϧͷԻ࣭Ͱ͋Δn = 8ͷ৔߹ʹ͓ ͍ͯ΋AMͷ16ഒɼFMͷ4ഒʢmf = 4ͱ͠ ͨʣͷ఻ૹଳҬ͕ඞཁͱͳΔɽ͢ͳΘͪɼσδλ ϧมௐͰ͋ΔPCMΛ༻͍Δํ͕఻ૹଳҬ͸޿͘ ͳΔ͜ͱ͕൑Δɽ ͔͠͠ͳ͕Βσδλϧσʔλ͸ࡶԻʹڧ͘ɼߋ ʹѹॖٕज़΍ɼଟ஋มௐͷར༻ʹΑΓ఻ૹଳҬΛ ڱ͘͢Δ͜ͱ͕Ͱ͖Δɽͦͷ݁Ռɼ࣮༻Խ͞Εͯ ͍Δσδλϧ௨৴͸Ξφϩά௨৴ΑΓ΋प೾਺ར ༻ޮ཰ͷߴ͍γεςϜͱ੒͍ͬͯΔɽ 5 ·ͱΊ ιϑτ΢ΣΞαΠΤϯε࣮ݧIIͰߦ͖ͬͯͨ PCM࣮ݧʹ͓͚Δमಘ໨ඪͱͯ͠ʮඪຊԽͷఆ ཧʯͱʮ఻ૹଳҬʯΛऔΓ্͛ͨɽͦ͜Ͱ͸ϑʔ ϦΤղੳΛ༻͍ͯݱ৅Λཧ࿦తʹ༧ଌ͠ɼ࣮ࡍʹ ଌఆɼ؍࡯͢Δ͜ͱͰཧ࿦ͷཪ෇͚ΛऔΓݱ৅ཧ ղΛਐΊͨɽ֤߲ͦͯ͠໨Ͱੜ͡Δ໰୊఺ͱͦΕ ʹର͢Δղܾࡦʹ͍ͭͯ۩ମతʹࣔͨ͠ɽ͜ΕΒ ͷ಺༰͕কདྷͷֶੜ࣮ݧɼ΋͘͠͸ϑʔϦΤղੳ ͷߨٛʹ໾ཱͭͱ޾͍Ͱ͋Δɽ ࢀߟจݙ [1] ౔ࢁ຀෉ɼफ૾ษɼࢁ࡚ߒҰɼখ઒ߊɼେ࡚ ਖ਼༤ɼιϑτ΢ΣΞαΠΤϯε࣮ݧ̞Iࢦಋ ॻɼୈ̍൛ɼ2009೥9݄11೔ [2] ౔ࢁ຀෉ɼफ૾ษɼࢁ࡚ߒҰɼখ઒ߊɼେ࡚ ਖ਼༤ɼιϑτ΢ΣΞαΠΤϯε࣮ݧ̞Iࢦಋ ॻɼ2015೥൛ɼ2015೥4݄3೔ ̎̌̍̓೥݄̏̒೔ݪߘड෇ Received, March 1, 2017 2017年3月6日原稿受付, 2017年4月13日採録決定 Received, March 6, 2017, accepted, April 13, 2017

参照

関連したドキュメント

In recent years, several methods have been developed to obtain traveling wave solutions for many NLEEs, such as the theta function method 1, the Jacobi elliptic function

– Solvability of the initial boundary value problem with time derivative in the conjugation condition for a second order parabolic equation in a weighted H¨older function space,

We mention that the first boundary value problem, second boundary value prob- lem and third boundary value problem; i.e., regular oblique derivative problem are the special cases

It is also well-known that one can determine soliton solutions and algebro-geometric solutions for various other nonlinear evolution equations and corresponding hierarchies, e.g.,

Those which involve FIOs and ψ dos are consequences of the Composition Theorem 7 while the results about the composition of FIOs of Type I and Type II will be needed in particular

The aim of the present paper is to establish some new linear and nonlinear discrete inequalities in two independent variables.. We give some examples in difference equations and we

“Breuil-M´ezard conjecture and modularity lifting for potentially semistable deformations after

Then it follows immediately from a suitable version of “Hensel’s Lemma” [cf., e.g., the argument of [4], Lemma 2.1] that S may be obtained, as the notation suggests, as the m A