• 検索結果がありません。

Let us bring the blue sky

N/A
N/A
Protected

Academic year: 2022

シェア "Let us bring the blue sky"

Copied!
37
0
0

読み込み中.... (全文を見る)

全文

(1)

Let us bring the blue sky

Tokyo Metropolitan Government

Guide for Reducing VOC Emissions

[In-Factory Solutions]

(2)

Preface

The quality of air in Tokyo has generally been improving since we started regulating diesel cars; the amount of suspended particle matter along the streets, once a serious issue, has declined dramatically, for example. Still, the level of photochemical oxidant has not fulfilled the Environmental Standards in any bureau of the Tokyo Metropolitan Government, leading to photochemical smog alert announcements in summer.

Photochemical oxidant is a kind of air pollutant generated by photo-reaction of volatile organic compounds (VOCs) and nitrogen oxide with ultraviolet light from the sun. Therefore, reduction of VOC emission must go side by side with our effort to reduce nitrogen oxides by regulating automobiles.

Also, VOCs turn into particles in the air, which is one of the main causes of suspended particulate matter (SPM) or particulate matter 2.5 (PM2.5). Moreover, some types of VOCs are toxic by themselves.

Since the amendment of Air Pollution Control Law in May 2004, a tag of legal regulation and voluntary efforts by businesses successfully reduced VOC emissions and VOCs density in the air. Nevertheless, we must continue our efforts for further reduction of VOC emissions to improve the quality of air in Tokyo, because the achievement rate is still low in terms of environmental standards for photochemical oxidant and PM2.5.

In April 2006, we published the Tokyo Metropolitan Government Guide for Reducing VOC Emissions [In- Factory Solutions], and thankfully it has been used widely. But still, a decade has passed since the guidebook appeared, and the progress of emission reduction varies depending on industry and the size of companies, and technology for VOC reduction is developed than before. Thus, we revised the guidebook.

In this amendment, we reviewed and revised the reduction plan to match the latest technical movement, and added some information on how the work environment can be improved by introducing each VOC control measures so that factories could start their VOC reduction smoothly.

As the previous edition did, we expect this edition to become an effective guideline for companies to strategize an effective VOC reduction at their facilities.

(3)

Table of Contents

How to Use This Guide··· ⅰ 1 Purpose ··· ⅰ 2 Structure of this Guide ··· ⅰ 3 How to Plan Control Measures ··· ⅰ 4 Legend ··· ⅳ

Ⅰ Plant On-site Coatings···1

■Checking causes of VOC emissions···2

■List of VOC emissions control measures···3

■Details of each control measure···5

1 Choosing control measures 1-1 Evaluating the current emission status [NEW] ···5

2 Improving operation processes/facilities 2-1 Reviewing recoloring method/color mixing orders ··· ···7

2-1 Improving coating efficiency by changing types of spray guns ··· ···8

2-3 Improving coating efficiency by changing spraying procedure ··· ···9

2-4 Improving coating efficiency by training ··· 10

2-5 Adjusting wind speed of paint booths and local ventilators ···11

2-6 Increasing yield rate by improvement of indoor environment ··· 12

2-7 Optimizing paint supply line ··· 13

2-8 Modifying the Paint Supply System ··· 14

2-9 Improving process of robot/reciprocal coating (NEW) ··· 16

2-10 Preventing volatilization during replacing/rinsing ··· 17

2-11 Introducing spray gun washers (NEW) ··· 18

2-12 Preventing volatilization during storage ··· 19

3 Switching raw materials 3-0 Switching raw materials (overview) (NEW) ··· 20

3-1 Switching to high solid coating ··· 21

3-1 Switching to powder coating ··· 22

3-3 Switching to aqueous coating ··· 23

4 Introducing treatment device 4-0 Introducing an exhaust treatment device (overview) ··· 24

4-1 Introducing an exhaust treatment device (combustion type) ··· 25

(Combustion type: direct combustion method, catalytic combustion method, regenerative combustion method) 4-2 Introducing an exhaust treatment device (activated carbon fiber type) ··· 26

■Index···27

(4)

Ⅱ Printing···29

■Checking causes of VOC emissions ···30

■List of VOC emissions control measures···33

■Details of each control measure···35

1 Choosing control measures 1-1 Evaluating the current emission status [New] ···35

1-2 Utilizing GP accreditation system [New] ···37

2 Improving operation processes/facilities 2-1 Reduction of emission when proofreading [New] ···38

2-2 Preventing volatilization when adjusting color and stickiness···39

2-3 Switching to a shallower cylinder···40

2-4 Reducing the airflow near the press···41

2-5 Reducing the opened space of ink pan etc. ···43

2-6 Preventing over-inhalation by local ventilation···44

2-7 Preventing volatilization during replacing/rinsing···45

2-8 Optimizing the cleansing procedure [NEW] ···46

2-9 Introducing a device for collecting and recycling solvent from used wiping rags [New] ···47

2-10 Reducing volatilization during storage···48

3 Switching raw materials 3-1 Switching to UV inks···49

3-2 Switching to aqueous inks···50

3-3 Switching to low-VOC inks···51

3-4 Switching to IPA-less wetting water···52

3-5 Switching to waterless printing system···53

3-6 Switching to high-solid / non-solvent / water-based adhesives···54

3-7 Switching to low-VOC detergents···55

4 Introducing treatment device 4-1 Introducing an exhaust treatment device (combustion type) ···56

(*Combustion type: direct combustion method, catalytic combustion method, regenerative combustion method) 4-2 Introducing an exhaust treatment device (activated carbon fiber type) ···57

■Index···58

Ⅲ Decreasing cleansing of metals···59

■Checking cause of VOC emissions···60

■List of VOC emission control measures···61

■Details of each control measure···63

1 Choosing control measure 1-1Evaluating VOC emissions···63

1-2Utilizing EVABAT system [New] ···64 2 Improving operation processes/ facilities

(5)

2-7 Reduction of wind around the washer ···71

2-8 Preventing over-inhalation by local ventilation ···72

2-9 Securing the freeboard ratio ···73

2-10 Reducing the lift-up speed of cleaning objects···74

2-11 Drying after steam cleaning···75

2-12 Installation of a lid and partial cover···76

2-13 Reducing volatilization during storage···77

3 Switching raw materials 3-0 Switching detergent (overview) (NEW) ··· ···78

3-1 Switching to Hydrocarbon type detergent (NEW) ··· ···79

3-2 Switching to aqueous detergent ··· ···80

4 Introducing treatment device 4-1 Introducing an exhaust treatment device (activated carbon fiber type) ··· ···81

4-2 Introducing an exhaust treatment device (activated carbon fiber type) ··· ···82

4-3 Installation of an enclosed cleaning device ··· ···83

■Index···84

Ⅳ Dry cleaning···85

■Checking causes of VOC emissions··· 86

■List of VOC emissions control measures···87

■Details of each control measure···89

1 Choosing control measures of VOC reduction 1-1 Evaluating VOC emissions [NEW] ···89

2 Improving operation processes/facilities 2-1 Reviewing the necessity of pretreatment and stain removal ··· ···90

2-2 Leakage prevention during changing and loading cleaning liquid ··· ···91

2-3 Cooling cleaning liquid ··· ···92

2-4 Prevention of cleaning liquid residue on cleaning object ··· ···93

2-5 Reducing volatilization during storage ··· ···94

2-6 Preventing volatilization during water repellent finishing ··· ···95

3 Switching raw materials 3-1 Switching to water washing ··· ···96

4 Introducing treatment device 4-1 Switching to all-in-one washer/dryer ··· ···97

4-2 Switching to dryer with recovery function ··· ···98

4-3 Installation of hang dryer with recovery function ··· ···99

■Index···100

Appendix VOC related legislations···101

Air Pollution Control Law···101

Ordinance on Environment for Securing Health and Safety of Tokyoites···105

Other related legislations···110

Associated groups···111

(6)

1 Purpose

This Guide for Reducing VOC Emissions [In-Factory Solutions] describes technical means to reduce VOC emissions at factories and workplaces to assist business owners in taking best measures for their individual businesses. The main purpose of this guidebook is to provide technical support for small and medium business operators.

2 Structure of this Guide

This guide targets the 4 major areas with high VOC emissions in Tokyo and describes how to control VOC emissions.

Each section consists of the following structure

We selected a wide variety of measures easy for small and medium business operators to choose based on cost- effectiveness.

3 How to plan control measures

Before installing an expensive treatment device, first consider if you can reduce VOC emissions by improving the operation process. Optimization of the operation process not only reduces VOC emissions but also reduces

How to use this guide

Ⅰ Plant On-site Coatings (Target: industrial coatings and automobile coatings)

Ⅱ Printing

Ⅲ Degrease cleaning of metals

Ⅳ Dry cleaning

1 Checking causes of VOC emissions 2 List of VOC emission control measures 3 Details of each control measure

4 Index

(7)

<Organic solvents with possible carcinogenicity>

●Chloroform ●Dichloromethane ●Trichloroethylene

●Tetrachloromethane ●Styrene ●Methyl isobutyl ketone

●1, 4-Dioxane ●1, 1,2,2-Tetrachloroethane ○1, 2-Dichloropropane

●1, 2-Dichloroethane ●Tetrachloroethylene

●Source: “To business operators handling carcinogenic organic solvents” (January 2014) by Ministry of Health, Labour and Welfare. Of the target substances under “Ordinance on the Prevention of Organic Solvent Poisoning,” those that are classified as 1, 2A, 2B by IARC carcinogenicity evaluation.

Substances whose IARC carcinogenicity evaluation ranked up from 3 to 1 (carcinogenic to humans) in 2014.

3. 1 Checking causes of VOC emissions

In this section, we describe checkpoints to investigate if there are rooms for VOC reduction, according to the process flow in each industry. When using this guidebook, we recommend starting with going through each of the checkpoints applicable to procedures at your facilities.

Also, for each process, we indicate causes of VOC emissions and its standard rate. You can understand from which process the higher VOC emissions comes, and it gives a good reference to set a priority when carrying out VOC control measures. For best efficiency, prioritize control measures, starting with sources of the most VOC emissions.

3. 2 List of VOC emission control measures

All the suggested measures are listed here. Control measures are categorized in:

Control measures for “Improving the process and facilities” are listed in the process order of “Checking sources of VOC emissions.” The result of “Checking sources of VOC emissions” will show you which control measures to take. Specific control measures are organized by numbers.

Also, you can see the VOC reduction effects and standard costs incurred when control measures are deployed.

Choosing control measures

Improving operation processes/ facilities Switching raw materials

Introducing treatment device

(8)

3. 3 Details of each means

Here, we describe each control measure. For each control measure, the following information is provided. Merits, notes, and related matters are only included if especially important.

(Newly control measures added in this revision are marked with “NEW”.)

Important point! A simple summary of the measure and its goal.

Explanation Detailed explanation for emission control mechanisms and methods of implementation. Also, real-world examples and measurement data are included as much as possible

Merit Expected merits (such as cost reduction) other than VOC

emission control by deploying the control measure.

Note Notes and preconditions for carrying out the control

measure.

Related matters Other control measures related to this control measure. Please refer to these as well.

VOC reduction effect Estimation of VOC reduction in the “whole factory” after the control measure is carried out.

Initial cost Estimation of the initial cost of carrying out the control measure.

Running cost Estimation of running cost for the control measure.

Running cost

(Reduction of material purchasing cost) Estimation of running cost for the control measure.

Work environment improvement Estimation of cost reduction in the material purchase by the control measure. *Only indicated for control measures in which reduction in the purchasing costs for materials such as paints and solvents, printing inks, detergents, and cleaning liquids are expected.

Extra space needed Estimation of working environment improvement in the

“whole factory” after the control measure is carried out.

Expected amount of space needed to install the treatment device.

We hope this VOC reduction guidebook can help you think of creative control measures for further improvements.

(9)

4 Legend

For each control measure described in Chapters I-IV, VOC reduction effects and cost items are provided on the left side of each page.

The following tables show how to interpret the ranking (numbers 1-5) of measures. However, these values are merely references, and they are subject to change in actual deployment.

Table 1 Ranking standard for “VOC Reduction Effect”

Table 2 Ranking standard for “Initial cost”

Table 3 Raking standard for “Running cost”

Note) Running cost is indicated in multiples based on the present state, however, in a case of installing a new device, the specific amount is indicated.

Item Rank Low → High

Running cost

(Multiples) No change At least 100% but less than

200% 200% or more

Running cost

(Actual amount) Less than 100,000 yen/month

100,000 yen/month or more

Less than 1,000,000 yen/month 1,000,000 yen/month or more

Table 4 Ranking standard for “Running cost (Reduction of material purchasing cost )"

Note) Only indicated for control measures in which reduction in the purchasing costs for materials such as paints, solvents, printing inks, detergents, and cleaning liquids are expected.

Table 5 Ranking standard for “Work environment improvement”

Table 6 Ranking standard for “Extra Space Needed”

Item Rank Low High

VOC reduction effect

Less than 5% 5% or more Less than 10%

10% or more Less than 20%

20% or more Less than 50%

50% or more

Item Rank Low High

Initial cost Less than 10,000 yen

10,000 yen or more Less than 100,000 yen

100,000 yen or more Less than 1,000,000 yen

1,000,000 yen or more Less than 10,000,000 yen

10,000,000 yen or more

Item Rank

Work

environment Minimally

effective

Effective Highly effective

Low High

Item Rank Small Large

Need for

additional Less than

1m2

1m2 or more but less than 10m2

10m2 or more Item Ran

rate

Low ←

Running cost

Less than 10% reduction in material cost

Reduction in material cost is at least 10% but less than 20%

More than 20% reduction in material cost

3

Reduction rate High Reduction

rate Low

Low

Rank

Work Environment improvement

Extra Space Needed

(10)

The section on the plant on-site coatings of this Guide summarizes the VOC

emission control measures for “industrial coatings” and “automobile coatings.”

Contents (Plant On-site Coatings)

Checking Causes of VOC Emissions ………2

List of VOC Emission Control Measures ··· 4

Details of Each Control Measure 1 Choosing Control Measures ··· 4

1-1 Evaluating the Current Status of VOC Remissions (NEW) ··· 6

2 Improving Operation Processes/Facilities ··· 8

2-1 Reviewing Recoloring Method/Color Mixing Order ··· 8

2-2 Improving the Coating Efficiency by Changing the Types of Spray Gun…9 2-3 Improving Coating Efficiency by Changing Spraying Procedure……‥10

2-4 Improving Coating Skills by Training ………11

2-5 Adjusting Wind Speed of Paint Booths and Local Ventilators ··· 12

2-6 Increasing Yield Rates by Improvement of Indoor Environment……‥ 13

2-7 Optimizing the Paint Supply Line ··· 14

2-8 Modifying the Paint Supply System ··· 15

2-9 Improving Process of Robot/Reciprocal Coating (NEW) ··· 17

2-10 Preventing Volatilization During Replacing/Rinsing ··· 18

2-11 Introducing Spray Gun Washer (NEW) ··· 19

2-12 Preventing Volatilization During Storage ··· 20

3 Switching Raw Materials ··· 21

3-0 Switching Raw Materials (overview) (NEW) ··· 21

3-1 Switching to High Solid Coating ··· 22

3-1 Switching to Powder Coating ··· 24

3-3 Switching to Aqueous Coating ··· 25

4 Introducing Treatment Device ··· 25

4-0 Introducing Exhaust Treatment Device (overview) ··· 25

4-1 Introducing Waste Gas Treatment Device (combustion type) ··· 26

(*Combustion type: direct combustion method, catalytic combustion method, regenerative combustion method) 4-2 Introducing Exhaust Treatment Device (activated carbon type) ………・27

Index ··· 28

(11)

Operation flow Checkpoints Causes of VOC emissions

Estimate of VOC generation rate

(Cases of spray paints

“Choosing control measures”

Corresponding No.

Color Mixing and Formulation

回 Check if cleaning can be reduced by improving color

回 mixing order

Check if there is no excessive mixing

Volatilization of solvents during controlling

5% or less 2-1

viscosity Cleaning of

Products Before Coating

回 Check if volatilization of solvents can be prevented

Volatilization of cleaning solvents

5% or less Ⅲ Decreasing cleansing of metals 回 Check whether the spray gun type can

Changed

回 Check if there is any way to improve (distance/angle/air pressure) 回 Check if the wind speed of paint booths

is not too big

回 Check if the work area is well- organized 回 Length, thickness, and material of paint

pipes

Check if the coating can be changed Check if a supply circuit of paints is

introduced

回 Check if there is any way to improve (Especially in cases where applied) Check if aqueous, powder-form, or high

solid paints can be used

回 Check if VOC treatment equipment can be introduced

From 2-2 to 2-

9 Volatilization of

solvents from Approx. 60%

paints

From 3-0 to 3-3 From 4-0 to 4-2 Settings

- Drying 回 Check if VOC treatment equipment can be introduced

Volatilization of solvents from the surface of paints on

Approx. 25% From 4-0 to 4-2 coated materials

While Cleaning

Tools

回 Check if length, thickness, and material of paint pipes, can be changed 回 Check if a supply circuit of paints can

be introduced

回 Check if a large amount of solvents is used all at once

回 Check if the containers of cleaning are closed the whole time

回 Check if spray guns are not cleaned with disposable wipes

Volatilization of

cleaning solvents Approx. 15%

From 2-7 to 2-8

From 2-10 to 2-11

I ■Checking Causes of VOC Emissions

Operation flow and checkpoints

Plant On- site Coating

(12)

Storage

回 Check if the temperature control of the storage is being carried out

Check if the can is kept out of direct 回 Sunlight

Check if the paint cans and solvent cans are closed tightly when not used

Volatilization of solvents during storage

5% or less 2-12

[Examples of VOCs used in coatings]

Application: paint solvents, cleaning

VOCs: toluene, xylene, methanol, isopropyl alcohol, n-Buthanol, methyl ethyl ketone, methyl isobutyl ketone, acetone, ethyl acetate, butyl acetate, ethylbenzene, trimethyl benzene, etc.

(13)

Choosing control measures

No. Measures

Effects and Cost of Implementing Measures, etc.

VOC Reduction Effect

Cos

t Effect of

Improving Work Environment Initial Running

(running cost)

Running (reduction effect of material purchase)

1-1 The current status of emissions (NEW) - 1 to 3 1 - -

Improving operation processes/facilities

Operation Process Flow

No. Measures

Effects and Cost of Implementing Measures, etc.

VOC Reducti on Effect

Cost Effect of

Improving Work Environment Initial Running

(running cost)

Running (reduction of material purchasing cost) Color Mixing

and

Formulation 2-1 Reviewing Repainting

Methods/Color Mixing Order 1 1 1 1 2

Coating

2-2 Improving the Coating Efficiency by Choosing a Type of Spray Guns

3 to

4 2 1 2 to 3 2

2-3 Improving Coating Efficiency by Improving Spraying Procedures

3 to

4 1 1 2 to 3 2

2-4 Improving Coating Skills

Through Training 3 to

4 2 1 3 2

2-5 Adjusting the Wind Speed of

Paint Booths/Local Ventilators 2 2 1 * 1

2-6 Increasing Yield Rate by Improving Indoor Environment

4 1 1 3 2

2-7 Rearranging Paint Feeder

Tubes 2 2 1 3 2

2-8 Reviewing the Paint Feeding

Method 2 4 1 3 2

2-9 Adjusting Procedure of Robot/Reciprocal Coating (NEW)

* 4 1 * 1

Cleaning of Tools

2-10 Preventing Volatilization During

Replacing/Cleaning Operations 2 1-3 1 3 2

2-11 Introducing a Spray Gun

Washer (NEW) 2 3 1 3 2

Storage 2-12 Preventing Volatilization

During Maintenance/Storage 1 1 1 - 1

I List of VOC Emission Control Measures

Plant On- site coatings

Plant On-site Coatings

(14)

Switching raw materials

No. Measures

Effects and Cost of Implementing Measures, Etc.

VOC Reduction Effect

Cost

Effect of Improving Work Environmen t

Initial Running (Running Cost)

Running (Reduction Effect of Material Purchase) 3-0 Switching raw materials (overview)

(NEW)

- - - - -

3-1 Switching to high solid coatings 4 1 1 - 2

3-2 Switching to powder coatings 5 5 1 - 3

3-3 Switching to aqueous coatings 5 3 to 4 3 - 3

Introducing treatment equipment

No. Measures

Effects and Cost of Implementing Measures, Etc.

VOC Reduction Effect

Cost Effect of

Improving Work Environmen t

Initial Running (Running cost)

Running (Material purchase) 4-0 Introducing an exhaust treatment device

(overview)

- - - - -

4-1 Introducing an exhaust treatment device (combustion type)

(*Combustion type: direct combustion method, catalytic combustion method, regenerative combustion method)

5 4 to 5 1 to 2 - No

change

4-2 Introducing an exhaust treatment device

(activated carbon fiber type) 5 4 to 5 2 3 No

change

*VOC emission reduction effect: 1 (low) to 5 (high)

*Initial cost: 1(low) to 5 (high)

*Running cost: 1 (low) to 3 (high) (Running cost)

*Running cost: 1 (low reduction rate) to 3 (high reduction rate) (Effect of reducing material purchase)

*Effect of improving work

environment: 1 (low) to 3 (high) See

“Legend” on page iv for concrete reference

(15)

Plant On-site Coatings

Ⅰ 

Plant On-site Coatings 

Choosing control measures    111−−−111       

         

Initial Cost       コ Up to 200,000 yen

Numbers correspond with the one for the measures

Up to 100,000 yen/month

<Examples of detector tubes> <Simplified measuring equipment currently used by Tokyo  Metropolitan VOC Control Advisors

(Source: Created based upon documents submitted by manufacturers)

[Continued on next page]

←1 2 3 4 5→

←1 2 3 4 5→

←1 2 3→

③① ②

←1 2 3→

Gas sampling pump Gas detecting

tube

Evaluating the Current Status of  VOC Remissions (NEW)

Important point!

Carrying out a survey on the current status of VOC emissions enables the  more effective implementation of VOC emission control measures.

Explanation

The current usage of VOCs differs among plants and offices. Evaluating  where in the plant and during which procedures VOCs are being emitted will  help realize the more optimal VOC emission control measures. Furthermore,  it can evaluate the effects of the VOC emission control measures.

[Measure 1: Measurement of VOC concentration via simplified measuring  method]

Simplified VOC measuring equipment can be used when measuring VOC  concentration in relation to autonomous initiatives and autonomous man- agement. Purchase cost depends on mechanism and performance to mea- sure (e.g. ingredients the equipment can measure), starting from approx. 

100,000 yen.

In addition, in need of reducing costs, it is also possible to use a detector  tube to measure VOC concentration. The detector tube comes with a gas  sampling pump and a gas detecting tube. The former costs around 20,000  yen, and the latter around 2,000 yen per box with 10 units. 

  

VOC Reduction Effect

Running Cost

Work environment improvement Low

Low

Low

Low

High

High

High

High

(16)

Ⅰ 

Plant On-site Coatings 

    111−−−111       

    

イニシャルコスト

<Example of VOC concentration distribution in a coating plant>

(Source: Reference [1] in the footnote) 低←1 2 3 4 5→高

低←1 2 3 4 5→高

低←1 2 3→高

③① ②

低←1 2 3→高

BaffleboothB 

Measurement time: 13:30    Operation type: Spray coating

Initial Cost       コ Up to 200,000 yen

Numbers correspond with the one for the measures

Up to 100,000 yen/month

←1 2 3 4 5→

←1 2 3 4 5→

←1 2 3→

←1 2 3→

VOC Reduction Effect

Running Cost

Work environment improvement Low

Low

Low

Low

High

High

High

High

Hot air drying  oven small

Hot air drying  oven large

Wind flow Wind speed

Polishing/

pretreatment  operation  work area

Cleaning  Device

Paint  Storage

Masking  packaging  work area

Bafflebooth A 

[Measure 2: Utilization of VOC alarms]

You can buy gas alarms that warn with light and sound when the VOC  concentration exceeds a certain level inside a plant. The approximate  price is 100,000‒200,000 yen.

[Measure 3: Utilization of the “Dispatch system of Tokyo Metropolitan  VOC Control Advisors (free of charge)”]

The “Dispatch system of Tokyo Metropolitan VOC Control Advisors (free  of charge)” is available if in need of measurement of VOC emissions by  professionals. Under this system, advisors visit a business office, and  provide advice on effective VOC measures best suited to each office after  conducting simplified measurement via a handy VOC measuring device. 

Please contact “Planning Team, Chemicals management Section,  Environmental Improvement Division, Tokyo Metropolitan Government  Bureau of Environment” (See the attached list of associated groups) for  details for application to this system, etc.  

Note:

Evaluating the Current Status of  VOC Remissions (NEW) [Continued]

Choosing control measures

(17)

Ⅰ 

Plant On-site Coatings 

  222−−−111   

Reviewing Recoloring Method/

Color Mixing Order

Improving operation processes/facilities 

Plant On-site Coatings

Important point!

Wastes of paints and solvents can be reduced by changing operation procedures (order) of  color mixing and recoloring.

Explanation

Redoing color mixing results in wastes of paints and solvents, and recoloring requires an  additional use of cleaning solvents. Please check if there is any way to reduce losses of  paints and cleaning solvents that accompany color mixing and recoloring.

[Measure 1: Learn the accurate amount of colors used for mixing.]Learn the accurate  amount of paints to be used and mix only a necessary amount of paints. With the  knowledge of a compounding ratio beforehand, conduct an accurate measurement by  using a measuring device.

[Measure 2: Quickly mix colors.]

Try to mix paints as quickly as possible.

[Measure 3: Make sure to close the lid.]

Ensure to tightly close the lid of the cup for color mixing when not used to avoid volatiliza- tion of the solvent.

[Measure 4: Use the coating colors in an order from light to dark.]

During a dayʼs work, try to use light colors first to dark colors, or use similar colors in  sequence. When using similar colors, it is not necessary to clean well compared to using  totally different colors, which will omit a process of cleaning spray guns and hoses, and  reduce the amount of a cleaning solvent to be used.

~5%

(資 購入費削減効果)

塗料購入費 5%未満削減

作業環境改善効果

低←1 2 3 4 5→高

低←1 2 3 4 5→高

低←1 2 3→高

低←1 2 3→高 低←1 2 3→高

イニシャルコスト

低←1 2 3 4 5→高

低←1 2 3 4 5→高

低←1 2 3→高

低←1 2 3→高

Initial Cost       コ Up to 10,000 yen

No change

←1 2 3 4 5→

←1 2 3 4 5→

←1 2 3→

←1 2 3→

VOC Reduction Effect

Running Cost

Effect of improving  work environment Low

Low

Low

Low

High

High

High

High (Reduction of material purchasing cost) Paint purchase reduced by  less than 5%

Running Cost

Work environment improvement  Effective

Low←1      2      3 →High

Up to 5%

(18)

~5%

(資 購入費削減効果)

塗料購入費 5%未満削減

作業環境改善効果

低←1 2 3 4 5→高

低←1 2 3 4 5→高

低←1 2 3→高

低←1 2 3→高 低←1 2 3→高

イニシャルコスト

低←1 2 3 4 5→高

低←1 2 3 4 5→高

低←1 2 3→高

低←1 2 3→高

Initial Cost       

No change

←1 2 3 4 5→

←1 2 3 4 5→

←1 2 3→

←1 2 3→

VOC Reduction Effect

Running Cost

Effect of improving  work environment Low

Low

Low

Low

High

High

High

High Running Cost

Work environment improvement   Effective

Low←1      2      3 →High

Ⅰ 

Plant On-site Coatings 

  222−−−222       

from 1 to 100,000 yen per unit

Types of spray gun Category General coating efficiency (%)

Static electricity

Disk 80~90%

Bell 75~85%

Airless 65~75%

Air 50~60%

55~65%

Airless 50~60%

Low pressure air spray 40~50%

Air spray 30~40%

Improving operation processes/facilities 

Improving the Coating Efficiency  by Choosing the Type of Spray Gun

Important point!

Using spray guns with high coating performance will improve coating  efficiency and reduce VOC emissions.

Explanation

Paint losses caused by over spraying can be reduced by using proper spray  guns.

[Measure 1: Changing a type of spray guns]

Coating efficiency changes due to types of spray guns. Consider switching  to spray guns with high coating efficiency. Even when using air spray type,  choosing produces with low pressure can improve coating efficiency.

<Comparison of coating sufficiency among types of spray gun>

Air/Airless

[Measure 2: Choosing spray guns suitable for the size of products to be coated]

Small-sized spray guns are recommended for reduction of paint wastes in case of relatively small  products to be coated or partial coating such as repair coating.

[Measure 3: Using cup guns]

Cup guns are highly recommended if a coating amount is small or recoloring is conducted  frequently. Compared to the method of supplying paints through pipes from paint tanks, cup guns  save more paint and a smaller amount of cleaning solvents.

Merit

Higher coating efficiency leads to reduction of paint use. Switching to electrostatic coating will  require more electricity cost, but it will reduce the paint cost and industrial waste treatment cost,  which will bring down the running cost of the entire coating processes to a minus.

(Reduction of material purchasing  cost) Paint purchase reduced by  10-60%

10~50%

(19)

Plant On-site Coatings

Ⅰ 

Plant On-site Coatings 

   222−−−333       

VOC削減効果 10~30%

イニシャルコスト

~1万円

ランニングコスト

(運転費)

変わらない

ランニングコスト

(資材購入費削減効果)

塗料購入費 10~40%削減

作業環境改善効果 効果あり

Type of spray gun Standard for the optimal working speed of spray gun (m/sec)

Standard for the optimal working speed of spray gun (m/sec)

Bell electrostatic 0.4~0.6 0.5~0.6

Air electrostatica 0.4~0.6 0.7~0.8

Low-pressure air 0.4~0.7 0.7~0.8

Airless 0.4~0.7 0.6~0.7

Air/Airless 0.4~0.7 0.6~0.7

Air 0.4~0.7 0.8~1.0

(Source: Reference [1] in the footnote) 低←1 2 3 4 5→高

低←1 2 3 4 5→高

低←1 2 3→高

低←1 2 3→高 低←1 2 3→高

Improving operation processes/facilities 

Improving Coating Efficiency by  Changing Spraying Procedure

Important point!

Optimal settings for spay guns during spraying procedure will improve coating  efficiency and control VOC emissions.

Explanation

Paint loss caused by over-spraying can be reduced by changing soft sides of the  guns such as a discharge rate, distance to the coating subject, angle, and working  speed.

[Measure 1: Optimizing air pressure/discharge rate of spray guns]

The higher air pressure of spray guns lowers the coating efficiency. Keep the air  pressure as low as possible while maintaining the finished quality of the coated  surface. For that purpose, properly adjust the distance between the coating subject  and the spray gun and paint discharge rate by following Measure 2. 

[Measure 2: Optimizing the distance from the spray gun]

The bigger the distance from the spray gun to the coating subject gets, the lower  the coating efficiency becomes. The ideal distance is 15 to 20 cm from the object,  but the shorter distance is desirable when it comes to higher coating efficiency.

The performance of spray guns has progressed, and new products have been  introduced to the market, whose spray patterns fully open and keep their caps  clean even with a smaller distance to the coating subject. 

[Measure 3: Optimizing the spraying direction]

When the surface of the coating subject has a spraying angle, the coating efficiency  goes down. Spray perpendicularly against the coating surface. 

[Measure 4: Optimizing the working speed of a spray gun]

When the working speed of a spray gun is too high, the coating efficiency goes  down significantly. See the table below and set the working speed at an optimal  level for the coating operation.

<Standard for the optimal working speed of spray gun (m/sec)>

[Measure 5: Optimizing the pattern width]

The bigger the pattern width is, the lower the coating efficiency gets, so please  make sure the pattern width does not get too big. 

Merit

Higher coating efficiency leads to reduction of paint use.

Related matters

・ Also see “2-4 Improving coating skills by training.”

~5%

(資 購入費削減効果)

塗料購入費 5%未満削減

作業環境改善効果

低←1 2 3 4 5→高

低←1 2 3 4 5→高

低←1 2 3→高

低←1 2 3→高 低←1 2 3→高

イニシャルコスト

低←1 2 3 4 5→高

低←1 2 3 4 5→高

低←1 2 3→高

低←1 2 3→高

Initial Cost       コ Up to 10,000 yen

No change

←1 2 3 4 5→

←1 2 3 4 5→

←1 2 3→

←1 2 3→

VOC Reduction Effect

Running Cost

Effect of improving  work environment Low

Low

Low

Low

High

High

High

High (Reduction of material purchasing cost) Paint purchase reduced by  10-40%

Running Cost

Work environment  improvement Effective

Low←1      2      3 →High

10-30%

(20)

~5%

(資 購入費削減効果)

塗料購入費 5%未満削減

作業環境改善効果

低←1 2 3 4 5→高

低←1 2 3 4 5→高

低←1 2 3→高

低←1 2 3→高 低←1 2 3→高

イニシャルコスト

低←1 2 3 4 5→高

低←1 2 3 4 5→高

低←1 2 3→高

低←1 2 3→高

Initial Cost       コ Up to 100,000 yen

No change

←1 2 3 4 5→

←1 2 3 4 5→

←1 2 3→

←1 2 3→

VOC Reduction Effect

Running Cost

Effect of improving  work environment Low

Low

Low

Low

High

High

High

High (Reduction of material purchasing cost) Paint purchase reduced by  20-50%

Running Cost

Work environment improvement   Effective

Low←1      2      3 →High

15-40%

Ⅰ 

Plant On-site Coatings 

222−−−444       

51

35

47 49 49 52

61

52 49

30 40 50 60 70

Spray coating operator

Coating efficiency (%)

コース 金属塗装コース

(Source: Reference [1] in the footnote)

Improving operation processes/facilities

Improving Coating Skills by Training

Important point!

Enhancing coating skills will lead to reduction of over-spray and VOC  emissions. 

Explanation

As the table below shows, the coating efficiency is greatly affected by skills  of operators. Plan out how to enhance skills of operators and aim for higher  coating efficiency.

<Examples of impacts operators could have upon coating efficiency>

Average value

There is a vocational ability certification test as an assessment system for operatorsʼ skills. To  pass the vocational ability certification test, plan out how to enhance the coating technology. 

For details on the system, visit the website of Tokyo Vocational Ability Development Associa- tion, or contact them directly.

Further, training sessions and seminars are also provided for the purpose of improving  operatorsʼ skills, so please be encouraged to participate in those occasions. Information on the  training sessions and seminars are available on newsletters issued by registered industrial  organization, public advertisements in specialty magazines, the Internet, etc.

<Example of training sessions: Tokyo Metropolitan Next-Generation Expert Development  Program (2015)> 

Tool adjustment (spatulas, spray guns)/ material surface preparation / polishing operations / protection operations (procession of  coating subjects with complicated shapes) / putty surfacing work (preparation and spraying of base materials) / mixing of paints  (color adjustment of multiple colors, viscosity adjustment) / spray coating operations (solid paints, metallic paints) / assessment  operations (coating thickness, luster, coating surface)

In principle, proficient operators who work for small- and medium-sized companies can apply; those with  an intension to improve their own skills and leadership skill; in principle, proficient operators who are  certified with grade 2 of the vocational ability test in metal coating (vocational type: coating)  Details

Eligible  applicants

Course period / Tuition Contact

Every Saturday (6 days in total) / 16,200 yen

Local Human Resource Development Team, Skills Development Section, Employment Division, Tokyo Metropolitan 

Course Metal painting course

(21)

Plant On-site Coatings

Ⅰ 

Plant On-site Coatings 

   222−−−555       

Type of spray gun Standard of vicinity

wind speed (m/sec) Type of spray gun Standard of vicinity wind speed (m/sec)

Bell Electrostatic 0.2~0.3 Airless 0.4~0.5

Airless electrostatic 0.2~0.4 Low-pressure air 0.6~0.7

Air electrostatic 0.4~0.5 Air 0.7~0.8

Type of hoods Legally regulated wind speed

Enclosed hoods 0.4 m/sec

External hoods

Side suction type 0.5 m/sec

Lower suction 0.5 m/sec

Higher suction 1.0 m/sec

Improving operation processes/facilities

Adjusting Wind Speed of 

Paint Booths and Local Ventilators

Important point!

The wind speed in the vicinity of spray guns impacts the coating efficiency. To a  high wind speed lowers coating efficiency, leading to an increase in paint use.

Explanation

[Measure 1: Adjusting wind speed of paint booths]

Adjusting the wind speed at and above the legally regulated wind speed to  improve coating efficiency will lead to a reduction of VOC emissions. 

Especially in the case of dry type paint booths, they may have their wind speed set  at a high speed beforehand because when they get clogged, the wind speed goes  down. Please be attentive to the setting. 

An anemometer is necessary to measure the actual wind speed inside paint  booths. Furthermore, an inverter is also necessary to control the wind speed. An  inverter can be furnished to the existing booths (approx. 50,000 yen). 

The table below shows the standard of the vicinity wind speed by spray gun type,  and it is desirable to adjust the speed around 0.5-0.6m/sec.

 <Standard of vicinity wind speeds>

Note: The values in this table are not the wind speed of the entire booth. 

(Source: Reference [1] in the footnote)

<Reference 1: legally regulated wind speed>

Article 16 of the Ordinance on the Prevention of Organic Solvent Poisoning 

<Reference 2: Outline of the legally regulated wind speeds of push-pull type ventilators>

1. The wind speed against the coating surface must be 0.2m/sec on average. 

2. Gaps in speed winds should not exist on the coating surface (They should be 0.5 times and  over and less than 1.5 times of the average value.* For details, see the public announcement  on composition and performance the Minister of Health, Labour and Welfare determines  based on Article 16-2 of the Ordinance on the Prevention of Organic Solvent Poisoning.

[Measure 2: Placing curtains in front of the main filter]

When the filter of the dry type filter gets clogged, the level of the wind speed has to be  raised. One of the methods to prevent clogging is to place curtains in front of the main filter  that traps paint mists.

 Note:

・Please consider balancing the wind speeds because the paint mists cannot be collected and  the work environment will worsen when the wind speed is too low.

・See Article 16 of the Ordinance on the Prevention of Organic Solvent Poisoning.

~5%

(資 購入費削減効果)

塗料購入費 5%未満削減

作業環境改善効果

低←1 2 3 4 5→高

低←1 2 3 4 5→高

低←1 2 3→高

低←1 2 3→高 低←1 2 3→高

イニシャルコスト

低←1 2 3 4 5→高

低←1 2 3 4 5→高

低←1 2 3→高

低←1 2 3→高

Initial Cost       コ Up to 100,000 yen

No change

←1 2 3 4 5→

←1 2 3 4 5→

←1 2 3→

←1 2 3→

VOC Reduction Effect

Running Cost

Effect of improving  work environment Low

Low

Low

Low

High

High

High

High

(Reduction of material purchasing cost)  Cost reduction rate of paint purchase  varies according to other factors

Running Cost

Work environment  improvement Minimally effective

Low←1      2      3 →High

5-10%

(22)

~5%

(資 購入費削減効果)

塗料購入費 5%未満削減

作業環境改善効果

低←1 2 3 4 5→高

低←1 2 3 4 5→高

低←1 2 3→高

低←1 2 3→高 低←1 2 3→高

イニシャルコスト

低←1 2 3 4 5→高

低←1 2 3 4 5→高

低←1 2 3→高

低←1 2 3→高

Initial Cost       コ Up to 10,000 yen

No change

←1 2 3 4 5→

←1 2 3 4 5→

←1 2 3→

←1 2 3→

VOC Reduction Effect

Running Cost

Effect of improving  work environment Low

Low

Low

Low

High

High

High

High (Reduction of material purchasing cost) 

Paint purchase reduced by 20-50%

Running Cost

Work environment improvement Effective

Low←1      2      3 →High

Up to 30%

Ⅰ 

Plant On-site Coatings 

222−−−666       

Item Specifics

Details of the measure

Improving operation processes/facilities

Increasing Yield Rate by 

Improvement of Indoor Environment

To reduce the use of solvents and paints; the former prevents defects  and is used to peel off paints and the latter is used for recoloring. 

Explanation

When dusts stick on the coating subjects before and after coating, they  may possibly end up as defects. Reduce dusts that may stick on 

coating subjects.

[Measure 1: Preventing fabric dusts of work clothes]

Operators are advised to wear clothes with less fabric dusts.

[Measure 2: Washing gauzes and cloths for wiping thinner]

Gauzes and cloths may have silicone left on the threads and seams  when they are new. Because silicon on the coated material can cause  cissing, wash the gauzes and clothes once or twice before using.

Dustless, no-silicon clothes woven with longer fiber are commercially  available.

[Measure 3: Preventing dust from the air supply to the coating work  area]

Because an air flow can carry dust into the work area, block the dust by  adding a filter to the air intake.

[Measure 4: Filtering the paint before application]

Filter the paint before application to remove dust and foams in the  paint. You can also install a paper filter on the pipe of a cup gun or a  paint pump.

<Examples of VOC reduction by improving indoor environment>

(1) Installed air-control fin on the ceiling inlet to adjust the  downward airflow

(2) Thorough cleaning of the entire coating zone

(23)

Plant On-site Coatings

Reference materials: [1] Kanagawa Prefecture Pollution Prevention Council. Handout for presentations on VOC reduction. 2007/2008.

[2] Hirano, Katsumi. “Merit and examples of VOC reduction measures in the coating process.” Seminar on Reducing

Ⅰ 

Plant On-site Coatings 

222−−−777       

Reference Measures Specific changes VOC reduction effect Running cost

[1] Measure 1 Hose length 5m→4m

Usage of washing thinner 280g→250g 11%

Purchasing cost of washing thinner 61 yen→55 yen 10%

[1] Measure 2

Hose material from urethane to

fluororesin 280g→129g

54%

61 yen→28 yen 54%

[1] Measure 1 Measure 2

Hose material &

internal diameter urethane 6-8mm→

fluororesin 4-6mm 280g→61g 78%

61 yen→13 yen 79%

[2] Measure 1 Hose length

5m→3.5m 2,600g→1,900g

27%

Purchase cost (per 10 color changes) 1,570 yen→1,140 yen 27%

(Source: References [1][2] in footnote)

Improving operation processes/facilities

Optimizing the Paint Supply Line

Important point!

Waste paint and washing solvent during a color change or washing can be  reduced by adjusting the length of paint supply pipes and/or switching to  more releasable hoses.

Explanation

[Measure 1: Adjusting the length and diameter of supply pipes]

Reducing the length and diameter of supply pipes lowers the amount of  paint left in the pipes, causing reduction of waste paint and washing  solvent. Put the paint tank as close as possible to the spray gun. Also  consider shortening supply pipes and switching to pipes with a smaller  diameter.

[Measure 2: Introducing hoses made of fluororesin]

A hose made of fluororesin collects less paint inside. Its ease of washing  also saves washing solvent.

[Measure 3: Using different hoses for very different colors]

Using a hose for paints in very different colors requires more washing  solvent when switching colors. To save solvent, assign a different hose to  each group of similar colors.

<Examples of VOC reduction by optimizing supply pipes>

Usage of washing thinner

Usage of washing thinner

Purchasing cost of washing thinner

Purchasing cost of washing thinner

Amount of wasted paint (per 10 color changes)

less

less

less

less

less

less

less

less

~5%

(資 購入費削減効果)

塗料購入費 5%未満削減

作業環境改善効果

低←1 2 3 4 5→高

低←1 2 3 4 5→高

低←1 2 3→高

低←1 2 3→高 低←1 2 3→高

イニシャルコスト

低←1 2 3 4 5→高

低←1 2 3 4 5→高

低←1 2 3→高

低←1 2 3→高

Initial Cost       コ Up to 100,000 yen

No change

←1 2 3 4 5→

←1 2 3 4 5→

←1 2 3→

←1 2 3→

VOC Reduction Effect

Running Cost

Effect of improving  work environment Low

Low

Low

Low

High

High

High

High (Reduction of material purchasing cost) 

Paint purchase reduced by up to 70%

Running Cost

Work environment  improvement   Effective

Low←1      2      3 →High

Up to 10%

参照

関連したドキュメント

The approach based on the strangeness index includes un- determined solution components but requires a number of constant rank conditions, whereas the approach based on

Furthermore, the following analogue of Theorem 1.13 shows that though the constants in Theorem 1.19 are sharp, Simpson’s rule is asymptotically better than the trapezoidal

Using an “energy approach” introduced by Bronsard and Kohn [11] to study slow motion for Allen-Cahn equation and improved by Grant [25] in the study of Cahn-Morral systems, we

These results are motivated by the bounds for real subspaces recently found by Bachoc, Bannai, Coulangeon and Nebe, and the bounds generalize those of Delsarte, Goethals and Seidel

The proof of the existence theorem is based on the method of successive approximations, in which an iteration scheme, based on solving a linearized version of the equations, is

[Mag3] , Painlev´ e-type differential equations for the recurrence coefficients of semi- classical orthogonal polynomials, J. Zaslavsky , Asymptotic expansions of ratios of

ターゲット別啓発動画、2020年度の新規事業紹介動画を制作。 〇ターゲット別動画 4本 1農業関係者向け動画 2漁業関係者向け動画

Where a rate range is specified, the higher rates should be used (a) in fields with a history of severe weed pressure, (b) when the time between early preplant tank mix and