• 検索結果がありません。

Strobl,September9-12,2012 O.Azenhas,R.MamedeCMUC,UniversidadedeCoimbra KeypolynomialsoftypeCandcrystalgraphs

N/A
N/A
Protected

Academic year: 2022

シェア "Strobl,September9-12,2012 O.Azenhas,R.MamedeCMUC,UniversidadedeCoimbra KeypolynomialsoftypeCandcrystalgraphs"

Copied!
47
0
0

読み込み中.... (全文を見る)

全文

(1)

KC

Key polynomials of type C and crystal graphs

O. Azenhas, R. Mamede CMUC, Universidade de Coimbra

eminaire Lotharingien de Combinatoire 69

Strobl, September 9-12, 2012

(2)

KC

Outline

1 Introduction

2 Key polynomials of type A andgln-crystal graphs

3 Key polynomials of type C and spn-crystal graphs

(3)

KC Introduction

Key polynomials /Demazure characters

Key polynomials were introduced by Demazure for all Weyl groups (1974). They were studied combinatorially in the case of the symmetric group (type A) by Lascoux and Sch¨utzenberger (1988).

Ifgis a simple Lie algebra with Weyl group W, Uq(g) its quantum group, andV(λ) the integrable representation with highest weightλ anduλthe highest weight vector, for a givenw ∈W the Demazure module is defined to be

Vw(λ) :=Uq(g)>0.uw(λ),

and the Demazure character is the character ofVw(λ).

V(λ)−→crystal basis−→crystal graph (colored oriented graph).

(4)

KC Introduction

Key polynomials /Demazure characters

Key polynomials were introduced by Demazure for all Weyl groups (1974). They were studied combinatorially in the case of the symmetric group (type A) by Lascoux and Sch¨utzenberger (1988).

Ifgis a simple Lie algebra with Weyl group W, Uq(g) its quantum group, andV(λ) the integrable representation with highest weightλ anduλthe highest weight vector, for a givenw ∈W the Demazure module is defined to be

Vw(λ) :=Uq(g)>0.uw(λ),

and the Demazure character is the character ofVw(λ).

V(λ)−→crystal basis−→crystal graph (colored oriented graph).

(5)

KC Introduction

Key polynomials /Demazure characters

It was conjectured by Littelmann (1991) and proved by Kashiwara (1993) that the intersection of a crystal basis ofVλ withVw(λ) is a crystal basis forVw(λ). The resulting subsetBw(λ)⊆B(λ) is called Demazure crystal.

The Demazure character is defined by the Demazure crystalBw(λ).

(6)

KC

Key polynomials of type A andgln-crystal graphs

Key polynomials of type A (L-S, 1988)

Snis generated by the permutations si = (i i+ 1),i = 1, . . . ,n−1, The generatorssi act on vectorsv= [v1, . . . ,vn]∈Nnby

siv = [v1, . . . ,vi+1,vi. . . ,vn], fori= 1, . . . ,n−1,

and induce an action of Sn onZ[x1,x2, ..,xn] by considering vectors v as exponents of monomialsxv =x1v1x2v2· · ·xnvn.

Two families of Demazure operators: For i= 1, . . . ,n−1, πi,bπi :Z[x1,x2, ..,xn]−→Z[x1,x2, ..,xn],πbii−1 where

πif = xif −xi+1fsi

xi−xi+1 andπbif = xi+1f −xi+1fsi

xi−xi+1if −f. Two families of key polynomials: Forλa partition (at mostnparts) andw =siN. . .si2si1 a reduced decomposition inSn, one defines the typeAkey polynomials indexed bywλ

κ(x) =πiNπi2. . . πi1xλ and bκ(x) =bπiNi2. . .bπi1xλ. Examples: monomialxλandκωλ(x) =sλ(x) Schur polynomial.

(7)

KC

Key polynomials of type A andgln-crystal graphs

Key polynomials of type A (L-S, 1988)

Snis generated by the permutations si = (i i+ 1),i = 1, . . . ,n−1, The generatorssi act on vectorsv= [v1, . . . ,vn]∈Nnby

siv = [v1, . . . ,vi+1,vi. . . ,vn], fori= 1, . . . ,n−1,

and induce an action of Sn onZ[x1,x2, ..,xn] by considering vectors v as exponents of monomialsxv =x1v1x2v2· · ·xnvn.

Two families of Demazure operators: For i= 1, . . . ,n−1, πi,bπi :Z[x1,x2, ..,xn]−→Z[x1,x2, ..,xn],πbii−1 where

πif = xif −xi+1fsi

xi−xi+1 andπbif = xi+1f −xi+1fsi

xi−xi+1if −f.

Two families of key polynomials: Forλa partition (at mostnparts) andw =siN. . .si2si1 a reduced decomposition inSn, one defines the typeAkey polynomials indexed bywλ

κ(x) =πiNπi2. . . πi1xλ and bκ(x) =bπiNi2. . .bπi1xλ. Examples: monomialxλandκωλ(x) =sλ(x) Schur polynomial.

(8)

KC

Key polynomials of type A andgln-crystal graphs

Key polynomials of type A (L-S, 1988)

Snis generated by the permutations si = (i i+ 1),i = 1, . . . ,n−1, The generatorssi act on vectorsv= [v1, . . . ,vn]∈Nnby

siv = [v1, . . . ,vi+1,vi. . . ,vn], fori= 1, . . . ,n−1,

and induce an action of Sn onZ[x1,x2, ..,xn] by considering vectors v as exponents of monomialsxv =x1v1x2v2· · ·xnvn.

Two families of Demazure operators: For i= 1, . . . ,n−1, πi,bπi :Z[x1,x2, ..,xn]−→Z[x1,x2, ..,xn],πbii−1 where

πif = xif −xi+1fsi

xi−xi+1 andπbif = xi+1f −xi+1fsi

xi−xi+1if −f. Two families of key polynomials: Forλa partition (at mostnparts) andw =siN. . .si2si1 a reduced decomposition inSn, one defines the typeAkey polynomials indexed bywλ

κ(x) =πiNπi2. . . πi1xλ and bκ(x) =bπiNi2. . .bπi1xλ. Examples: monomialxλandκωλ(x) =sλ(x) Schur polynomial.

(9)

KC

Key polynomials of type A andgln-crystal graphs

gl

n

-crystal operators and Demazure operators

Choose the alphabetAn={1<2< ... <n}. Consider a nonempty wordw on this alphabet and leti∈ {1, . . . ,n−1}.

Pick the subword consisting only of lettersi,i+ 1.

Encode

i−→( i+ 1−→).

Ignore successively all the factors ( ) to construct a new subword

ρi=)r (s. Definefi :An−→An∪ {0}:

Ifs= 0,fi(w) = 0. Ifs>0,fi(w) is obtained by changing the leftmost parentheses ) ofρi =)r (s into )

i−→i+ 1.

Ifr = 0,ei(w) = 0. Ifr >0,ei(w) is obtained by changing the rightmost parentheses ) ofρi=)r (s into (

i+ 1−→i.

(10)

KC

Key polynomials of type A andgln-crystal graphs

gl

n

-crystal operators

f2: 212

((

)(

312

f2(212) = 312

)(

))

f22(212) = 313

e2(313) = 312 e2e2(312) = 212.

(11)

KC

Key polynomials of type A andgln-crystal graphs

gl

n

-crystal operators

f2: 212

((

)(

312

f2(212) = 312

)(

))

f22(212) = 313

e2(313) = 312 e2e2(312) = 212.

(12)

KC

Key polynomials of type A andgln-crystal graphs

gl

n

-crystal operators

f2: 212

((

)(

312

f2(212) = 312

)(

))

f22(212) = 313

e2(313) = 312 e2e2(312) = 212.

(13)

KC

Key polynomials of type A andgln-crystal graphs

gl

n

-crystal operators

f2: 212

((

)(

312

f2(212) = 312

)(

))

f22(212) = 313

e2(313) = 312 e2e2(312) = 212.

(14)

KC

Key polynomials of type A andgln-crystal graphs

gl

n

-crystal operators

f2: 212

((

)(

312

f2(212) = 312

)(

))

f22(212) = 313

e2(313) = 312 e2e2(312) = 212.

(15)

KC

Key polynomials of type A andgln-crystal graphs

gl

n

-crystal operators

f2: 212

((

)(

312

f2(212) = 312

)(

))

f22(212) = 313

e2(313) = 312 e2e2(312) = 212.

(16)

KC

Key polynomials of type A andgln-crystal graphs

gl

n

-crystal operators

f2: 212

((

)(

312

f2(212) = 312

)(

))

f22(212) = 313

e2(313) = 312 e2e2(312) = 212.

(17)

KC

Key polynomials of type A andgln-crystal graphs

gl

n

-crystal graph

Oriented colored graph with colors{1, . . . ,n1}. An arrowai biff fi(a) =bei(b) =a.

n= 3, λ= (210),B(210)gl3-crystal 1 = 2 =

1 1 2

1 1

3 1 2

2

1 23 1 32

1 3

3 2 2

3

2 3 3

(18)

KC

Key polynomials of type A andgln-crystal graphs

Type A Demazure-crystal graph

The Demazure crystalBs2s1(210)B(210) 1 = 2 =

1 1 2

1 1

3 1 2

2

1 2 3 1 3 2

1 3

3 2 2

3

2 3 3

fs1(K) ={K,f1(K)}

: π1(x210) =P

T∈fs1(K)xwt(T)

=x210+x120

fs2s1(K) ={f2m2f1m1(K) :m1,m20}

={K,f2(K)} ∪ {f1(K),f2f1(K),f22f1(K)}

: π2(x210) +π2(x120) =P

T∈fs2s1(K)xwt(T)

= (x210+x201) + (x120+x111+x102)

κs2s1λ(x) =π2π1(xλ) =P

T∈Bs2s1(210)xwt(λ)

=bκλ+bκs1λ+bκs2λ+bκs2s1λ

=P

ν<s2s1bκνλ

(19)

KC

Key polynomials of type A andgln-crystal graphs

Type A Demazure-crystal graph

The Demazure crystalBs2s1(210)B(210) 1 = 2 =

1 1 2

1 1

3 1 2

2

1 2 3 1 3 2

1 3

3 2 2

3

2 3 3

fs1(K) ={K,f1(K)}

: π1(x210) =P

T∈fs1(K)xwt(T)

=x210+x120

fs2s1(K) ={f2m2f1m1(K) :m1,m20}

={K,f2(K)} ∪ {f1(K),f2f1(K),f22f1(K)}

: π2(x210) +π2(x120) =P

T∈fs2s1(K)xwt(T)

= (x210+x201) + (x120+x111+x102)

κs2s1λ(x) =π2π1(xλ) =P

T∈Bs2s1(210)xwt(λ)

=bκλ+bκs1λ+bκs2λ+bκs2s1λ

=P

ν<s2s1bκνλ

(20)

KC

Key polynomials of type A andgln-crystal graphs

Type A Demazure-crystal graph

The Demazure crystalBs2s1(210)B(210) 1 = 2 =

1 1 2

1 1

3 1 2

2

1 2 3 1 3 2

1 3

3 2 2

3

2 3 3

fs1(K) ={K,f1(K)}

: π1(x210) =P

T∈fs1(K)xwt(T)

=x210+x120

fs2s1(K) ={f2m2f1m1(K) :m1,m20}

={K,f2(K)} ∪ {f1(K),f2f1(K),f22f1(K)}

: π2(x210) +π2(x120) =P

T∈fs2s1(K)xwt(T)

= (x210+x201) + (x120+x111+x102)

κs2s1λ(x) =π2π1(xλ) =P

T∈Bs2s1(210)xwt(λ)

=bκλ+bκs1λ+bκs2λ+bκs2s1λ

=P

ν<s2s1bκνλ

(21)

KC

Key polynomials of type A andgln-crystal graphs

Type A Demazure-crystal graph

The Demazure crystalBs2s1(210)B(210) 1 = 2 =

1 1 2

1 1

3 1 2

2

1 2 3 1 3 2

1 3

3 2 2

3

2 3 3

fs1(K) ={K,f1(K)}

: π1(x210) =P

T∈fs1(K)xwt(T)

=x210+x120

fs2s1(K) ={f2m2f1m1(K) :m1,m20}

={K,f2(K)} ∪ {f1(K),f2f1(K),f22f1(K)}

: π2(x210) +π2(x120) =P

T∈fs2s1(K)xwt(T)

= (x210+x201) + (x120+x111+x102)

κs2s1λ(x) =π2π1(xλ) =P

T∈Bs2s1(210)xwt(λ)

=bκλ+bκs1λ+bκs2λ+bκs2s1λ

=P

ν<s2s1bκνλ

(22)

KC

Key polynomials of type A andgln-crystal graphs

Tableau criterion for Bruhat order on S

n

σ,µ∈Sn,v = (n,n−1, . . . ,2,1)∈Nn

σ≥µiffkey(σv)≥key(µv)

key(v1,v2, . . . ,vn)=semistandard tableau of shape the decreasing rearrangement of (v1, . . . ,vn) whose firstvi columns contain the letteri

n= 4

key(s2s3s1s2(4,3,2,1)) =key(2,1,4,3), key(s2s3s1(4,3,2,1)) =key(3,1,4,2)

key(2,1,4,3) =

1 1 3 3

2 3 4 3 4 4

≥key(3,1,4,2) =

1 1 1 3

2 3 3 3 4 4 s2s3s1s2≥s2s3s1

(23)

KC

Key polynomials of type A andgln-crystal graphs

Characterisation of the tableaux in the gl

n

-Demazure crystal, L-S (1988)

key polynomial innvariablesx = (x1, . . . ,xn) κ(x) = X

T∈Bw(λ)

xwtT = X

key(β)≤key(wλ)

β.

β(x) = X

SSYTT wtT∈Nn sh(T)=λ K+(T)=key(β)

xwtT,

κ(x) = X

SSYTT wtT∈Nn sh(T)=λ K+(T)≤key(wλ)

xwtT.

(24)

KC

Key polynomials of type C andspn-crystal graphs

Hyperoctahedral group S

Bn

The hyperoctahedral groupSBn (2nn! elements) is the Weyl group of the symplectic groupSp(2n,C). SBn is generated by the sign permutationssi= (i,i+ 1)(i,i+ 1),i = 1, . . . ,n−1 and sn= (n,n), which satisfy the relations:

1 si2= 1, i= 1, . . . ,n;

2 sisj =sjsi if|i−j| ≥2;

3 sisi+1si =si+1sisi+1, i= 1, . . . ,n−2;

4 sn−1snsn−1sn=snsn−1snsn−1.

[123¯4] =s4, [1243] =s3, [124¯3] =s3s4,

[12¯43] =s4s3, [12¯34] =s3s4s3, [12¯3¯4] =s4s3s4s3, [¯1¯2¯3¯4]

(25)

KC

Key polynomials of type C andspn-crystal graphs

S

Bn

The generatorssi act on vectorsv= [v1, . . . ,vn]∈Zn by siv = [v1, . . . ,vi−1,vi+1,vi. . . ,vn], fori= 1, . . . ,n−1, and

snv= [v1, . . . ,vn−1,−vn].

This induces an action ofSBn on the Laurent polynomials ring Z[x1±, . . . ,xn±] by considering vectors v∈Zn as exponents of monomials xv =x1v1x2v2· · ·xnvn.

(26)

KC

Key polynomials of type C andspn-crystal graphs

Type C Demazure operators

Two families of Demazure operators: For i= 1, . . . ,n, πCi ,bπCi :Z[x±,n]−→Z[x±,n],πbCiCi −1 where

πCi f = xif −xi+1fsi xi−xi+1

and bπCi f = xi+1f −xi+1fsi xi−xi+1

, i6=n and

πCnf = xn2f −fsn

xn2−1 and πbCnf = f −fsn xn2−1.

Two families of key polynomials: Forλa partition (at mostnparts) andw =siC

N. . .siC

2siC

1 reduced decomposition, one defines typeC key polynomials indexed bywλ

κC(x) =πiC

1πi2. . . πiC

Nxλ and bκC(x) =πbiC

1iC

2. . .πbCi

nxλ. Examples: monomialxλandκCωλ(x) =spλ(x) symplectic Schur polynomial.

(27)

KC

Key polynomials of type C andspn-crystal graphs

Type C Demazure operators

Two families of Demazure operators: For i= 1, . . . ,n, πCi ,bπCi :Z[x±,n]−→Z[x±,n],πbCiCi −1 where

πCi f = xif −xi+1fsi xi−xi+1

and bπCi f = xi+1f −xi+1fsi xi−xi+1

, i6=n and

πCnf = xn2f −fsn

xn2−1 and πbCnf = f −fsn xn2−1.

Two families of key polynomials: Forλa partition (at mostnparts) andw =siC

N. . .siC

2siC

1 reduced decomposition, one defines typeC key polynomials indexed bywλ

κC(x) =πCi

1πi2. . . πiC

Nxλ and κbC(x) =πbiC

1iC

2. . .πbCi

nxλ. Examples: monomialxλandκCωλ(x) =spλ(x) symplectic Schur polynomial.

(28)

KC

Key polynomials of type C andspn-crystal graphs

Symplectic crystal operators

Choose the alphabetCn={1<2< ... <n<n¯< ... <¯2<¯1}. Consider a nonempty wordwon this alphabet and leti∈ {1, . . . ,n}.

Pick the subword consisting only of lettersi+ 1,¯i,i,i+ 1.

Encode

i+ 1,i−→+ ¯i,i+ 1−→ − Ignore all the successive factors +to construct a new subword

ρi=r+s Definefi:Cn−→Cn∪ {0}:

Ifs= 0,fi(w) = 0. Ifs>0,fi(w) is the word obtained by changing the left most symbol + ofρi=r+sintowhere

i−→i+ 1, i+ 1−→¯i, and wheni=n, n−→n.¯

Ifr= 0,ei(w) = 0. Ifr>0,ei(w) is obtained by changing the rightmost symbolofρi =)r(sinto + where

i+ 1−→i ¯i−→i+ 1, and wheni=n, ¯n−→n.

(29)

KC

Key polynomials of type C andspn-crystal graphs

Example

ω= 12¯1¯1¯22121¯1¯2

+− − −+−+ +−+

Ignore all factors + −

− − +

− − −

¯2−→¯1 ω= (12)¯1¯1(¯22)(12)(1¯1)¯1.

(30)

KC

Key polynomials of type C andspn-crystal graphs

Example

ω= 12¯1¯1¯22121¯1¯2

+− − −+−+ +−+

Ignore all factors + −

− − + − − −

¯2−→¯1 ω= (12)¯1¯1(¯22)(12)(1¯1)¯1.

(31)

KC

Key polynomials of type C andspn-crystal graphs

Symplectic tableaux (De Concini, Kashiwara-Nakashima)

Admissible columns on the alphabet

Cn={1<2< ... <n<¯n< ... <¯2<¯1}. n= 6

P= 2 4 6

¯6

¯4

2 4 6

¯4 ¯6 Q= 2 3 4

¯4

¯2

2 3 4

¯2 ¯4

A column is an admissible column iff the diagram is such that there is a matching which sends each full slot to an empty slot to its left.

Splitting column form

P= 2 4 5

¯6

¯5

2 4 5

¯5 ¯6 (`T,rT) = 2 2 3 4 4 5

¯6 ¯6

¯5 ¯3

A SSYT tableauT with admissible columnsT1,T2, . . . ,Tc is a symplectic tableau if the split column form of T is semistandard.

(32)

KC

Key polynomials of type C andspn-crystal graphs

Symplectic tableaux

P=

1 2 2 ¯1 4 4 ¯3

¯4 ¯2 ¯1

¯3

(`P,rP) =

1 1| 1 2| 2 2| ¯1 ¯1 2 4| 4 4| ¯3 ¯3|

¯4 ¯3| ¯2 ¯1| ¯1 ¯1|

¯3 ¯2|

wt(P) = (d1, . . . ,dn),di is the number of lettersi minus the number of letters ¯i,

wt(P) = (−1,1,−2,1).

(33)

KC

Key polynomials of type C andspn-crystal graphs

Symplectic tableaux

P=

1 2 2 ¯1 4 4 ¯3

¯4 ¯2 ¯1

¯3

(`P,rP) =

1 1| 1 2| 2 2| ¯1 ¯1 2 4| 4 4| ¯3 ¯3|

¯4 ¯3| ¯2 ¯1| ¯1 ¯1|

¯3 ¯2|

wt(P) = (d1, . . . ,dn),di is the number of lettersi minus the number of letters ¯i,

wt(P) = (−1,1,−2,1).

(34)

KC

Key polynomials of type C andspn-crystal graphs

Symplectic key tableaux

(v1,v2, . . . ,vn)∈Zn, alphabet

Cn={1<2< ... <n<¯n< ... <¯2<¯1}.

key(v1,v2, . . . ,vn)=semistandard tableau of shape (|v1|, . . . ,|vn|)+ whose first|vi|columns contain the letteri ifvi≥0, and−i if vi <0.

key(−1,0,3,−2,5,0,−3) =

3 3 3 5 5

5 5 5

¯7 ¯7 ¯7

¯4 ¯4

¯1

A column of a key either containsj or ¯j but not both. The columns of a key are admissible and its splitting form is a semistandard tableau.

(35)

KC

Key polynomials of type C andspn-crystal graphs

Symplectic crystal graph sp

2

1 1 2 1 2

2

1 1

¯2

1 ¯2 2

1 2

¯2

2 2

¯2 2 2

¯1 2 ¯2

¯2 2 ¯2

¯1

¯2 ¯2

¯1

¯2 ¯1

¯1 1 ¯2

¯2 1 ¯1

¯2 1 ¯1 2

2 ¯1

¯2

2 ¯1

¯1

(36)

KC

Key polynomials of type C andspn-crystal graphs

Symplectic Demazure crystal B

s1s2

(21)

1 1 2 1 2

2 1 1

¯2

1 ¯2 2

1 2¯ 2

2 2¯ 2

2 2¯ 1 2 ¯2

¯2 2 ¯2

¯1

¯2 ¯2

¯1

¯2 ¯1

¯1 1 ¯2

¯2 1 ¯1

¯2 1 ¯1 2

2 ¯1

¯2

2 ¯1

¯1

: π2(x21) =x21+x1

: π1(x21) =x21+x12 π1(x1) =x1+x10+x01+x¯12

(37)

KC

Key polynomials of type C andspn-crystal graphs

Symplectic Demazure crystal B

s1s2

(21)

1 1 2 1 2

2 1 1

¯2

1 ¯2 2

1 2¯ 2

2 2¯ 2

2 2¯ 1 2 ¯2

¯2 2 ¯2

¯1

¯2 ¯2

¯1

¯2 ¯1

¯1 1 ¯2

¯2 1 ¯1

¯2 1 ¯1 2

2 ¯1

¯2

2 ¯1

¯1

: π2(x21) =x21+x1

: π1(x21) =x21+x12 π1(x1) =x1+x10+x01+x¯12

(38)

KC

Key polynomials of type C andspn-crystal graphs

Symplectic Demazure crystal B

s1s2

(21)

1 1 2 1 2

2 1 1

¯2

1 ¯2 2

1 2¯ 2

2 2¯ 2

2 2¯ 1 2 ¯2

¯2 2 ¯2

¯1

¯2 ¯2

¯1

¯2 ¯1

¯1 1 ¯2

¯2 1 ¯1

¯2 1 ¯1 2

2 ¯1

¯2

2 ¯1

¯1

: π2(x21) =x21+x1

: π1(x21) =x21+x12 π1(x1) =x1+x10+x01+x¯12

(39)

KC

Key polynomials of type C andspn-crystal graphs

Symplectic Demazure crystal B

s2s1s2

(21)

1 1 2 1 2

2 1 1

¯2

1 ¯2 2

1 2¯ 2

2 2¯ 2

2 2¯ 1 2 ¯2

¯2 2 ¯2

¯1

¯2 ¯2

¯1

¯2 ¯1

¯1 1 ¯2

¯2 1 ¯1

¯2 1 ¯1 2

2 ¯1

¯2

2 ¯1

¯1

: π2(x21) =x21+x1

: π1(x21) =x21+x12 π1(x1) =x1+x10+x01+x¯12

: π2(x¯12) =x¯12+x¯10+x¯2 π2(x01) =x01+x1 π2(x12) =x10+x1

(40)

KC

Key polynomials of type C andspn-crystal graphs

Symplectic Demazure crystal B

s2s1s2

(21)

1 1 2 1 2

2 1 1

¯2

1 ¯2 2

1 2¯ 2

2 2¯ 2

2 2¯ 1 2 ¯2

¯2 2 ¯2

¯1

¯2 ¯2

¯1

¯2 ¯1

¯1 1 ¯2

¯2 1 ¯1

¯2 1 ¯1 2

2 ¯1

¯2

2 ¯1

¯1

: π2(x21) =x21+x1

: π1(x21) =x21+x12 π1(x1) =x1+x10+x01+x¯12

: π2(x¯12) =x¯12+x¯10+x¯2 π2(x01) =x01+x1 π2(x12) =x10+x1

(41)

KC

Key polynomials of type C andspn-crystal graphs

Symplectic Demazure crystal of a sp

2

-crystal

Key polynomial of type C

κCs

1s2λ(x1,x2) = X

T∈Bs1s2(21)

xwtT =x(21)+x(2¯1)+x(12)+x(10)+x(01)x1,2)=

=x12x2+x12x2−1+x1x22+x1+x2+x1−1x22.

wtT = (d1, . . . ,dn)∈Zn, where di is the number of lettersi in T minus the number of letters ¯i in T.

(42)

KC

Key polynomials of type C andspn-crystal graphs

Tableau criterion for Bruhat order on S

Bn

σ,µ∈SBn,σ≤C µ⇒Bσ⊆Bµ v = (n,n−1, . . . ,2,1)∈Nn

σ≤C µiffkeyC(σv)≤keyC(µv) n= 4, µ=s1s2s4s3s4s3C σ=s2s3s4

keyC(µ(4321))≥keyC(σ(4321))

keyC(¯2,43¯1) =

2 2 2 2

3 3 3

¯4 ¯1

¯1

≥keyC(4¯132) =

1 1 1 1

3 3 3 4 4

¯2

(43)

KC

Key polynomials of type C andspn-crystal graphs

Symplectic Demazure crystal B

s2s1s2

(21)

1 1 2 1 2

2 1 1

¯2

1 ¯2 2

1 2¯ 2

2 2¯ 2

2 2¯ 1 2 ¯2

¯2 2 ¯2

¯1

¯2 ¯2

¯1

¯2 ¯1

¯1 1 ¯2

¯2 1 ¯1

¯2 1 ¯1 2

2 ¯1

¯2

2 ¯1

¯1

: π2(x21) =x21+x1

: π1(x21) =x21+x12 π1(x1) =x1+x10+x01+x¯12

: π2(x¯12) =x¯12+x¯10+x¯2 π2(x01) =x01+x1 π2(x12) =x10+x1

参照

関連したドキュメント

S49119 Style Classic Flexor Grade 7.0 Fixation Manual Weight 215g Size range 35 - 52 TECHNOLOGY-HIGHLIGHTS. •

We classify groups generated by powers of two Dehn twists which are free, or have no “unexpectedly reducible” elements.. In the end we pose similar problems for groups generated

We give a representation of an elliptic Weyl group W (R) (= the Weyl group for an elliptic root system ∗) R) in terms of the elliptic Dynkin diagram Γ(R, G) for the elliptic

In this paper the classes of groups we will be interested in are the following three: groups of the form F k o α Z for F k a free group of finite rank k and α an automorphism of F k

In this section, the degenerate Apostol–type Hermite polynomials are introduced and certain result for these polynomials are derived..

In [13], some topological properties of solutions set for (FOSPD) problem in the convex case are established, and in [15], the compactness of the solutions set is obtained in

In the present paper, starting from Matsumoto’s presentations, we calculate pre- sentations for all punctured mapping class groups M (F g,r , P n ) as quotients of Artin groups by

In general, we can obtain in a combinatorial way a Weyl type character formula for various irreducible highest weight representations of a Lie superalgebra, which together with