• 検索結果がありません。

Primary, for each injection pressure, cavitation phenomenon was observed and pressure inside the nozzle hole was measured

N/A
N/A
Protected

Academic year: 2022

シェア "Primary, for each injection pressure, cavitation phenomenon was observed and pressure inside the nozzle hole was measured"

Copied!
11
0
0

読み込み中.... (全文を見る)

全文

(1)THE SCIENCE AND ENGINEERING REVIEW OF DOSHISHA UNIVERSITY, VOL. 51, NO. 2 July 2010. Clarification of Cavitation Influence on Spray Atomization (1st Report, Visualization of Internal Flow Using Enlarged Nozzle). Masashi MATSUMOTO *1, Eriko MATSUMURA *2, Jiro SENDA *3 (Received May 20, 2010). In this research, it is purpose to understand a cavitation effect on fuel spray atomization for various nozzle geometries and injection conditions. The experiment is carried out by use of 25-times enlarged acrylic nozzle that has rectangular geometry for cavitation observation and pressure measurement inside the nozzle. Primary, for each injection pressure, cavitation phenomenon was observed and pressure inside the nozzle hole was measured. Secondary, various fuels having different vapor pressure were applied under the constant injection pressure for cavitation observation and pressure measurement inside the nozzle hole. As results of these experiments, by use of test fuel having high vapor pressure, cavitation region develops as well as increase in fuel injection pressure. In addition, pressure distribution inside the nozzle has the strong relationship with the cavitation region. Furthermore, cavitation region, pressure inside the nozzle at each measurement position and width of liquid jet injected from the nozzle is able to be arranged by using cavitation number. Meanwhile, the calculation using Star-CD is conducted under the same condition as experiments. For scale of cavitation region, calculation results denote same tendency of experimental visualization inside the nozzle.. .H\ZRUGV㸸cavitation, atomization, saturated vapor pressure, cavitation number, spray characteristics ࣮࣮࢟࣡ࢻ㸸࢟ࣕࣅࢸ࣮ࢩࣙࣥ㸪ᚤ⢏໬㸪㣬࿴⵨Ẽᅽ㸪࢟ࣕࣅࢸ࣮ࢩࣙࣥᩘ㸪ᄇ㟝≉ᛶ. ᄇ㟝ᚤ⢏໬࡟ᑐࡍࡿ࢟ࣕࣅࢸ࣮ࢩࣙࣥࡢᙳ㡪ࡢゎ᫂ (➨  ሗ㸪ᣑ኱ࣀࢬࣝࢆ⏝࠸ࡓࣀࢬࣝෆὶື≧ἣࡢྍど໬). ᯇᮏ 㞞⮳*1㸪ᯇᮧ ᜨ⌮Ꮚ*2㸪༓⏣ ஧㑻*3.                                   ࡣࡌࡵ࡟. ࢆక࠺࢟ࣕࣅࢸ࣮ࢩࣙࣥࡀ⏕ࡌࡿࡓࡵ㸪௒࡞࠾ヲ⣽.  ⟄ෆ┤᥋ᄇᑕᘧ࢞ࢯ࢚ࣜࣥࣥࢪࣥ࡟࠾࠸࡚㸪ᄇᑕ. ࡣ᫂ࡽ࠿࡛࡞࠸㸬ࡋࡓࡀࡗ࡚㸪ࣀࢬࣝෆ㒊ࡢ⇞ᩱὶ. ࣀࢬࣝෆ㒊ࡢ⇞ᩱὶືࡣ⇞ᩱᄇ㟝ࡢ≉ᛶࡦ࠸࡚ࡣᶵ. ືࡦ࠸࡚ࡣ⇞ᩱᄇ㟝ࡢᚤ⢏໬ᶵᵓ࡟ᑐࡍࡿᙳ㡪ࢆゎ. 㛵ᛶ⬟࡟ᙳ㡪ࢆཬࡰࡍ㔜せ࡞ᅉᏊ࡛࠶ࡿ㸬ࡋ࠿ࡋ࡞. ᫂ࡍࡿ࡟࠶ࡓࡾ㸪ࣀࢬࣝෆ࢟ࣕࣅࢸ࣮ࢩࣙࣥࢆᢕᥱ. ࡀࡽ㸪ࣀࢬࣝෆ㒊࡛ࡣὶືሙ࡟ᛂࡌ࡚㧗㏿࡞┦ኚ໬. ࡍࡿࡇ࡜ࡀ⫢せ࡛࠶ࡿ㸬୍⯡࡟㸪⇞ᩱࡢᅽຊࡀ㣬࿴. *1 Department of Mechanical and Engineering, Graduate School of Doshisha University, Kyoto Telephone:+ 81-774-65-7742, Fax:+81-774-65-7743, E-mail: etk1303@mail4.doshisha.ac.jp *2 Power Train Engineering Div.2 TOYOTA MOTOR CORPORATION, Shizuoka *3 Department of Mechanical and Engineering, Doshisha University, Kyoto. ( 47 ).

(2) 松本雅至・松村恵理子・千田二郎. 114. ⵨Ẽᅽࢆୗᅇࡿࡇ࡜࡛࢟ࣕࣅࢸ࣮ࢩࣙࣥࡀⓎ⏕ࡋ㸪 ࿘ᅖὶయࡢᅽຊኚື࡟ᛂࡌ࡚ᡂ㛗࣭ᔂቯࡍࡿࡇ࡜ࡀ ▱ࡽࢀ࡚࠸ࡿ. 1㸪 2). ws. 㸬ࡋࡓࡀࡗ࡚㸪ࣀࢬࣝෆ࢟ࣕࣅࢸ. wh. ࣮ࢩࣙࣥ࡟㛵ࡋ࡚ࡣ㸪ᄇᏍෆࡢᅽຊศᕸࡀẼἻࡢึ ⏕㸪ࡉࡽ࡟ࡣᚋࡢẼἻᣲື࡟ᑐࡋ࡚ᨭ㓄ⓗ࡛࠶ࡿ㸬 t = 5mm. lh. 㐣ཤࡢ◊✲ 3-5)࡟࠾࠸࡚㸪࢟ࣕࣅࢸ࣮ࢩࣙࣥࡢⓎ㐩 ẁ㝵࡜ᚤ⢏໬ᶵᵓ࡜ࡢ┦㛵ᛶ࠾ࡼࡧࣀࢬࣝᙧ≧ࡀ࢟ ࣕࣅࢸ࣮ࢩࣙࣥࡢᵝ┦࡟ཬࡰࡍᙳ㡪࡞࡝ࡀሗ࿌ࡉࢀ ࡓ㸬ࡋ࠿ࡋ࡞ࡀࡽ㸪࢟ࣕࣅࢸ࣮ࢩࣙࣥ⌧㇟࡜ࣀࢬࣝ ෆᅽຊࡢ㛵ಀࢆ᫂☜࡟♧ࡋࡓ◊✲౛ࡣᑡ࡞࠸ 6-8)㸬ࡲ. Fig. 1. Nozzle configuration. ࡓ㸪࠸ࡎࢀࡢ◊✲ࡶ࢟ࣕࣅࢸ࣮ࢩࣙࣥ⌧㇟ࢆᄇᑕᅽ. Table 1. Dimensions of actual and enlarged nozzle. ຊ࡟ࡼࡾኚ໬ࡉࡏ࡚࠾ࡾ㸪ᅽຊሙ࡟ᑐࡍࡿὶ㏿ࡢᙳ. Actual nozzle 25-times enlarged nozzle (Slit type). 㡪ࢆ↓どࡋᚓ࡞࠸㸬ࡑࡢࡓࡵ㸪࢟ࣕࣅࢸ࣮ࢩࣙࣥ⌧. Hole length lh. [mm]. 0.70. ㇟ࡑࡢࡶࡢ࡜ᄇᏍෆᅽຊࡢヲ⣽࡞㛵ಀࡣᐃ࠿࡛࡞࠸㸬. Hole width. wh [mm]. 0.15. 3.75. Sac width. ws [mm]. 0.80. 20.00. ࡋࡓࡀࡗ࡚㸪࢟ࣕࣅࢸ࣮ࢩࣙࣥ⌧㇟ࡢヲ⣽ࢆ᫂ࡽ࠿. 17.50. 䈜 unit : [mm]. 6.0.  ࡑࡇ࡛㸪ᮏ◊✲࡛ࡣ✀ࠎࡢࣀࢬࣝ௙ᵝ࠾ࡼࡧᄇᑕ. 13.0. 11.5. ෆᅽຊࢆᢕᥱࡍࡿᚲせࡀ࠶ࡿ㸬. 4.5. ࡜ࡍࡿ࡟࠶ࡓࡾ㸪ከᵝ࡞ὶື≧ἣୗ࡟࠾ࡅࡿࣀࢬࣝ. ᮲௳࡟ᑐࡍࡿ⇞ᩱᄇ㟝≉ᛶࢆヲ⣽࡟ᢕᥱࡍࡿࡓࡵ㸪 ᄇᏍෆ㒊࡟⏕ࡌࡿ࢟ࣕࣅࢸ࣮ࢩࣙࣥ⌧㇟ࡢᇶ♏ⓗ≉ ᛶࢆ᫂☜࡟ࡍࡿࡇ࡜ࢆ┠ⓗ࡜ࡍࡿ㸬ࡲࡎ㸪஧ḟඖࡢ. (a) version 1. (b) version 2. ᣑ኱ྍど໬ࣀࢬࣝࢆ⏝࠸࡚✀ࠎࡢᄇᑕ᮲௳࡟ᑐࡍࡿ. Fig. 2. Set position of pressure sensor. ࢟ࣕࣅࢸ࣮ࢩࣙࣥᣲືࡢ᧜ᙳ࠾ࡼࡧᄇᏍ㒊ࡢᅽຊィ. ࣝࡢᑍἲࢆ 25 ಸ࡟ᣑ኱ࡋࡓ࢔ࢡࣜࣝࣀࢬࣝࢆ〇స. ࢆ⾜࡞ࡗࡓ㸬ḟ࡟㸪୍ᐃᄇᑕ᮲௳ୗ࡟࠾࠸࡚⇞ᩱ. ࡋࡓ㸬ࣀࢬࣝᙧ≧࠾ࡼࡧᑍἲࢆ Fig.1㸪Table 1 ࡟ࡑ. ࡢ㣬࿴⵨Ẽᅽࡢᕪ␗ࡀ࢟ࣕࣅࢸ࣮ࢩࣙࣥ⌧㇟࠾ࡼࡧ. ࢀࡒࢀ♧ࡍ㸬࢟ࣕࣅࢸ࣮ࢩࣙࣥ⌧㇟ࡢᇶ♏ⓗᣲືࢆ. ᄇᏍ㒊ᅽຊ࡟ཬࡰࡍᙳ㡪ࢆᢕᥱࡋࡓ㸬ࡇࢀࡽࡼࡾ㸪. ෌⌧ࡍࡿࡓࡵᮏࣀࢬࣝᙧ≧ࡣ༢⣧▴ᙧ࡜ࡋ㸪⌧㇟ࢆ. ✀ࠎࡢᄇᑕ᮲௳࣭⇞ᩱࡢ㣬࿴⵨Ẽᅽ࡟ᑐࡍࡿ࢟ࣕࣅ. ஧ḟ໬ࡍࡿࡓࡵ࡟ࣀࢬࣝཌࡉࢆ 5mm ୍࡛ᵝ࡜ࡋࡓ㸬. ࢸ࣮ࢩࣙࣥ⌧㇟࡜ᄇᏍෆᅽຊࡢ㛵ಀࢆᩚ⌮ࡋࡓ㸬ࡲ. ࡲࡓ㸪ᅽຊィ. ࡓ㸪᧜ᙳ⏬ീࢆࡶ࡜࡟ᄇὶᖜ࠾ࡼࡧᄇᏍෆ࣎࢖ࢻ⋡. PYS-3 (ឤᅽ㠃┤ᚄ㸸3mm㸪ศゎ⬟㸸⣙ 0.5kPa㸪ࢧࣥ. ࢆ⟬ฟࡋ㸪࢟ࣕࣅࢸ࣮ࢩࣙࣥᩘ࡟ࡼࡾᩚ⌮ࡋࡓ㸬ࡉ. ࣉࣜࣥࢢ࿘Ἴᩘ㸸50kHz㸪JTEKT 〇)ࢆ౑⏝ࡋ㸪ࣀࢬ. ࡽ࡟㸪ỗ⏝⇕ὶయゎᯒࣉࣟࢢ࣒ࣛ Star-CD ࢆ⏝࠸ࡓ. ࣝᄇᏍ㒊ᅽຊࡢ஧Ⅼྠ᫬ィ ࢆྍ⬟࡜ࡋࡓ㸬ࡉࡽ࡟㸪. ゎᯒࢆ⾜࡞࠸㸪ᐇ㦂⤖ᯝ࡜ࡢẚ㍑᳨࣭ドࢆヨࡳࡓ㸬. ᄇᏍ㒊ࡢᅽຊሙࢆヲ⣽࡟ᤊ࠼ࡿࡓࡵ㸪Fig.2 ࡟♧ࡍࡼ. ჾ࡜ࡋ࡚༙ᑟయᘧࢺࣛࣥࢫࢹ࣮ࣗࢧ. ࠺࡟␗࡞ࡿᅽຊィ ⟠ᡤࢆ᭷ࡍࡿࣔࢹࣝࢆ⏝ពࡋࡓ㸬 . ᐇ㦂⿦⨨ ౪ヨࣀࢬࣝ. ౪ヨ⇞ᩱ.  ୍⯡࡟㸪ᐇࣀࢬࣝ࡟࠾ࡅࡿ࢟ࣕࣅࢸ࣮ࢩࣙࣥ⌧㇟.  ᮏᐇ㦂࡛ࡣ㸪ᄇᑕ᮲௳ࡢ࡯࠿࡟⇞ᩱࡢ㣬࿴⵨Ẽᅽ. ࡣ㠀ᖖ࡟㧗㏿࠿ࡘᚤ⣽࡞┦ኚ໬ࢆక࠺ࡓࡵ㸪ᣑ኱ࣔ. ࡢᕪ␗࡟ࡼࡾẼἻࡢึ⏕ࢆኚ໬ࡉࡏ㸪ࡇࢀࡀ࢟ࣕࣅ. ࢹࣝࢆ⏝࠸ࡓㄪᰝࡀ⾜࡞ࢃࢀ࡚࠸ࡿ㸬ࡲࡓ㸪ᮏሗ࡟. ࢸ࣮ࢩࣙࣥ⌧㇟࡟ཬࡰࡍᙳ㡪ࢆㄪᰝࡍࡿ㸬 ࡑࡢࡓࡵ㸪. ࠾࠸࡚ࡶᄇᏍෆࡢᅽຊศᕸࢆᢕᥱࡍࡿࡇ࡜ࢆ┠ⓗ࡜. 㣬࿴⵨Ẽᅽࡀ␗࡞ࡿ⇞ᩱࢆ㑅ᐃࡍࡿᚲせࡀ࠶ࡿ㸬ࡑ. ࡍࡿࡓࡵ㸪ᮏᐇ㦂࡟࠾ࡅࡿ౪ヨࣀࢬࣝ࡜ࡋ࡚ᐇࣀࢬ. ࡇ࡛㸪ᮏሗ࡛ࡣࣞࢠ࣮ࣗࣛ࢞ࢯࣜࣥࢆᶍᨃࡋᚓࡿ༢. ( 48 ).

(3) 噴霧微粒化に対するキャビテーションの影響の解明(第 1 報,拡大ノズルを用いたノズル内流動状況の可視化) 115. ࢆᤊ࠼ࡿࡇ࡜ࡀྍ⬟࡛࠶ࡿ࡜⪃࠼ࡽࢀࡿ㸬. ᡂศ࠾ࡼࡧ஧ᡂศ⇞ᩱࢆỴᐃࡍࡿ㸬 ࡲࡎ㸪ࣞࢠ࣮ࣗࣛ࢞ࢯࣜࣥࢆᶍᨃࡋᚓࡿ༢ᡂศ⇞. . ᩱࡢ㑅ᐃࢆ⾜࡞ࡗࡓ㸬ࣞࢠ࣮ࣗࣛ࢞ࢯࣜࣥ࡟ྵࡲࢀ. ⇞ᩱᄇᑕࢩࢫࢸ࣒. ࡿ✀ࠎࡢᡂศࡢ㉁㔞ẚ m ࢆ Table 2 ࡟♧ࡍ㸬Table 2.  ᮏᐇ㦂࡟࠾࠸࡚⏝࠸ࡓ⇞ᩱᄇᑕࢩࢫࢸ࣒ࢆ Fig.3. ࡟♧ࡋࡓⅣ໬Ỉ⣲ࡣࣞࢠ࣮ࣗࣛ࢞ࢯࣜࣥ࡟࠾࠸࡚. ࡟♧ࡍ㸬Ἔᅽࢩࣜࣥࢲෆ࡟඘ሸࡉࢀࡓ౪ヨ⇞ᩱࡣ N2. 1wt%௨ୖࡢ㉁㔞ศ⋡ࢆ᭷ࡋ㸪࠿ࡘ NIST Thermal. ࢞ࢫ࡟ࡼࡾᡤᐃࡢᅽຊ࡟ቑᅽࡉࢀࡓ࢚࢔ࢩࣜࣥࢲࡢ. Properties of Hydrocarbon Mixtures Database ࣉࣟࢢࣛ. Table 2. Mass fraction of regular gasoline. ࣒(௨ୗ NIST ࣉࣟࢢ࣒ࣛ)࡟⤌ࡳ㎸ࡲࢀ࡚࠸ࡿᡂศ. Component. 9). ࡛࠶ࡿ㸬ᮏሗ࡛ࡣ㸪ࡇࢀࡽ 14 ᡂศࢆᩥ⊩ ࡟グ㍕ࡉ. Actual mass fraction Hypothetical mass fraction m [wt%] m’ [wt%]. 2-Methylpentane. 5.40. 12.44. Benzene. 4.78. 11.02. ࢆࣞࢠ࣮ࣗࣛ࢞ࢯࣜࣥ࡜௬ᐃࡋࡓ㸬Table 2 ࡼࡾ㣬࿴. Toluene. 4.73. 10.90. ⵨Ẽᅽ Pv ࠾ࡼࡧື⢓ᛶಀᩘQࢆ NIST ࣉࣟࢢ࣒ࣛ࡟. Pentane. 4.09. 9.43. Butane. 3.81. 8.78. ࡼࡾ⟬ฟࡋࡓ⤖ᯝࢆ Table 3 ࡟♧ࡍ㸬࡞࠾㸪ィ⟬࡟ᚲ. Hexane. 3.59. 8.27. 2-Methylhexane. 3.53. 8.14. 3-Methylpentane. 3.52. 8.11. ᡂศ⇞ᩱ࡛࠶ࡿࣞࢠ࣮ࣗࣛ࢞ࢯࣜࣥࡣ࠶ࡿ ᗘᖜ࡟. 3-Methylhexane. 2.72. 6.27. ࠾࠸࡚Ẽᾮࡀΰᅾࡍࡿ஧┦㡿ᇦࢆᙧᡂࡍࡿࡓࡵ㸪ࡑ. 2-Methyl-2-butene. 1.94. 4.47. Methylcyclopentane. 1.54. 3.55. Heptane. 1.51. 3.48. trans-2-Pentene. 1.14. 2.63. 2,3-Dimethylbutane. 1.09. 2.51. Regular gasoline. 43.39. 100. ࢀ࡚࠸ࡿ㉁㔞ẚ m ࡜ྠࡌ㉁㔞ẚ m’࡛ΰྜࡋࡓࡶࡢ. せ࡞㞺ᅖẼ᮲௳ࡣᐊ. 㸪኱Ẽᅽሙ࡜ࡋࡓ㸬ࡲࡓ㸪ከ. ࡢ㣬࿴⵨Ẽᅽࡣ୍ᐃࡢᖜࢆ᭷ࡍࡿ⤖ᯝ࡜࡞ࡿ㸬௨ୖ ࡢ⤖ᯝ࠿ࡽ㸪㣬࿴⵨Ẽᅽ Pv ࠾ࡼࡧື⢓ᛶಀᩘQࡀࣞ ࢠ ࣗ ࣛ ࣮ ࢞ ࢯ ࣜ ࣥ ࡢ ୰ ኸ ್ ࡛ ࠶ ࡿ iso-Hexane (2-Methylpentane)ࢆᮏᐇ㦂࡛౑⏝ࡍࡿ༢ᡂศ⇞ᩱ࡜. Table 3. Properties and components of regular gasoline. ࡋࡓ㸬. Component. Saturated vapor pressure Pv [MPa]. Kinematic viscosity Q㽢10-6 [m2/s]. 2-Methylpentane. 0.023. 0.452. Benzene. 0.010. 0.745. ⋡࡛ΰྜࡋࡓ㸬ྛ౪ヨ⇞ᩱ࡟࠾࠸࡚ࣞ࢖ࣀࣝࢬᩘ Re. Toluene. 0.003. 0.679. ࠾ࡼࡧ࢟ࣕࣅࢸ࣮ࢩࣙࣥẼἻࡢⓎἻ࣭ᡂ㛗࣭ᔂቯ㐣. Pentane. 0.056. 0.355. Butane. 0.208. -. Hexane. 0.016. 0.469. ḟ࡟㸪஧ᡂศ⇞ᩱࡢ㑅ᐃࢆ⾜࡞ࡗࡓ㸬ࡲࡎ㸪NIST ࣉࣟࢢ࣒ࣛࢆ⏝࠸࡚✀ࠎࡢⅣ໬Ỉ⣲ࢆ௵ពࡢࣔࣝศ. ⛬࡟ᕪࡀ⏕ࡌ࡞࠸ࡼ࠺㸪஧ᡂศ⇞ᩱ࡟࠾ࡅࡿᐦᗘU㸪 ⢓ᗘP࠾ࡼࡧ⾲㠃ᙇຊVࢆ 2-Methylpentane ࡜ྠ➼࡜ ࡍࡿᚲせࡀ࠶ࡿ㸬࡞࠾㸪஧ᡂศ⇞ᩱࡢ⾲㠃ᙇຊࡣࣃ ࣛࢥ್࣮ࣝ 10)ࢆ⏝࠸࡚⟬ฟࡋࡓ㸬 ࡇࢀࡽࡢࡇ࡜ࢆ⪃៖ࡋ㸪ᮏᐇ㦂࡛౑⏝ࡍࡿ஧ᡂศ ⇞ᩱࢆ Table 4 ࡟♧ࡍ࡜࠾ࡾ࡟㑅ᐃࡋࡓ㸬Table 4 ࡟ ♧ࡍࡼ࠺࡟ྛ౪ヨ⇞ᩱࡢ㣬࿴⵨Ẽᅽ࡟ᕪࡀ࠶ࡿࡓࡵ㸪 ࢟ࣕࣅࢸ࣮ࢩࣙࣥึ⏕ࡢኚ໬࡟ࡼࡿᅽຊሙ࡬ࡢᙳ㡪. 2-Methylhexane. 0.007. 0.560. 3-Methylpentane. 0.020. 0.455. 3-Methylhexane. 0.006. 0.534. 2-Methyl-2-butene. 0.051. 0.324. Methylcyclopentane. 0.015. 0.676. Heptane. 0.005. 0.597. trans-2-Pentene. 0.055. 0.342. 2,3-Dimethylbutane. 0.025. 0.567. Regular gasoline. 0.013 0.047. 0.461. Table 4. Fuel properties of two components mixture Fuel. iC6. C5/C6. C5/C7. C5/C11. Component. 2-Methylpentane. n-C5H12/n-C6H14. n-C5H12/n-C7H16. n-C5H12/n-C11H24. Mixture ratio (mole fraction). -. 2䠖8. 6䠖4. 9䠖1. Density. U. Viscosity. P. Surface tension. V. Saturated vapor pressure. Pv. [kg/m3] [Pa䞉s] [N/m] [Pa]. 6.5㽢102. 6.6㽢102. -4. -4. 3.0㽢10. 2.9㽢10. 6.5㽢102. 6.5㽢102. -4. 2.9㽢10-4. -2. 2.9㽢10. -2. 1.8㽢10. 1.8㽢10. 1.7㽢10-2. 4. 2.4㽢104. 3.6㽢104. 5.1㽢104. -2. 1.8㽢10 2.3㽢10. Pv : At bubble point. ( 49 ).

(4) 松本雅至・松村恵理子・千田二郎. 116. Measurement period. Pressure regulator Hydraulic cylinder Solenoid valve Pressure [MPa]. N2. 0.4 4. Air cylinder. 25-times enlarged nozzle. 0.2 2 0.1 1 0.0 0 0.0. Fig. 3. Injection system Diffusion plate. 0.3 3. Halogen lamp. 0.5 Time [s]. 1.0. Fig. 5. Pressure history in upstream region of the enlarged nozzle 㡿ᇦࡢつᶍࡀ኱ࡁࡃኚືࡍࡿ≧ែ࡟࠶ࡿ㸬ࡇࡢࡇ࡜ ࠿ࡽ㸪ὶධᅽຊࡀ࠾ࡼࡑ୍ᐃ࡜࡞ࡿᮇ㛫࡟࠾࠸࡚࢟ ࣕࣅࢸ࣮ࢩࣙࣥ⌧㇟ࡢẚ㍑ࢆ⾜࡞࠺ᚲせࡀ࠶ࡿ࡜⪃ ࠼ࡓ㸬ᣑ኱ࣔࢹࣝ࡟࠾ࡅࡿᄇᑕᮇ㛫 tinj ࢆ 0.85s ࡜ࡋ ࡓ㝿࡟㸪PMS-5 ࡟ࡼࡾィ ࡉࢀࡓᅽຊἼᙧࡢ୍౛ࢆ. 25-times enlarged nozzle. Fig.5 ࡟♧ࡍ㸬࡞࠾㸪25 ಸᣑ኱ࣔࢹࣝ࡟ ࠾ࡅࡿ tinj=0.85s ࡣᐇᶵ㛵࡛ࡢᄇᑕᮇ㛫 tact=1.36ms ࡟┦ᙜࡍ ࡿ㸬Fig.5 ࡼࡾ㸪ᄇᑕ㛤ጞ┤ᚋ࡛ࡣ኱ࡁ࡞ᅽຊୖ᪼ࡀ. High speed camera. Fig. 4. Optical system for back light photography. ࡳࡽࢀࡿࡀ㸪0.60s ௨㝆࠿ࡽᄇᑕ⤊஢ࡲ࡛ࡣᴫࡡ୍ᐃ. సື࡟ࡼࡾ㸪ᣑ኱ࣀࢬࣝࡼࡾ኱Ẽᅽሙ࡬࡜ᄇᑕࡉࢀ. ࡛࠶ࡿ࡜ࡳ࡞ࡍࡇ࡜ࡀྍ⬟࡛࠶ࡿ㸬ࡋࡓࡀࡗ࡚㸪ᮏ. ࡿ㸬࡞࠾㸪ࣃࣝࢫಙྕ࡟ࡼࡾసືࡍࡿ㟁☢ᘚ࡟ࡼࡾ. ᐇ㦂࡛ࡣࣔࢹࣝୖὶ㒊ᅽຊࢆ୍ᐃ࡜ࡳ࡞ࡏࡿᮇ㛫ࡢ. ᄇᑕᮇ㛫ࢆไᚚࡋ㸪ᄇᑕᅽຊࡣ㟁☢ᘚ࡜ࣀࢬࣝࡢ㛫. ୍㒊࡛࠶ࡿ 0.70㹼0.80s(௨ୗ㸪ᐃᖖᮇ㛫)࡟࠾࠸࡚᧜. ࡟ྲྀࡾ௜ࡅࡓᅽຊࢭࣥࢧ(ᐃ᱁ᅽຊ 500kPa㸪㇏⏣ᕤ. ᙳࢆ⾜࡞࠸㸪ࡑࡢᮇ㛫࡟࠾ࡅࡿᅽຊࡢᖹᆒ್ࢆᮏ◊. ᶵ〇㸸PMS-5-500K)ࢆ⏝࠸࡚ィ. ✲࡟࠾ࡅࡿᄇᑕᅽຊ Pinj ࡜ࡋ࡚ᐃ⩏ࡍࡿ㸬. ࡋࡓ㸬. . . ⫼ᬒග᧜ᙳගᏛ⣔. ࢟ࣕࣅࢸ࣮ࢩࣙࣥᩘࡢᐃ⩏.  ᄇᏍෆ㒊ࡢ࢟ࣕࣅࢸ࣮ࢩࣙࣥ㡿ᇦࢆ᧜ᙳࡍࡿࡓࡵ.  ᮏ◊✲࡛ࡣ㸪࢟ࣕࣅࢸ࣮ࢩࣙࣥࡢᵝ┦ࢆ♧ࡍᣦᶆ. ࡟⏝࠸ࡓ⫼ᬒග᧜ᙳࡢගᏛ⣔ࢆ Fig.4 ࡟♧ࡍ㸬ග※. ࡜ࡋ࡚ḟࡢ࢟ࣕࣅࢸ࣮ࢩࣙࣥᩘࢆ⏝࠸ࡿ㸬. ࡟ࣁࣟࢤࣥࣛࣥࣉࢆ⏝࠸㸪ᣑᩓᯈࢆ௓ࡋ࡚ᣑ኱ࣀࢬ. K. ࣝ࡟↷ᑕࡍࡿ㸬ᄇᏍ࡟ᑐࡋ࡚ᆶ┤࡞఩⨨࠿ࡽࣁ࢖ࢫ ࣆ࣮ࢻ࣓࢝ࣛ(Photron 〇㸪FASTCAM APX RS㸪ゎീ. Pamb  Pv Pinj  Pamb. (1). ᗘ㸸512™256pixcel㸪✵㛫ศゎ⬟㸸⣙ 67Pm㸪᧜ᙳ㏿. ࡇࡇ࡛㸪Pamb ࡣ㞺ᅖẼᅽຊ㸪Pv ࡣ⇞ᩱࡢ㣬࿴⵨Ẽᅽ. ᗘ㸸15000f.p.s㸪㟢ග᫬㛫㸸⣙ 0.33Ps)࡛᧜ᙳࡍࡿࡇ. ࡛࠶ࡿ㸬ࡇࢀࡲ࡛࡟㸪ୖグࡢᐃ⩏ࡼࡾᚓࡽࢀࡓ࢟ࣕ. ࡜࡟ࡼࡾ㸪ᄇᏍෆ࢟ࣕࣅࢸ࣮ࢩࣙࣥ࠾ࡼࡧᄇὶࡢ⏬. ࣅࢸ࣮ࢩࣙࣥᩘ࡟ࡼࡾ࢟ࣕࣅࢸ࣮ࢩࣙࣥ㡿ᇦࡢⓎ㐩. ീࢆᚓࡿ㸬. ẁ㝵࡞࡝ࢆᩚ⌮ࡋࡓ◊✲౛ 11-13)ࡀከᩘሗ࿌ࡉࢀ࡚࠸. . ࡿ㸬ࡋ࠿ࡋ࡞ࡀࡽ㸪ࣀࢬࣝᙧ≧ࡀ␗࡞ࡿ࡜ὶࢀሙࡑ. ᧜ᙳᮇ㛫࠾ࡼࡧᮏ◊✲࡛ࡢᄇᑕᅽຊࡢᐃ⩏. ࡢࡶࡢࡀ኱ࡁࡃ␗࡞ࡿࡓࡵ㸪◊✲⪅࡟ࡼࡾ࢟ࣕࣅࢸ.  ࢟ࣕࣅࢸ࣮ࢩࣙࣥ⌧㇟ࡣ᫬ࠎ้ࠎ࡜ኚ໬ࡋ㸪≉࡟. ࣮ࢩࣙࣥᩘ⤯ᑐ್࡜Ⓨ㐩ẁ㝵ࡢᐃ㔞ⓗ࡞┦㛵㛵ಀ࡟. ࣀࢬࣝ࡬ࡢ⇞ᩱὶධࡀ㐣Ώ≧ែ࡟࠶ࡿሙྜ࡛ࡣẼἻ. ᕪ␗ࡀぢཷࡅࡽࢀࡿ㸬ࡋࡓࡀࡗ࡚㸪ࡇࡢ࢟ࣕࣅࢸ࣮. ( 50 ).

(5) 噴霧微粒化に対するキャビテーションの影響の解明(第 1 報,拡大ノズルを用いたノズル内流動状況の可視化) 117. Table 5. Experimental conditions for each Pinj. upstream. (a) For enlarged nozzle 2-Methylpentane. Saturated vapor pressure. Pv. 23. [kPa]. Injection pressure. Pinj. [MPa] 0.15 0.20 0.25 0.30. Reynolds number. Re㽢105. [-] 1.02 1.45 1.77 2.05. Cavitation number. K. [-] 1.61 0.79 0.53 0.39. Injection duration. tinj. [s]. Ambient pressure. Pamb. [MPa]. 0.1. Ta. [K]. 293. Ambient temperature. Pressure [MPa]. Fuel. 0.85. downstream. 0.25 0.20 0.15 0.10 0.05 0.00 0.70. 0.75 Time [s]. 0.80. (a) Pinj = 0.15MPa (K = 1.61). Actual nozzle. 25-times enlarged nozzle. Ambient pressure. Pamb [MPa]. 0.4. 0.1. Injection pressure. Pinj [MPa]. 30.8䡚124.6. 0.15䡚0.30. 1.36㽢10-3. 0.85. Injection duration Cavitation number. [s]. tinj. -3. K. [-] 3.0䡚12.4㽢10. Reynolds number Re㽢105. [-]. Pressure [MPa]. (b) Relationship between actual and enlarged nozzle. 0.25 0.20 0.15 0.10 0.05 0.00 0.70. 0.39䡚1.61. 1.01䡚2.05. 0.75 Time [s]. 0.80. (b) Pinj = 0.20MPa (K = 0.79). ࢩࣙࣥᩘࡣྠ୍ࣀࢬࣝ࡟࠾࠸࡚ࡢࡳ᭷ຠ࡞ᣦᶆ࡛࠶. Pressure [MPa]. ࡿ࡜⪃࠼ࡽࢀ㸪ᮏࣀࢬࣝ࡟࠾ࡅࡿ࢟ࣕࣅࢸ࣮ࢩࣙࣥ ᩘ⤯ᑐ್࡜Ⓨ㐩ẁ㝵ࡢ┦㛵㛵ಀࡣ㐣ཤࡢ◊✲౛࡜ᚲ ࡎࡋࡶ୍⮴ࡍࡿ࡜ࡣ㝈ࡽ࡞࠸㸬 . 0.25 0.20 0.15 0.10 0.05 0.00 0.70. ᐇ㦂⤖ᯝ ᄇᑕᅽຊࡢᕪ␗࡟ࡼࡿ࢟ࣕࣅࢸ࣮ࢩࣙࣥ⌧㇟࠾. 0.75 Time [s]. 0.80. (c) Pinj = 0.25MPa (K = 0.53). ࡼࡧᄇᏍෆᅽຊࡢኚ໬. Pressure [MPa].  ᐇ㦂᮲௳ࢆ Table 5 ࡟♧ࡍ㸬౪ヨ⇞ᩱ࡜ࡋ࡚ 2-Metylpentane (iso-Hexane㸪௨ୗ iC6)ࢆ⏝࠸㸪ᄇᑕᅽ ຊࢆ Pinj=0.15㹼0.30MPa ࡢ⠊ᅖ࡛ኚ໬ࡉࡏࡓ㸬࡞࠾㸪 ౪ヨ⇞ᩱࡣ࠶ࡽ࠿ࡌࡵ኱Ẽ㛤ᨺୗ࡛༑ศ࡟ᨺ⨨ࡋࡓ. 0.25 0.20 0.15 0.10 0.05 0.00 0.70. ᚋ࡟Ἔᅽࢩࣜࣥࢲ࡬࡜ᑟ࠸ࡓ㸬ࡲࡓ㸪౪ヨࣀࢬࣝ࡟ ࡣ Fig.2(a)࡟♧ࡋࡓᣑ኱ࣔࢹࣝ 1 ࢆ⏝࠸㸪ึᮇࡢࣀࢬ. 0.75 Time [s]. 0.80. (d) Pinj = 0.30MPa (K = 0.39). ࣝෆࡣ౪ヨ⇞ᩱ࡛඘‶ࡉࡏࡓ㸬. Fig. 6. Images of cavitation, liquid jet and pressure inside the nozzle (iC6, Pv = 23kPa). ྛᄇᑕᅽຊ࡟ᑐࡋ࡚ᐃᖖᮇ㛫୰࡟ᚓࡽࢀࡓ᧜ᙳ⏬ ീ࠾ࡼࡧᄇᏍෆᅽຊἼᙧࢆ Fig.6 ࡟♧ࡍ㸬࡞࠾㸪ᮏ. ࠿ࡽ᭱ࡶᖹᆒⓗ࡞⏬ീࢆ㑅ᐃࡋ࡚♧ࡋࡓ㸬Fig.6 ࡼࡾ㸪. ⏬ീࡣ⫼ᬒග᧜ᙳ࡟ࡼࡾᚓࡽࢀࡓࡶࡢ࡛࠶ࡿࡓࡵ㸪. ᄇᑕᅽຊࡀቑຍࡍࡿ࡟ࡘࢀ࡚ Pinj=0.15㹼0.25MPa ࡢ. ᄇᏍ㒊࡟࠾࠸࡚࢟ࣕࣅࢸ࣮ࢩࣙࣥẼἻ⩌ࡣ㯮ࡃ᧜ᙳ. ⠊ᅖ࡛ࡣ࢟ࣕࣅࢸ࣮ࢩࣙࣥ㡿ᇦࡢつᶍࡣୗὶ᪉ྥ࡬. ࡉࢀࡿ㸬୍⯡࡟㸪୍ᐃࡢᄇᑕᅽຊୗ࡟࠾࠸࡚ࡶ㸪ࢧ. ࡜኱ࡁࡃᡂ㛗ࡋ㸪ࡑࢀ࡟క࠸ᄇὶࡶᣑࡀࡿࡇ࡜ࡀࢃ. ࢵࢡ㒊࡟⏕ࡌࡿ ᵓ㐀ࡢ㠀ᐃᖖᛶ࡟ࡼࡾࣀࢬࣝෆὶ. ࠿ࡿ㸬୍᪉㸪Pinj=0.30MPa ࡛ࡣ⇞ᩱὶࢀࡀᄇᏍධཱྀ. 14). 㸬ࡍ࡞ࢃࡕ㸪ࢧࢵࢡ㒊࠿ࡽᄇ. ࠿ࡽ๤㞳≧ែࢆ⥔ᣢࡋࡓࡲࡲࣀࢬࣝ࠿ࡽᄇฟࡉࢀࡿ. Ꮝ㒊࡬ࡢ⇞ᩱὶධࡶࡲࡓ᫬ࠎ้ࠎ࡜ኚ໬ࡍࡿ㸬ࡋࡓ. hydraulic flip ࡜࡞ࡾ㸪ᄇὶࡢᣑࡀࡾࡣᢚไࡉࢀࡿ㸬. ࡀࡗ࡚㸪࢟ࣕࣅࢸ࣮ࢩࣙࣥ⌧㇟ࡶᙉ࠸㠀ᐃᖖᛶࢆ᭷. ࡇࢀࡽ୍㐃ࡢᄇᑕᅽຊ࡜࢟ࣕࣅࢸ࣮ࢩࣙࣥᣲືࡢ㛵. ࡍࡿࡓࡵ㸪ᮏሗ࡛ࡣᐃᖖᮇ㛫࡟ᚓࡽࢀࡓ඲᧜ᙳ⏬ീ. ಀࡣ኱㯮 4)ࡸᏵ 5)࡟௦⾲ࡉࢀࡿ㐣ཤࡢሗ࿌౛࡜ᐃᛶ. ືࡣ⤯࠼ࡎኚ໬ࡍࡿ. ( 51 ).

(6) 松本雅至・松村恵理子・千田二郎. 118. Table 6. Experimental conditions for each Pv. upstream. (a) For enlarged nozzle iC6. Saturated vapor pressure Pv [kPa]. 23. Injection pressure. C5/C6 C5/C7 C5/C11 24. Pinj [MPa] Re㽢105. Reynolds’ number. K. [-]. Injection duration. tinj. [s]. 1.45 0.79. 0.78. Ta. Ambient temperature. 0.66. 0.51. 293. 0.1. Injection pressure. Pinj [MPa]. 62.1. Injection duration Cavitation number. tinj K. Reynolds number Re㽢105. [s]. 0.20 -3. 0.85. 1.36㽢10. -3. [-] 5.7䡚6.1㽢10 [-]. 0.8. 1.45. Pressure [MPa]. ࡟タ⨨ࡋࡓᅽຊࢭࣥࢧ࡟ࡼࡾᚓࡽࢀࡓᅽຊἼᙧ࡟╔ ┠ࡍࡿ㸬Pinj=0.15MPa ࡛ࡣᄇᏍ㒊ࡢୖὶഃ࣭ୗὶഃ ࡟࠾࠸࡚኱Ẽᅽ⛬ᗘࡶࡋࡃࡣࡑࢀ௨ୖࡢᅽຊࡀ⥔ᣢ. 0.20 0.15 0.10 0.05. 0.25 0.20 0.15 0.10 0.05 0.00 0.7. ࡉࢀ࡚࠾ࡾ㸪୧ィ ⟠ᡤࡢᅽຊኚືࡀ኱ࡁ࠸ࡇ࡜ࡶ. 0.75 Time [s] (c) C5/C7 (K = 0.66). ☜ㄆ࡛ࡁࡿ㸬ࡲࡓ㸪Pinj=0.20MPa ࡛ࡣୖὶ㒊࡟࠾࠸ ࡚㸪Pinj=0.25MPa ࡛ࡣ୧ィ ⟠ᡤ࡟࠾࠸࡚኱Ẽᅽࢆ. Pressure [MPa]. ኱ࡁࡃୗᅇࡿᅽຊἼᙧࡀᚓࡽࢀ㸪Pinj=0.15MPa ࡜ẚ ㍑ࡋ࡚ᅽຊኚືࡀᑠࡉ࠸ࡇ࡜ࡀࢃ࠿ࡿ㸬ᑠ➟ཎ࣭኱ 7). 0.25. 0.00 0.7. 0.51䡚0.79. ⓗ࡟୍⮴ࡋ࡚࠸ࡿ㸬ḟ࡟㸪ᄇᏍෆࡢୖὶ㒊࣭ୗὶ㒊. 㯮ࡽ. 0.05. 0.75 Time [s] (b) C5/C6 (K = 0.78). Pressure [MPa]. 25-times enlarged nozzle. 0.4. 0.10. (a) iC6 (K = 0.79). Actual nozzle Pamb [MPa]. 0.15. 0.8. (Pv : At bubble point) (b) Relationship between actual and enlarged nozzle. Ambient pressure. 0.20. 0.75 Time [s]. 0.1. [K]. 0.25. 0.00 0.7. 0.85. Pamb [MPa]. Ambient pressure. 51. 0.20. [-]. Cavitation number. 36. Pressure [MPa]. Fuel. downstream. ࡟ࡼࡿ࡜㸪ᅽຊィ 㒊ࡀ࢟ࣕࣅࢸ࣮ࢩࣙࣥ㡿. ᇦ࡟そࢃࢀࡿ࡜ᅽຊኚືࡣᑠࡉࡃ࡞ࡿࡼ࠺࡛࠶ࡿ㸬. 0.25 0.20 0.15 0.10 0.05 0.00 0.7. ࡋࡓࡀࡗ࡚㸪᧜ᙳ⏬ീ࠾ࡼࡧᅽຊἼᙧ࠿ࡽᐹࡍࡿ࡟㸪 Pinj=0.20㸪0.25MPa ࡢ᮲௳࡟࠾ࡅࡿ࢟ࣕࣅࢸ࣮ࢩࣙ. 0.8. 0.75 Time [s]. 0.8. (d) C5/C11 (K = 0.51). ࣥ㡿ᇦࡣᄇᏍධཱྀࡼࡾࡑࢀࡒࢀ 6mm㸪13mm ௨ୖࡢ 㛗ࡉࢆ⥔ᣢࡋ࡚࠸ࡿ࡜⪃࠼ࡽࢀࡿ㸬୍᪉㸪. Fig. 7. Images of cavitation, liquid jet and pressure inside the nozzle (Pinj = 0.20MPa). Pinj=0.30MPa ࡢሙྜ㸪ィ 㠃࡜཯ᑐഃ࠿ࡽὶࢀࡀ๤. ࣥ㡿ᇦࡀⓎ㐩ࡍࡿ࡜ᄇᏍෆ࡟࠾࠸࡚㈇ᅽ࡜࡞ࡿ㡿ᇦ. 㞳ࡋ࡚࠾ࡾ㸪୧ィ ⟠ᡤ࡜ࡶ࡟኱Ẽᅽ௨ୖࡢᅽຊ࡜. ࡀᣑ኱ࡋ㸪hydraulic flip ࢆక࠺ሙྜࡣᄇᏍୖὶ㒊࣭. ࡞ࡗ࡚࠸ࡿ㸬ᮏሗ࡟ࡣグ㍕ࡋ࡚࠸࡞࠸ࡀ㸪hydraulic. ୗὶ㒊࡜ࡶ࡟኱Ẽᅽ௨ୖࡢᅽຊࡀ⥔ᣢࡉࢀࡿࡇ࡜ࡀ. flip ࡀᅽຊィ. ࢃ࠿ࡗࡓ㸬. 㠃ഃ࡛⏕ࡌࡓሙྜ࡟࠾࠸࡚ࡶྠᵝࡢ. ᅽຊἼᙧࡀᚓࡽࢀࡓ㸬๤㞳㠃ࡢᕪ␗࡟ࡼࡿᄇᏍ㒊ᅽ. . ຊ࡬ࡢᙳ㡪ࢆヲ⣽࡟ᢕᥱࡍࡿࡓࡵ࡟ࡣὶືሙࡢヲ⣽. 㣬࿴⵨Ẽᅽࡢᕪ␗࡟ࡼࡿ࢟ࣕࣅࢸ࣮ࢩࣙࣥ⌧㇟ ࠾ࡼࡧᄇᏍෆᅽຊࡢኚ໬. ࡞ྍど໬ࡀᚲせ࡛࠶ࡿ࡜⪃࠼ࡽࢀࡿ㸬ࡑࡢࡓࡵ㸪ᮏ ሗ࡛ࡣ hydraulic flip ࡟࡞ࡿ࡜኱Ẽᅽ௨ୖࡢᅽຊࡀィ.  ୍ᐃࡢᄇᑕ᮲௳ୗ࡟࠾࠸࡚⇞ᩱࡢ㣬࿴⵨Ẽᅽࡢᕪ ␗࡟ࡼࡿ࢟ࣕࣅࢸ࣮ࢩࣙࣥ⌧㇟࡬ࡢᙳ㡪ࢆẚ㍑ࡍࡿ㸬. ࡉࢀࡿࡇ࡜ࢆ♧ࡍ࡟␃ࡵࡿ㸬  ௨ୖࡼࡾ㸪ᄇᑕᅽຊࡢቑຍ࡟ࡼࡾ࢟ࣕࣅࢸ࣮ࢩࣙ. ᐇ㦂᮲௳ࢆ Table 6 ࡟♧ࡍ㸬Fig.4 ࡟♧ࡋࡓ✀ࠎࡢ౪. ( 52 ).

(7) 噴霧微粒化に対するキャビテーションの影響の解明(第 1 報,拡大ノズルを用いたノズル内流動状況の可視化) 119. 0.15MPa 0.20MPa. 0.25MPa 0.30MPa. iC6 C5/C6. 0.20 0 Pressure [MPa]. Pressure [MPa]. 0 0.20 5 0.15 0 0.10 5 0.05 0 0.00 0 0 0.0. C5/C7 C5/C11. 3 5 3.5. 7.0 7 0. 10.5 10 5. 14.0 14 0. 5 0.15 0 0.10 5 0.05 0 0.00 0 0 0.0. 17 17.5. 3.5 35. 7.0 7 0. 10.5 10 5. 14.0 14 0. 17.5 17. Distance from hole inlet [mm]. Distance from hole inlet [mm]. (a) Pressure distribution for each Pinj (Fuel : iC6). (b) Pressure distribution for each fuel (Pinj = 0.20MPa). Fig. 8. Pressure distribution inside the nozzle hole for each conditions ヨ⇞ᩱࢆྠ୍ࡢᅽຊ࡛ᄇᑕࡍࡿࡇ࡜࡟ࡼࡾ㸪K ࡢᕪ. ࡣ K ࡟ࡼࡾᩚ⌮ࡍࡿࡇ࡜ࡀྍ⬟࡛࠶ࡿ࡜࠸࠼ࡿ㸬. ␗࡟ࡼࡿ࢟ࣕࣅࢸ࣮ࢩࣙࣥ⌧㇟࡬ࡢᙳ㡪ࢆᢕᥱࡍࡿ. . ࡇ࡜ࡀྍ⬟࡛࠶ࡿ㸬࡞࠾㸪ᄇᑕᅽຊࡣ 0.20MPa ୍ᐃ. ᄇᑕᅽຊ㸪㣬࿴⵨Ẽᅽࡢᕪ␗࡟ࡼࡿᄇᏍෆᅽຊ. ࡜ࡋ㸪௚ࡢ᮲௳ࡣ 3.1 ⠇࡜ྠࡌ࡛࠶ࡿ㸬. ศᕸ࡬ࡢᙳ㡪.  ྛ౪ヨ⇞ᩱ࡟ᑐࡋ࡚ᚓࡽࢀࡓ௦⾲ⓗ࡞᧜ᙳ⏬ീ࠾.  ࢟ࣕࣅࢸ࣮ࢩࣙࣥ⌧㇟ࡀᄇᑕᅽຊ࠾ࡼࡧ⇞ᩱࡢ㣬. ࡼࡧᄇᏍෆᅽຊἼᙧࢆ Fig.7 ࡟♧ࡍ㸬Fig.7 ࡼࡾ㸪౪. ࿴⵨Ẽᅽࡢᕪ␗࡟ࡼࡾࡑࢀࡒࢀኚ໬ࡍࡿሙྜ㸪ᄇᏍ. ヨ⇞ᩱࡢ㣬࿴⵨Ẽᅽࡀ㧗ࡃ࡞ࡿ࡟ࡘࢀ࡚࢟ࣕࣅࢸ࣮. ෆࡢᅽຊሙࡀ࠸࠿࡟᥎⛣ࡍࡿ࠿ࢆẚ㍑ࡋࡓ㸬ࡲࡎ㸪. ࢩࣙࣥ㡿ᇦࡣୗὶ᪉ྥ࡬࡜Ⓨ㐩ࡋ㸪ࡑࢀ࡟క࠸ᄇὶ. ᣑ኱ࣔࢹࣝ 2 ࢆ⏝࠸࡚ 3.1 ࠾ࡼࡧ 3.2 ⠇࡜ྠ᮲௳ୗ࡟. ࡶ኱ࡁࡃᣑࡀࡿࡇ࡜ࡀࢃ࠿ࡿ㸬ࡇࢀࡣ㸪㣬࿴⵨Ẽᅽ. ࠾࠸࡚ᄇᏍ㒊ᅽຊࡢィ. ࡢୖ᪼࡟క࠸㸪ᄇᏍධཱྀ㒊࡟࠾ࡅࡿ࢟ࣕࣅࢸ࣮ࢩࣙ. ࣔࢹࣝ 1㸪2 ࡟࠾ࡅࡿᄇᏍෆᅽຊࡢィ. ࣥẼἻࡢⓎἻ㔞ࡀቑຍࡍࡿࡓࡵ࡛࠶ࡿ࡜⪃࠼ࡽࢀࡿ㸬. ✀ࠎࡢ᮲௳࡟ᑐࡍࡿᄇᏍෆࡢᅽຊศᕸࢆ᥎ᐃࡋࡓ㸬. ࢆ⾜࡞ࡗࡓ㸬ࡑࡋ࡚㸪ᣑ኱ ⤖ᯝࢆࡶ࡜࡟㸪. ࡋࡓࡀࡗ࡚㸪iC6 ࠾ࡼࡧ C5/C6 ࡢ㣬࿴⵨Ẽᅽ࡟࠾࠸. Fig.8 ࡟ྛᄇᑕᅽຊ࠾ࡼࡧ౪ヨ⇞ᩱ࡟ᑐࡍࡿᅽຊ. ࡚࡯࡜ࢇ࡝ᕪ␗ࡀ࡞࠸ࡓࡵ㸪࢟ࣕࣅࢸ࣮ࢩࣙࣥࡢᵝ. ศᕸࢆ♧ࡍ㸬࡞࠾㸪ࣉࣟࢵࢺࡣィ ⟠ᡤࡢ୰ኸ࡟఩. ┦ࡶྠ➼࡜࡞ࡗ࡚࠸ࡿ㸬ࡲࡓ㸪ྛ౪ヨ⇞ᩱࡢᄇᏍෆ. ⨨ࡋ࡚࠾ࡾ㸪ཧ⪃࡜ࡋ࡚ྛࣉࣟࢵࢺ࡟ᑐࡍࡿከ㡯㏆. ᅽຊ࡟╔┠ࡍࡿ࡜㸪iC6 ࡜ C5/C6 ࡢᅽຊἼᙧࡀୖὶ. ఝ ᭤⥺ ࢆే グࡋ ࡚ ࠸ࡿ 㸬 Fig.8 ࡼࡾ㸪 Pinj=0.15㹼. ഃ࠾ࡼࡧୗὶഃ࡜ࡶ࡟㢮ఝࡋ࡚࠸ࡿࡇ࡜ࡀࢃ࠿ࡿ㸬. 0.25MPa ࡢ⠊ᅖ࡛ࡣᄇᑕᅽຊࡢቑຍ࡟క࠸ᅽຊศᕸ. ୍᪉㸪C5/C7 ࡛ࡣ୧ィ. ⟠ᡤ࡟࠾࠸࡚ᅽຊኚືࡢᑠ. ࡣᄇᏍ඲ᇦࢆ㏻ࡋ࡚ࡼࡾపᅽഃ࡬࡜᥎⛣ࡍࡿࡇ࡜ࡀ. ࡉ࠸㈇ᅽἼᙧࢆ♧ࡋ࡚࠾ࡾ㸪3.1 ⠇ࡢ Pinj=0.25MPa. ࢃ࠿ࡿ㸬ࡲࡓ㸪hydraulic flip ࢆ࿊ࡍࡿ Pinj=0.30MPa. ࡜ྠᵝࡢ⤖ᯝࡀᚓࡽࢀ࡚࠸ࡿ㸬ࡉࡽ࡟㸪౪ヨᾮయࡢ. ࡢሙྜ㸪࠸ࡎࢀࡢィ. ୰࡛᭱ࡶ㣬࿴⵨Ẽᅽࡀ㧗࠸ C5/C11 ࢆ⏝࠸ࡓሙྜ㸪. ࡿ⤖ᯝ࡜࡞ࡗࡓ㸬୍᪉㸪ᄇᑕᅽຊ࠾ࡼࡧ⇞ᩱࡢ㣬࿴. ๓⠇ࡢ Pinj=0.30MPa ࡟࠾࠸࡚☜ㄆࡉࢀࡓ hydraulic. ⵨Ẽᅽࡢᅽຊศᕸ࡟ᑐࡍࡿྛࠎࡢഴྥ࡟╔┠ࡍࡿ࡜㸪. flip ࡜ྠᵝࡢ᧜ᙳ⏬ീ࠾ࡼࡧᅽຊἼᙧ࡜࡞ࡿ㸬࢟ࣕ. ኚ໬ࡉࡏࡿᅉᏊ≉᭷ࡢᕪ␗ࡣぢࡽࢀ࡞࠸㸬. ⟠ᡤ࡟࠾࠸࡚ࡶṇᅽࢆ⥔ᣢࡍ. ࣅࢸ࣮ࢩࣙࣥẼἻ㔞ࡢቑຍ࡟క࠺ὶ⥺࡬ࡢᙳ㡪ࡣᐃ. ࡋࡓࡀࡗ࡚㸪ᄇᏍෆᅽຊศᕸࡣ࢟ࣕࣅࢸ࣮ࢩࣙࣥ. ࠿࡛ࡣ࡞࠸ࡀ㸪⇞ᩱࡢ㣬࿴⵨Ẽᅽ ࡀ㧗ࡃ࡞ࡿ࡜. 㡿ᇦ࡜ᐦ࡞㛵ಀ࡟࠶ࡾ㸪K ࡟ࡼࡾᩚ⌮ࡍࡿࡇ࡜ࡀྍ. hydraulic flip ࡜ྠ➼ࡢ⌧㇟ࡀ⏕ࡌࡿࡇ࡜ࡀ♧ࡉࢀࡓ㸬. ⬟࡛࠶ࡿ࡜࠸࠼ࡿ㸬. ௨ୖࡼࡾ㸪㣬࿴⵨Ẽᅽࡢᕪ␗࡟ࡼࡿ࢟ࣕࣅࢸ࣮ࢩ ࣙࣥ⌧㇟࠾ࡼࡧᄇᏍෆᅽຊ࡬ࡢᙳ㡪ࡣᄇᑕᅽຊࢆኚ.  ࢟ࣕࣅࢸ࣮ࢩࣙࣥᩘ࡟ࡼࡿᄇᏍෆᅽຊ㸪ᄇὶᖜ. ໬ࡉࡏࡓሙྜ࡜ᴫࡡഴྥࡀ୍⮴ࡍࡿࡇ࡜ࡀࢃ࠿ࡗࡓ㸬 ࡍ࡞ࢃࡕ㸪࢟ࣕࣅࢸ࣮ࢩࣙࣥ⌧㇟࠾ࡼࡧᄇᏍෆᅽຊ. ࠾ࡼࡧᄇᏍෆ࣎࢖ࢻ⋡ࡢᩚ⌮  ᣑ኱ࣔࢹࣝ 1 ࢆ⏝࠸࡚㸪ྛᄇᑕᅽຊ㸫౪ヨ⇞ᩱࡢ. ( 53 ).

(8) 松本雅至・松村恵理子・千田二郎. 120. Hydraulic flip. Entrance boundary (Pin = constant) ws [mm] (300). Cavitation. 0.3 3. *( ) indicates the number of mesh ws= 20 mm ls = 20 mm wh= 3.75 mm lh = 17.5 mm. 0.2 2 0.1 1 0 0.0. 3 3.0 2 2.5. 1.5 1.0. Outflow boundary (Pout = constant). W / Wh [-]. 2 2.0. wh [mm] (100). 0 0.5. Pressure [MPa]. 0.20 0 0.15 5. Upstream Downstream. ls [mm] (200). 4 0.4. lh [mm] (175). Void fraction [-]. 0.5 5. Fig. 10. Computational grid. 0 0.0. ࡓᄇὶᖜ࡟࠾࠸࡚ࡶఛ࠸▱ࡿࡇ࡜ࡀྍ⬟࡛࠶ࡿ㸬ࡍ ࡞ࢃࡕ㸪࢟ࣕࣅࢸ࣮ࢩࣙࣥᩘࡢపୗ࡟క࠸ᄇὶᖜࡣ ቑຍࡍࡿഴྥ࡟࠶ࡿࡀ㸪K=0.52 ㏆ഐ࡟࠾࠸࡚ᛴ⃭࡟. 0.10 0. ῶᑡࡋ࡚࠸ࡿࡇ࡜ࡀࢃ࠿ࡿ㸬ࡋࡓࡀࡗ࡚㸪ᄇὶᖜࡶ. 5 0.05. ࡲࡓ K ࡟ࡼࡾᩚ⌮ࡍࡿࡇ࡜ࡀྍ⬟࡛࠶ࡿ࡜࠸࠼ࡿ㸬 0 0.00 0.0 0 0. 0.5 0 5 10 1.0 1.5 15 Cavitation number K [-]. ୍᪉㸪ୖẁ࡟♧ࡋࡓᄇᏍෆ࣎࢖ࢻ⋡࡟╔┠ࡍࡿ࡜㸪. 2.0 20. K ࡢపୗ࡟క࠸࣎࢖ࢻ⋡ࡣ኱ࡁࡃቑຍࡋ㸪ᄇὶᖜ࡜. Fig. 9. Reference of cavitation number on pressure, void fraction inside nozzle hole and width of liquid jet. ྠᵝ࡟ K=0.52 ㏆ഐ࡟࠾࠸࡚ᛴ⃭࡟పୗࡋ࡚࠸ࡿ㸬ࡋ ࠿ࡋ࡞ࡀࡽ㸪hydraulic flip ࡜࡞ࡿ᮲௳࡟࠾ࡅࡿ࣎࢖. ⤌ࡳྜࢃࡏ࡟࠾ࡅࡿᄇᏍෆᅽຊ㸪ᄇᏍෆ࣎࢖ࢻ⋡࠾. ࢻ⋡ࡢࡤࡽࡘࡁࡣ኱ࡁ࠸㸬ࡇࡢཎᅉ࡜ࡋ࡚㸪K ࡀప. ࡼࡧᄇὶᖜࢆㄪᰝࡋ㸪K ࡟ࡼࡾᩚ⌮ࡋࡓ㸬ࡑࡢ⤖ᯝ. ୗࡍࡿ࡟ࡘࢀ࡚ẼἻ㔞ࡀቑຍࡍࡿ୍᪉࡛㸪᧜ᙳ⏬ീ. ࢆ Fig.9 ࡟♧ࡍ㸬ᄇὶᖜ W ࡣᄇᏍฟཱྀࡼࡾᆶ┤ୗ. ࡟࠾࠸࡚ⓑࡃ෗ࡿ㒊ศࡀ୙つ๎࡟⏕ࡌࡿࡇ࡜ࡀᣲࡆ. 5.0mm ࡢ఩⨨࡟࠾࠸࡚ᚓࡽࢀࡓᄇᏍ᪉ྥ࡜┤⾜ࡍࡿ. ࡽࢀࡿ㸬. ᪉ྥࡢᖜࢆ♧ࡋ㸪ࡑࡢ್ࢆᄇᏍᖜ Wh ࡛ṇつ໬ࡋ࡚. ௨ୖࡼࡾ㸪࢟ࣕࣅࢸ࣮ࢩࣙࣥ⌧㇟࡟㛵㐃ࡍࡿ✀ࠎ. ♧ࡋࡓ㸬ࡲࡓ㸪ᄇᏍෆ࣎࢖ࢻ⋡ࡣ᧜ᙳ⏬ീࡢࣆࢡࢭ. ࡢ㡯┠㸪≉࡟ᄇᏍෆᅽຊ࠾ࡼࡧᄇὶᖜࡶࡲࡓ࢟ࣕࣅ. ࣝࡈ࡜ࡢ㍤ᗘ್࡟ᑐࡋ㜈್ࢆタࡅࡿࡇ࡜࡛ẼἻࡢ᭷. ࢸ࣮ࢩࣙࣥ⌧㇟ྠᵝ㸪࢟ࣕࣅࢸ࣮ࢩࣙࣥᩘ࡟ࡼࡾᩚ. ↓ࢆุูࡋ㸪ࡑࢀࡽࡢ✚⟬್࡜ᄇᏍ㒊ࡢ⥲ࣆࢡࢭࣝ. ⌮ࡍࡿࡇ࡜ࡀྍ⬟࡛࠶ࡿ࡜࠸࠼ࡿ㸬. ᩘ࡜ࡢ㠃✚ẚࡼࡾ⟬ฟࡋࡓ㸬࡞࠾㸪ྛ್ࡣᐃᖖᮇ㛫 6WDU&' ࢆ⏝࠸ࡓィ⟬᪉ἲ࠾ࡼࡧィ⟬⤖ᯝ. ࡟࠾࠸࡚ᚓࡽࢀࡓ᫬㛫ᖹᆒ್ࢆ⏝࠸ࡓ㸬 Fig.9 ࡢୗẁ࡟╔┠ࡍࡿ࡜ K ࡢῶᑡ࡟క࠸ᄇᏍෆ.  ᮏ❶࡛ࡣỗ⏝⇕ὶయゎᯒࣉࣟࢢ࣒ࣛ Star-CD ࢆ⏝. ᅽຊࡣୖὶ㒊࣭ୗὶ㒊࡜ࡶ࡟పୗࡍࡿഴྥ࡟࠶ࡿ㸬. ࠸㸪ᄇᏍෆ࡟࠾ࡅࡿὶືሙ࠾ࡼࡧ࢟ࣕࣅࢸ࣮ࢩࣙࣥ. ࡲࡓ㸪K=0.52 ㏆ഐ࡟࠾࠸࡚୧ィ ⟠ᡤࡢᅽຊࡀᛴ⃭. ⌧㇟ࡢᩘ್ゎᯒࢆ⾜࡞࠺㸬ᮏィ⟬࡟⏝࠸ࡓィ⟬᱁Ꮚ. ࡟ୖ᪼ࡍࡿࡇ࡜ࡀ☜ㄆࡉࢀࡿ㸬3.1 ࠾ࡼࡧ 3.2 ⠇࡛㏙. ࢆ Fig.10 ࡟♧ࡍ㸬ィ⟬᱁Ꮚࡣᐇ㦂࡟⏝࠸ࡓᣑ኱ࣀࢬ. ࡭ࡓࡼ࠺࡟㸪hydraulic flip ࢆ⏕ࡌࡿ᮲௳࡟࠾࠸࡚ᄇ. ࣝࡢࢧࢵࢡ┦ᙜ㒊௨ᚋࡢὶ㊰ࢆ஧ḟඖ࡛ᶍᨃࡋ࡚࠸. Ꮝෆࡢᅽຊࡀ඲ᇦ࡟ࢃࡓࡾṇᅽࢆక࠺㸬ࡇࡢࡇ࡜࠿. ࡿ㸬ᄇᏍ㒊(ᖜ wh㸪㛗ࡉ lh)ࡣ 100™175 ࡢ࣓ࢵࢩ࡛ࣗ. ࡽ㸪࠾ࡼࡑ K=0.52 ࡜࡞ࡿ᮲௳ࡀᮏࣀࢬࣝ࡟࠾࠸࡚. ᵓᡂࡉࢀ㸪ୖ㒊ቃ⏺࠿ࡽࡢὶධᅽຊࢆ Pin㸪ୗ㒊ቃ⏺. hydraulic flip ࢆ࿊ࡍࡿ࠿ྰ࠿ࢆỴᐃࡍࡿቃ⏺᮲௳࡛. ࠿ࡽࡢὶฟᅽຊࢆ Pout ࡜ࡋࡓ㸬ࡇࡢሙྜ㸪࢟ࣕࣅࢸ. ࠶ࡿ࡜⪃࠼ࡽࢀࡿ㸬ࡇࡢࡇ࡜ࡣ㸪ࢢࣛࣇ୰ẁ࡟♧ࡋ. ࣮ࢩࣙࣥᩘࡣḟᘧ࡛⾲ࢃࡉࢀࡿ㸬. ( 54 ).

(9) 噴霧微粒化に対するキャビテーションの影響の解明(第 1 報,拡大ノズルを用いたノズル内流動状況の可視化) 121. Table 7. Calculation conditions for each Pin Fuel. Table 8. Calculation conditions for each Pv Fuel. 2-Methylpentane. Saturated vapor pressure Inlet pressure Reynolds number. Pv. iC6. Saturated vapor pressure Pv. 23. Inlet pressure. Pin. [MPa] 0.15 0.20 0.25 0.30 [-] 1.02 1.45 1.77 2.05. Reynolds’ number. Re㽢105. [-] 1.61 0.79 0.53 0.39. Cavitation number. K. K Pout. [MPa]. Outlet pressure. 0.85. [kPa]. 23. C5/C6 C5/C7 C5/C11 24. Pin [MPa]. Re㽢105. Cavitation number Outlet pessure. [kPa]. 51. 0.66. 0.51. 1.45. [-] [-] 0.79. 36 0.20. 0.78. Pout [MPa]. 0.85 (Pv : At bubble point). 0.300. 0.100. Pressure [MPa]. 0.200. 0.023 1.00. 20 10 0 (a) Pin = 0.15MPa (K = 1.61). (b) Pin = 0.20MPa (K = 0.79). (c) Pin = 0.25MPa (K = 0.53). (d) Pin = 0.30MPa (K = 0.39). Velocity magnitude [m/s]. 0.00 30. Void fraction [-]. 0.50. Fig. 11. Distributions of pressure, void fraction and velocity magnitude for each Pin. K. Pout  Pv Pin  Pout. ⠇࡟♧ࡋࡓᐇ㦂⤖ᯝ࡜ྠࡌഴྥ࡛࠶ࡿ࡜࠸࠼ࡿ㸬ḟ (2). ࡟㸪࣎࢖ࢻ⋡ศᕸ࡟╔┠ࡍࡿ࡜㸪ẼἻࡀᏑᅾࡍࡿ⠊ ᅖࡣᅽຊศᕸ࡟࠾࠸࡚☜ㄆࡉࢀࡿపᅽ࡞㡿ᇦ࡜ᴫࡡ. . ᑐᛂࡋ࡚࠸ࡿࡇ࡜ࡀࢃ࠿ࡿ㸬ࡋ࠿ࡋ࡞ࡀࡽ㸪. ὶධᅽຊࡢᕪ␗࡟ࡼࡿὶࢀሙ࡬ࡢᙳ㡪. Pin=0.20MPa ࡛ࡣపᅽ㡿ᇦࡢᙧᡂࡀ☜ㄆࡉࢀࡿ࡟ࡶ.  ィ⟬᮲௳ࢆ Table 7 ࡟♧ࡍ㸬3.1 ⠇ࡢᐇ㦂᮲௳࡜ᑐ. 㛵ࢃࡽࡎẼ┦ࡢᏑᅾࡀぢࡽࢀ࡞࠸㸬ᮏィ⟬࡟࠾࠸࡚. ᛂࡍࡿࡼ࠺ྠ୍౪ヨ⇞ᩱࡢࡶ࡜࡛ୖ㒊ቃ⏺ᅽຊࢆኚ. ὶࢀሙࡢ᫬㛫ኚ໬ࢆ⪃៖ࡋ࡚࠸࡞࠸ࡇ࡜࠿ࡽ㸪. ໬ࡉࡏࡓ㸬ࡲࡓ㸪࢟ࣕࣅࢸ࣮ࢩࣙࣥࢆ⾲⌧ࡍࡿᩘ್. Barotropic ࣔࢹ࡛ࣝࡣ㣬࿴⵨Ẽᅽ࡟㐩ࡍࡿ㡿ᇦࡀ࠶. ࣔࢹࣝ࡜ࡋ࡚ィ⟬㈇ⲴపῶࡢほⅬ࠿ࡽ Barotropic ࣔ. ࡿ⛬ᗘࡢつᶍࢆᙧᡂࡋ࡞࠸࡜ẼἻࢆ⏕ࡌ࡞࠸ࡼ࠺࡛. ࢹࣝࢆ᥇⏝ࡋࡓ㸬Barotropic ࣔࢹࣝࡣ࢟ࣕࣅࢸ࣮ࢩ. ࠶ࡿ㸬ࡇࢀࡽࡼࡾ㸪ィ⟬࡟࠾࠸࡚ࡶᅽຊሙ࡜ẼἻ㡿. ࣙࣥὶࢀࢆᨃఝⓗ࡟༢┦ὶࢀ࡜ࡳ࡞ࡋ㸪Ẽᾮࡢΰྜ. ᇦࡢ㛵ಀࢆᐃᛶⓗ࡟⾲⌧ࡋᚓࡿ࡜࠸࠼ࡿ㸬୍᪉㸪㏿. ᐦᗘࡀᅽຊࡢࡳ࡛ኚ໬ࡍࡿ࡜௬ᐃࡋࡓࣔࢹ࡛ࣝ࠶ࡿ㸬. ᗘศᕸ࡟╔┠ࡍࡿ࡜㸪ప㏿࡞㡿ᇦࡀᄇᏍ㒊ࡢቨ㠃㏆.  ィ⟬࡟ࡼࡾᚓࡽࢀࡓࣀࢬࣝෆᅽຊ㸪࣎࢖ࢻ⋡࠾ࡼ. ഐ࡟ᙧᡂࡉࢀ࡚࠸ࡿࡇ࡜ࡀࢃ࠿ࡿ㸬ࡲࡓ㸪ࡇࡢప㏿. ࡧ㏿ᗘࡢศᕸࢆ Fig.11 ࡟♧ࡍ㸬ࡲࡎᅽຊศᕸ࡟╔┠. 㡿ᇦࡣ࣋ࢡࢺ࡛ࣝ☜ㄆࡍࡿ࡜ᚠ⎔ὶࢀࢆకࡗ࡚࠾ࡾ㸪. ࡍࡿ࡜㺂Pin ࡢቑຍ࡟క࠸ᄇᏍ㒊࡟࠾ࡅࡿపᅽ࡞㡿ᇦ. ᅽຊศᕸࡢపᅽ㡿ᇦ࡜ᴫࡡᑐᛂࡋ࡚࠸ࡿ㸬ࡇࡢࡇ࡜. ࡣᄇᏍฟཱྀ᪉ྥ࡬࡜ᣑ኱ࡋ࡚࠸ࡿࡇ࡜ࡀࢃ࠿ࡾ㸪3.1. ࠿ࡽ㸪ὶධᅽຊࡀ㧗ࡃ࡞ࡿ࡜ᄇᏍධཱྀ㒊࡟࠾ࡅࡿ⇞. ( 55 ).

(10) 122. 松本雅至・松村恵理子・千田二郎. 0.300. 0.100. Pressure [MPa]. 0.200. 0.023 1.00. 20 10 0 (b) C5/C6 (c) C5/C7 (d) C5/C11 (a) 2-Metylpentane (Pv = 23kPa, K = 0.79) (Pv = 24kPa, K = 0.78) (Pv = 36kPa, K = 0.66) (Pv = 51kPa, K = 0.51). Velocity magnitude [m/s]. 0.00 30. Void fraction [-]. 0.50. Fig. 12. Distributions of pressure, void fraction and velocity magnitude for each Pv ᩱὶ㏿ࡢቑ኱ࢆᣍࡁ㸪๤㞳ࡋࡓὶࢀࡢᄇᏍ㒊ቨ㠃࡬. ࣥẼἻ㔞ࡀቑຍࡍࡿࡇ࡜࡟ࡼࡾ㸪ᄇᏍධཱྀゅ㒊ࡼࡾ. ࡢ෌௜╔Ⅼࡀୗὶ᪉ྥ࡬࡜᥎⛣ࡍࡿࡇ࡜࠿ࡽ㸪኱つ. ๤㞳ࡋࡓὶࢀࡢቨ㠃࡬ࡢ෌௜╔఩⨨ࡣୗὶ᪉ྥ࡬࡜. ᶍ࡞ᚠ⎔ὶࢀ࠾ࡼࡧపᅽ㡿ᇦࢆᙧᡂࡍࡿ࡜࠸࠼ࡿ㸬. ⛣ືࡍࡿ࡜⪃࠼ࡽࢀࡿ㸬ࡍ࡞ࢃࡕ㸪ᐇ㦂࡟࠾࠸࡚☜. . ㄆࡉࢀࡓࡼ࠺࡟㸪౪ヨ⇞ᩱࡢ㣬࿴⵨Ẽᅽࡀ࠶ࡿ⛬ᗘ. 㣬࿴⵨Ẽᅽࡢᕪ␗࡟ࡼࡿὶࢀሙ࡬ࡢᙳ㡪. ࡲ࡛㧗ࡃ࡞ࡿ࡜㸪పᄇᑕᅽࡢ᮲௳࡟࠾࠸࡚ࡶ.  ィ⟬᮲௳ࢆ Table 8 ࡟♧ࡍ㸬3.2 ⠇ࡢᐇ㦂᮲௳࡜ᑐ. hydraulic flip ࢆ⏕ࡌࡿྍ⬟ᛶࡀ࠶ࡿ㸬. ᛂࡍࡿࡼ࠺ྠ୍ὶධᅽຊࡢࡶ࡜࡛㣬࿴⵨Ẽᅽࢆኚ໬. . ࡉࡏࡓ㸬௚ࡢゎᯒᡭἲࡣ 4.1 ⠇࡜ྠᵝ࡛࠶ࡿ㸬. ᐇ㦂⤖ᯝ࡜ࡢẚ㍑᳨࣭ド.  㣬࿴⵨Ẽᅽࢆኚ໬ࡉࡏࡓ㝿ࡢࣀࢬࣝෆᅽຊ㸪࣎࢖.  3 ❶࡟࠾࠸࡚ᚓࡽࢀࡓᐇ㦂⤖ᯝ࠾ࡼࡧ๓⠇ࡲ࡛ࡢ. ࢻ⋡࠾ࡼࡧ㏿ᗘࡢศᕸࢆ Fig.12 ࡟♧ࡍ㸬ᅽຊศᕸ࡟. ィ⟬⤖ᯝࡼࡾ㸪ᮏィ⟬࡛ࡣ࢟ࣕࣅࢸ࣮ࢩࣙࣥ㡿ᇦࢆ. ╔┠ࡍࡿ࡜㸪㣬࿴⵨Ẽᅽࡀ㧗ࡃ࡞ࡿ࡟ࡘࢀ࡚ᄇᏍධ. 㐣ᑡ࡟ぢ✚ࡶࡿࡇ࡜ࡀࢃ࠿ࡿ㸬ࡇࡢཎᅉ࡜ࡋ࡚㸪Ẽ. ཱྀ㒊࡟࠾ࡅࡿపᅽ㡿ᇦࡢつᶍࡀᣑ኱ࡍࡿࡇ࡜ࡀࢃ࠿. Ἳ᰾ࡸẼἻ≀ᛶࡢ⪃៖ࡀ༑ศ࡛࡞࠸ࡇ࡜ࡀ⪃࠼ࡽࢀ. ࡿ㸬ࡲࡓ㸪పᅽ㡿ᇦ࡜ᑐᛂࡍࡿࡼ࠺࡟㸪㧗࣎࢖ࢻ⋡. ࡿ㸬ࡑࡢࡓࡵ㸪࢟ࣕࣅࢸ࣮ࢩࣙࣥ⌧㇟࡜㛵㐃ᛶࡢᙉ. 㡿ᇦࡢฟ⌧ࡀ☜ㄆࡉࢀࡿ㸬ࡇࢀࡽࡼࡾ㸪3.2 ⠇࡟♧ࡋ. ࠸ᅽຊሙ㸪ࡉࡽ࡟ࡣ㏿ᗘሙ࡟㛵ࡋ࡚ࡶ⤖ᯝ࡟ᕪ␗ࢆ. ࡓ㣬࿴⵨Ẽᅽࡢᕪ␗࡟ࡼࡿᅽຊሙ࠾ࡼࡧ࢟ࣕࣅࢸ࣮. ⏕ࡌࡓ࡜࠸࠼ࡿ㸬௚ࡢ࢟ࣕࣅࢸ࣮ࢩࣙࣥࣔࢹࣝࢆ౑. ࢩࣙࣥẼἻ㔞࡬ࡢᙳ㡪ࡣᮏィ⟬࡟࠾࠸࡚ࡶᐃᛶⓗ࡟. ⏝ࡍࡿࡇ࡜࡛ண ⢭ᗘྥୖࡢྍ⬟ᛶࡶṧࡉࢀ࡚࠸ࡿ. ᤊ࠼ࡽࢀ࡚࠸ࡿ࡜࠸࠼ࡿ㸬୍᪉㸪㏿ᗘศᕸ࡟╔┠ࡍ. ࡀ㸪᭦࡞ࡿィ⟬㈇Ⲵࡢᣑ኱ࡀぢ㎸ࡲࢀࡿ㸬ࡲࡓ㸪ฟ. ࡿ࡜㸪㣬࿴⵨Ẽᅽࡢቑຍ࡟క࠸ᚠ⎔ὶࡢつᶍࡀᄇᏍ. ཱྀቃ⏺᮲௳࡜ࡋ୍࡚ᐃࡢᅽຊ್ࢆタᐃࡋ࡚࠸ࡿࡇ࡜. ฟཱྀ㏆ഐ࡟ࡲ࡛㐍ᒎࡍࡿࡇ࡜ࡀࢃ࠿ࡿ㸬ࡍ࡞ࢃࡕ㸪. ࠿ࡽ㸪hydraulic flip ࡢࡼ࠺࡞ὶࢀሙࢆ෌⌧ࡋᚓ࡞࠸. ྠ୍ὶධᅽຊࡢ᮲௳ୗ࡟࠾࠸࡚ࡶ㣬࿴⵨Ẽᅽࡀ␗࡞. ྍ⬟ᛶࡀ࠶ࡿ㸬࢟ࣕࣅࢸ࣮ࢩࣙࣥ⌧㇟ࢆᩘ್ⓗ࡟グ. ࡿࡇ࡜࡛ᄇᏍ㒊࡟࠾ࡅࡿ⇞ᩱὶࢀ࡟ᕪ␗ࡀ⏕ࡌࡿࡇ. ㏙ࡍࡿࡓࡵ࡟ࡣ㸪ẼἻ࡟㛵ࡍࡿヲ⣽ࡢࡳ࡞ࡽࡎ㸪ὶ. ࡜ࡀ♧ࡉࢀ࡚࠸ࡿ㸬ࡇࡢࡇ࡜࠿ࡽ㸪࢟ࣕࣅࢸ࣮ࢩࣙ. ືሙࡑࡢࡶࡢࢆ㐺ษ࡟ゎࡃᚲせࡀ࠶ࡿ࡜⪃࠼ࡽࢀࡿ㸬 . ( 56 ).

(11) 噴霧微粒化に対するキャビテーションの影響の解明(第 1 報,拡大ノズルを用いたノズル内流動状況の可視化) 123. ⤖ゝ. 6). ⋢ᮌఙⱱ, す⏣ᜨဢ, ΎỈṇ๎, ᘅᏳ༤அ, ࣀࢬࣝෆ.  ᮏ◊✲࡛ࡣ㸪࢟ࣕࣅࢸ࣮ࢩࣙࣥ⌧㇟ࡢᇶ♏ⓗ≉ᛶ. ᄇᏍෆࡢ࢟ࣕࣅࢸ࣮ࢩࣙࣥࡀᾮయᄇὶࡢᚤ⢏໬࡟ཬ. ࢆᢕᥱࡍࡿࡓࡵ㸪ᣑ኱ࣔࢹࣝࢆ⏝࠸࡚ᄇᏍ㒊ࡢྍど. ࡰ ࡍ ᙳ 㡪 , ᪥ ᮏ ᶵ Ე Ꮫ ఍ ㄽ ᩥ 㞟 B ⦅ , 63(614),. ໬࠾ࡼࡧᄇᏍෆᅽຊࡢィ ࢆ⾜࡞ࡗࡓ㸬ᄇᑕ᮲௳࠾. pp.3447-3454, (1997).. ࡼࡧ㣬࿴⵨Ẽᅽࢆኚ໬ࡉࡏࡓሙྜ࡟࠾ࡅࡿᄇᏍෆᅽ. 7). ኱㯮ṇᩄ, ྂ㤋ோ, ✄ᮧ㝯ኵ, ࣀࢬࣝෆ࢟ࣕࣅࢸ࣮ࢩ. ຊ࠾ࡼࡧᄇὶᖜ㸪࣎࢖ࢻ⋡ࢆㄪᰝࡋ㸪࢟ࣕࣅࢸ࣮ࢩ. ࣙࣥࡀᾮయศ⿣ᶵᵓ࡟ཬࡰࡍᙳ㡪(➨ 3 ሗ㸪2D ࣀࢬࣝ. ࣙࣥᩘ࡟ࡼࡾ✀ࠎࡢ㛵㐃㡯┠ࢆᩚ⌮ࡋࡓ㸬௨ୗ࡟ᚓ. ෆࡢᅽຊኚື), ᪥ᮏᶵᲔᏛ఍ㄽᩥ㞟 B ⦅, 71(703),. ࡽࢀࡓ▱ぢࢆ♧ࡍ㸬. pp.811-816, (2005).. (1) ᄇᑕᅽຊࢆቑຍࡉࡏࡿ࡜࢟ࣕࣅࢸ࣮ࢩࣙࣥ㡿ᇦ. 8). ᑠ➟ཎៅ, ኱㯮ṇᩄ, ࣀࢬࣝෆᾮయࡢ஘ࢀࡀᄇὶ࡟ཬ. ࡣᄇᏍฟཱྀ㏆ഐࡲ࡛ᡂ㛗ࡋ㸪㈇ᅽ㡿ᇦࡶୗὶ᪉. ࡰࡍᙳ㡪, ᪥ᮏᶵᲔᏛ఍ᮾ໭ᨭ㒊⛅Ꮨㅮ₇఍ㅮ₇ㄽ. ྥ࡬࡜㐍ᒎࡍࡿ㸬. ᩥ㞟, 20060930, pp.71-72, (2006).. (2) ⇞ᩱࡢ㣬࿴⵨Ẽᅽࡀ㧗ࡃ࡞ࡿ࡟ࡘࢀ࡚࢟ࣕࣅࢸ. 9). ື㌴◊✲, 17(9), pp.449-455, (1995).. ࣮ࢩࣙࣥ㡿ᇦࡣୗὶ᪉ྥ࡬࡜つᶍࢆᣑ኱ࡉࡏ㸪 ᄇᑕᅽຊࡢቑຍ࡜ྠ⛬ᗘࡢᄇὶࡢᚤ⢏໬ಁ㐍ຠ. ⛅ᒣ㈼୍, ᕷ㈍࢞ࢯࣜࣥࡢⅣ໬Ỉ⣲⤌ᡂ(➨ 2 ሗ), ⮬. 10) ኱Ụಟ㐀, タィ⪅ࡢࡓࡵࡢ≀ᛶᐃᩘ᥎⟬ἲ, ᪥หᕤᴗ ᪂⪺♫, pp.310-314, (1985).. ᯝࢆᚓࡿ㸬ࡋࡓࡀࡗ࡚㸪࢟ࣕࣅࢸ࣮ࢩࣙࣥࡢⓎ. 11) ᶓ⏣※ᘯ, ఀ⸨ᖾ㞝, ᅄᡞ➉ຬ, ⣽࠸⤠ࡾࢆ㏻ࡿ㧗. 㐩ẁ㝵ࡣ࢟ࣕࣅࢸ࣮ࢩࣙࣥᩘ࡟౫Ꮡࡍࡿ㸬 (3) ᄇᏍෆᅽຊศᕸࡣ࢟ࣕࣅࢸ࣮ࢩࣙࣥ㡿ᇦ࡜ᐦ᥋. ᅽ࣭㧗㏿Ἔὶ୰ࡢ࢟ࣕࣅࢸ࣮ࢩࣙࣥࡢ▐㛫෗┿ほᐹ,. ࡞㛵ಀࡀ࠶ࡾ㸪ᄇᑕᅽຊࡸ㣬࿴⵨Ẽᅽ࡜࠸ࡗࡓ. ᪥ ᮏ ᶵᲔ Ꮫ ఍ㄽ ᩥ㞟 B ⦅, 55(515), pp.1817-1822,. ࢟ࣕࣅࢸ࣮ࢩࣙࣥᩘ࡟ᐤ୚ࡍࡿᅉᏊࡢᕪ␗࡟ࡼ. (1989). 12) ኱㯮ṇᩄ, ྂ㤋ோ, 㔝⏣ⱥᙪ, ࣀࢬࣝෆ࢟ࣕࣅࢸ࣮ࢩ. ࡿ≉␗࡞ኚ໬ࡣぢࡽࢀ࡞࠸㸬 (4) ࢟ࣕࣅࢸ࣮ࢩࣙࣥ⌧㇟࡜ྠᵝ࡟㸪ᄇᏍෆᅽຊ࠾. ࣙࣥࡀᾮయศ⿣ᶵᵓ࡟ཬࡰࡍᙳ㡪(➨ 2 ሗ㸪2D ࣀࢬࣝ. ࡼࡧᄇὶࡢᖜࡶࡲࡓ࢟ࣕࣅࢸ࣮ࢩࣙࣥᩘ࡟ࡼࡾ. ෆࡢᾮὶࡢᣲື), ᪥ᮏᶵᲔᏛ఍ㄽᩥ㞟 B ⦅, 69(685). ᩚ⌮ࡍࡿࡇ࡜ࡀྍ⬟࡛࠶ࡿ㸬. ྕ, pp.2024-2029, (2003).. (5) ᮏィ⟬ᡭἲࡣࣀࢬࣝෆ࢟ࣕࣅࢸ࣮ࢩࣙࣥ࠾ࡼࡧ. 13) Ᏽ᫂Ⰻ, ෠ᒣ᫂⏨, ⣽ᕝⱱ㞝, ⃮ᕝៅྖ, ๓⏣㐩฼, 2 ḟඖࣀࢬࣝෆ࢟ࣕࣅࢸ࣮ࢩࣙࣥ࡜ᾮయᄇὶࡢᚤ⢏໬. ᅽຊሙ࡟㛵ࡍࡿᐃᛶⓗ࡞ഴྥࢆ෌⌧ࡍࡿ㸬. (➨ 2 ሗ㸪ࣀࢬࣝෆᾮ┦㏿ᗘ࡜ LDV ィ. ఍ㄽᩥ㞟 B ⦅, 72(714), pp.521-527, (2006).. ཧ⪃ᩥ⊩ 1). ), ᪥ᮏᶵᲔᏛ. ᒣᓮ༟∞, ࢟ࣕࣅࢸ࣮ࢩࣙࣥᕤᏛ, ᪥หᕤᴗ᪂⪺♫,. 14) ᯇᮧᜨ⌮Ꮚ, ┤ᄇ࢞ࢯ࢚ࣜࣥࣥࢪࣥ⏝ࢫࣜࢵࢺࣀࢬ. pp.4-14, pp.62-67, (1978).. ࣝෆࡢ⇞ᩱὶື࡜ᄇ㟝≉ᛶ࡟㛵ࡍࡿ◊✲, ྠᚿ♫኱. 2). ຍ⸨ὒ἞, ࢟ࣕࣅࢸ࣮ࢩࣙࣥ, ᵐ᭩ᗑ, pp.1-6, (1990).. ᏛᏛ఩ㄽᩥ, (2006).. 3). ᶓ⏣※ᘯ, ఀ⸨ᖾ㞝, 㟷ᮌඵ㑻, ⣽⤠ࡾࢆ㏻ࡿ㧗㏿Ἔ ὶ୰ࡢ࢟ࣕࣅࢸ࣮ࢩࣙࣥ࡟ᑐࡍࡿࡢ࡝㒊㛗ࡉࡢᙳ㡪, ᪥ᮏᶵᲔᏛ఍ㄽᩥ㞟 B ⦅, 58( 545), pp.1-6, (1992).. 4). ኱㯮ṇᩄ, ྂ㤋ோ, ࣀࢬࣝෆ࢟ࣕࣅࢸ࣮ࢩࣙࣥࡀᾮయ ศ⿣ᶵᵓ࡟ཬࡰࡍᙳ㡪, ᪥ᮏᶵᲔᏛ఍ㄽᩥ㞟 B ⦅, 68(671), pp.1998-2005, (2002).. 5). Ᏽ᫂Ⰻ, ෠ᒣ᫂⏨, ⣽ᕝⱱ㞝, ⃮ᕝៅྖ, ᯇᮏὒ୍㑻, ஧ḟඖࣀࢬࣝෆ࢟ࣕࣅࢸ࣮ࢩࣙࣥ࡜ᾮయᄇὶࡢᚤ⢏ ໬(➨ 1 ሗ㸪㉸㧗㏿ᗘ࣓࢝ࣛ࡟ࡼࡿྍど໬), ᪥ᮏᶵᲔ Ꮫ఍ㄽᩥ㞟 B ⦅, 72(714), pp.513-520, (2006).. ( 57 ).

(12)

参照

関連したドキュメント

In Section 3, we show that the clique- width is unbounded in any superfactorial class of graphs, and in Section 4, we prove that the clique-width is bounded in any hereditary

If in the infinite dimensional case we have a family of holomorphic mappings which satisfies in some sense an approximate semigroup property (see Definition 1), and converges to

The main idea of computing approximate, rational Krylov subspaces without inversion is to start with a large Krylov subspace and then apply special similarity transformations to H

We obtain a ‘stability estimate’ for strong solutions of the Navier–Stokes system, which is an L α -version, 1 < α < ∞ , of the estimate that Serrin [Se] used in

Based on sequential numerical results [28], Klawonn and Pavarino showed that the number of GMRES [39] iterations for the two-level additive Schwarz methods for symmetric

- Parts of the foregoing machinery, apparatus or equipment Plates, cylinders and other printing components; plates, cylinders and lithographic stones, prepared for printing purposes

Amount of Remuneration, etc. The Company does not pay to Directors who concurrently serve as Executive Officer the remuneration paid to Directors. Therefore, “Number of Persons”

※1 The sum of the estimated ratios to regulatory concentration limits for primary seven nuclides (Cesium-137, Cesium-134, Cobalt-60, Antimony-125, Ruthenium-106, Strontium-90