• 検索結果がありません。

* n x 11,, x 1n N(µ 1, σ 2 ) x 21,, x 2n N(µ 2, σ 2 ) H 0 µ 1 = µ 2 (= µ ) H 1 µ 1 µ 2 H 0, H 1 *2 σ 2 σ 2 0, σ 2 1 *1 *2 H 0 H

N/A
N/A
Protected

Academic year: 2021

シェア "* n x 11,, x 1n N(µ 1, σ 2 ) x 21,, x 2n N(µ 2, σ 2 ) H 0 µ 1 = µ 2 (= µ ) H 1 µ 1 µ 2 H 0, H 1 *2 σ 2 σ 2 0, σ 2 1 *1 *2 H 0 H"

Copied!
14
0
0

読み込み中.... (全文を見る)

全文

Loading

参照

関連したドキュメント

2 To introduce the natural and adapted bases in tangent and cotangent spaces of the subspaces H 1 and H 2 of H it is convenient to use the matrix representation of

(The Elliott-Halberstam conjecture does allow one to take B = 2 in (1.39), and therefore leads to small improve- ments in Huxley’s results, which for r ≥ 2 are weaker than the result

Poisson algebras of geodesic functions for the bordered Riemann surfaces Σ g,δ 1 and Σ g,δ 2 that differ only by distributions of marked points among their boundary components

the log scheme obtained by equipping the diagonal divisor X ⊆ X 2 (which is the restriction of the (1-)morphism M g,[r]+1 → M g,[r]+2 obtained by gluing the tautological family

In recent work [23], authors proved local-in-time existence and uniqueness of strong solutions in H s for real s > n/2 + 1 for the ideal Boussinesq equations in R n , n = 2, 3

[r]

Taking care of all above mentioned dates we want to create a discrete model of the evolution in time of the forest.. We denote by x 0 1 , x 0 2 and x 0 3 the initial number of

Tikhomirov proved the convergence of the expected spectral distribution E µ X to the limit defined by (1) under the assumption that the matrix entries are mutually independent