• 検索結果がありません。

ON HIGHER ORDER DERIVATIVES IN DIFFERENTIAL\nCALCULUS BY THE METHOD OF RANKED SPACES\n

N/A
N/A
Protected

Academic year: 2021

シェア "ON HIGHER ORDER DERIVATIVES IN DIFFERENTIAL\nCALCULUS BY THE METHOD OF RANKED SPACES\n"

Copied!
15
0
0

読み込み中.... (全文を見る)

全文

(1)

SUT Journa1 of Mathematics

(F()rmerly TRU Mathematics) Volume 27, Number 1(1991), 1−15

ON HIGHER ORDER DERIVATIVES IN DIFFERENTIAL

CALCULUS BY THE METHOD OF RANKED SPACES

MAsATo IIIKIDA

(Re㏄ived Maエch 15,1991) Abstract. We define the notio皿of higheエorder derivatives and give Taylor,s formllla i皿differential calculus i皿Uneal ranked spaces with皿o皿一symmetric ple皿eighbolltoods. 1980Mαthematics 5%bゴect Classification.46A99,58C20. Keywords. Ra皿ked space, No皿一symmetlic pエe皿eighborhood, Taylor,s fbrmula.    We make in this四)er a further study ofl Nagakura[5], i.e. we define the notion of higher order derivatives and give Taylor,s formUla in di丑ierential calculus i皿linear ranked spaces. Our standpoint of developing a theory is to work constructively in situations of generality, so we wa皿t to keep being in the category of given.spaces a皿d to avoid complications as much as possible. The investigation made in[5], which was do皿e by the method of ranked spa£es, sUits the standpoint. Thus the method taken in this paper is different from those of other theories of differe皿tial calculUs in linear spaces:Apreneighl)orhood of the origin of a linear ra皿ked space is neither open(in the toPdogical sense)nor syInmetric, and need not abSorb all points of the space;the convergence in a linear ranked space is de丘ned by means of a fundamental sequence of preneighborhoodS, Plainly speaking, a se(luence of points is required to converge to a point along a given path;a皿d so the、derivative is not reqUired to be defined on the whole space. Furthermore, we do not treat a“space”()f mUltthnear maps(between 9iven linear spaces), since in general the“space”of such maps is皿ot in the category of the given spaces. In view of the results of[5]and of this paper, it seems to us that the method pf ranked spaces is effective to revea1 the real nature of matters;f‘)r example, we see that. Taylor,s formula is closely related to the character of fundamental seque皿ces of pre皿eighl)orhoods(and so to that of convergences). 1

(2)

2

HIGHER DERIVATIVES IN LINEAR RANKED SPACES

   Throughout this paper, a‘qinear ranked space,, means a linear ranked space of[5], .and we. con{blm CurSelves to the ter㎡nology and{he notatiol1S gf[5];yet, only{]or the “P麺r・頂・・gと・r・”、・nd thC、“P−i・ゆ・輌,”w・ .adgPt・中・㊤皿gwi・g m・di丘・、・tiOn・・    Let{Vk}be a O−furidaniental seqU6nce in a lineal ranked space. E. A sequehce {エ」}of points of 1ヲis said to l》e parα一{Vk}−converg.ent to x∈E, in symbds⑳」→¢ (P−{Vk}), i{there e垣sts a fundamental se(111ence{yi十隆ω}(k(り↑o◎)in E such that¢.∈∩(祐十Vk(り)and that, fbr・any i”there isプsuch・that gj∈yi十Vk(りfbr all j≧プ.Apoint x of a subset 1)of E is called a P−{Vk}−interior point(ゾ1)if, fbr a皿y f・ndam・nt・1・eqUen・e{Zi+Vk(i)}低)↑。。)ln E with x∈∩(・汁Vk(輌)), the・e i・i such that Zi十Vk(‘).⊂1λ  .    .       、  .    ・−    With these mOdi丘cations, the results of[5】remain valid. In ’the above,・if yi=¢ f・・all・i, th・n{・」}i・・said・t・b・B伍}一・・nv・・gent・t・・, in・ymb・1S¢」→x(R−一{Vk}), as was defined in【5];and if z‘=xfbr all i, then x is called ah R.{Vk}−interiol point

ofD.

   0.Notations. We denote byフ㌔(E)the set of al1 O一血ndamental sequences in a lineaロa泊ked spate E:meinbers{Vk},{砥},・etc. of −o(E)are frequently written as v,u, etc. f‘)r l)revity;and we put foo(E) = {v∈戊㌔(E):一.the otigin O is an R−v−interior point of E★(の},      A=.{{λ♂}:λ」>0.and.)1元→0};

and when v={Vk}∈}チb(E)and h∈E;we put

9(v)       eing R部一quasi bounded means thatλ・h      Pis a non−negative integer and Ep rank(…d space(the product linear ranked space of li皿ear ranked spaces is defi same manner as in{4])

sp.ace, we frequently denote the sequences{Ak土Bk}by{ノlk}士{Bk}Iespectively

and the.notation{Ak}く{Bk}means thaほ)r any k there is .k          〈h>P where ’{㌧}b ([5]),   −. REMARK. If{Vk}∈チb(E), then ・(le(り↑。。血ea皿s k(i)≦k(   tllat Vk−Vk⊂E★(∋ {{㌧}:《九」}is an R−v−quasi bounded sequence in、房},     ρ臼mes

伍x…・鳴・(∈万(五w)),       、

  ,tlme8 (一h,_,h)(∈助,        3」→0(R−∋長)revery{λ」}∈A        =」D×….x E(ρtimes)is the product linear        ned by the   .Moreovet, fbr sequences{Ak}and{B鳶}of subsets of a linear        ;        ’such that A⊂B友.        {Vk(‘)}∈万(E)五)I every{えω}withゐ(の↑OO       i十1)→∞).If㊨={Vk}∈」弓oo(E), then・the元e is1‘such  ;hence the origin is then a P−v−interioτpoint of E★(の, and so へ

(3)

M.HIKIDA・

3

B(のis P・v−・畑, that is, every p・int・f.Es’(v) is P−v−interi・r p・i皿t・f Ek(妙)、 F6r皿y

・∈乃働W・bav・蜘り=町・)×一…・恥)(ρti聴r);・・(・・,・∵・rl・.)∈蜘り

implies(x・(1),…,Xr(ρ))∈E★(vP)&)I every mapアof{1,_,ρ}into itself. R㏄all that, as・was・defined・in【5], when・u={Uk}∈T。(Ep), E(u) = {x∈㌧EP:fbr. each k there is E★(u) =  Span E(u). λk>Osuch th誠1¢∈A,k Uk},   Througllout the. fbllowing sect輌ons 1−3, E and F stand fbr lineaエranked spaces,’ and・D・stands・f・r・a・subSet()f E;and we assume that F always. 唐≠狽奄唐?奄?刀Ethe. @c・nditi・n (A.4)of[5](c£Remark(2)at the end of the section 2):    (A.4) If{Wk}∈乃(F)and if a sequence{¢先十階}(xk∈F)has the non−empty i・t・・secti・n・th・n th・・e i・{k(i)}(k(i)↑。。)…hth・t{xMi)+Wk(・)}輌・a血・d・m・nt品 sequence and that⑳」+W」⊂xk(‘)+Wk(‘)whenever j≧k(i+1)・    1.Higher order derivatives. Let v={Vk}∈fo(E). A map.∫:1)→.F iS said t6 be妙一con・tinuousα‘α∈1)if, f()r any fundarnental se(luence{xi十Vk(↓)}(k(り↑oo) i・Ewith.・∈∩(xi+Vk(り), th・・e i・u∈f・(F)・u・h th・t{∫((xi+Vk(、))∩D)一∫(・)}く u−u;and∫is said’to be v−continuous(on 1))江it is v−continuous at evely point of D. Thus if∫is v−colltinuous atαfbr each v∈乃(E), the皿it is continuous atα (in the sense of[5D;in particu1西r if vl一くv鮫)r any vl∈」にb(E)and 1ヲsat姪fies the fbllowing condition(A.4°), then the v−continuity of∫atαimplies the eonti皿uity of ∫atα:    (A.4°) If{Wlk}∈fo(E)and if a seque皿ce{xk十VVk}(¢た∈E)has the hon.empty intersection, then there is{k(り}(k(i)↑∞)such that{xk(‘)十Wk(輌)}is a fundamental sequence・

   PRoPoslTloN 1. Le‘L:廿(v)(⊂En)→Fbe a mUltilinear map, whe肥v=

{Vk}∈漏(En).∬Li・v−・・nti・・・…t・th・㎝④〈0>・,‘th・n・th・・b i・u∈f。(F)…h ‘ha‘{L(Vk∩E★@))}rくu−u. ConverselM, if su6h u exis‘s a直d∫f㊨∈免oo(En),孟hen ‡here isω∈」%(F)such‘ha‘{L((Vk−V,)∩E★(v))}一くω一ω;1}om t五is jt fb皿ows ‘h・‘{L((xi−+Vk(‘))∩E★(v))}.くω一ω血皿y£皿d・m・n‘al・eq・ence{Xi+Vk(輌)} (k(り↑◎o)in En w“h〈0>n.∈∩(Xi十Vk(《)), so L●then v−con‘fnuous a¢〈0)n.    PRooF. Assume{L(Vk∩E”(v))}・くu−ua皿d v∈foo(宮). Chooseω∈;o(F) such that.       2論tilrres       −       U十一・一←U  rく ω.      .       ・

(4)

4

HIGHER DERJVATrVES IN HNEAR RANKED SPACES

Then, since Vk−Vk⊂E★(v)for some k, we have{L((Vk−Vk)∩E★(v))}一くω一w.

   PRoPoSITIoN 2. Le‘L:酢(v)(⊂En)→Fbe mu1‘∬mear, where v∈fo(En).

5upPose』‘Lis u−c・ntinuous at the ori8i’n.    (1) If n=1,‘hen L js v−co皿‘f皿uous oll E★(の.    (2) If h≧2and if either v∈チbo(En)holdS or E satisfies(A.4°), then L js v−continuoロs on E★@).    PRooF.(1)is obvious. We prove(2)only for the case n = 2;the other cases follow 丘om the same way. put v={Vl ,k×V2,k}た;we may assume vl={巧,k}∈fo(E)and v2={V2,k}∈チb(E)・Fix(α, b)∈E★(v)・Since L(x’,y’)−L(α,りニ・乙(x’一α,yi −b)十 L(xLα, b)十L(α, y’一のf()r(〆, y’)∈E★(のand since E」r(∋=E★@1)×E★(v2),it sufHces

to show that the maps B(vl)∋x→L(x,6)∈Fand E★(v2)∋y→L(α, y)∈Fare

vl−and v2−continuous at x=Oand at yニOrespectively. Furthermore, since L is

bilinear on E★(の, it is enough to assume b∈E(v2)andα∈E@1).    Let{xi十Vl,k(り}㈱↑。o)be a血ndamental sequence in E with O∈∩(xi十Vl,k(り). Put yl=Vll ,k(D andγ;’=レ),k(の. Letλ‘>0(i=1,2,...)be such that b∈λ巨y;’. Choo6e a suもsequence{i(ゴ)}of{i}such thatλ輌(ゴ)Vl.(」+1)⊂γ{(」). Assume v∈ フ㌔o(E2). As L is v−continuous at(0,0), there is u∈fo(F)such that{L((V;× τノ;’)∩E★(∋)}一くu一ぴ Choose ul∈チb(F)such that u十u一くul. Then, since Vl×γ(’一γ1×yi’⊂E★(∋f()r some i, we have{L((xi(」+1)1十γ1(元+1))∩E★@1),b)}」く ul−ul。 Assume next that E satisfies(A.4°). Then, since 0∈λ・(」)(Xi(」.・)+γ1(」.、))⊂λi(」)%.・)+γ;(」), we can find{ゴ(の}so that{λ‘(」(2))叫」(り+1)十γ1(ゴ(の)}t is a fundamental sequence. By the v−continuity of L at(0,0), there existsω∈」にb(F)such that {L(((λi(、・(t))知(t)+・)+v(・(」(η))×畷」(2)))∩E“(の)}2くω一ω・ From this it fbllows that{L((Xi(ゴ(勾+・)十VI・(」(2)+1))∩匪(vl),6)}t一くω一ω・Thus, in either case, we see that the map x→L(x,b)is vl−continuous atωニ0. Similally the map・9→L(α, y)is v2−c・ntinu・us at y=0.    Let D be R−v−open for some v∈戊㌔o(E), that is, every point of D is an R−v−interior point of 1)工eげ:1)→Fbe a map, where F is(π一T1). We define f to be…llw∼xys O times R.v.differentiαb「eαt every point of、0, and put∫(o)=∫. For t}le integerη≧1, we de丘ne, by recurrence on n, theηtimes R−v−differentiability of f as fbllows:fis n 舌脅ηes R−v−d−ifferentiαbleαtα∈1)if it is n−1times R−v−(田』entiable at every point of D and if there eXists a v”−continuous multilinear map f(n)(α):蹄九)(⊂En)→F

(5)

M.HIKIDA』1・

such that the map.rπ,. give皿by       ・。㈹(・)=∫(π一1)(・+九)(・)一∫(毘一1)(・)(x)一∫(烏)(・)(九,x)        ((・,x)・((D−・)・軸・E*(・・一・)), satisfies the f()llowing:       』.    (†) There is u∈万(F)such that       ’λ;1・・(λ」ん」)(・・)丁゜(P−∋ f・・ev・・y{hj}∈9(の,・ve・y{・」}∈.9(v炉1)aPd・v・・y{㌧}∈A・ And f is said to be n tirnes R..v−difierentiαble(on D)if it isηtimes R−v−differentiable at every point of D.    R・m・・kin止・ab・v・that th・m・p∫(n)(・)i・uniqu・ly d・termin・d・in・Ek(の・it is calIed the R−v−der肋α舌iηe〔)f ordεr n of f at a. We sometimes say that a sequence {¢」}of points of a set X is eventually in a set 5⊂X・if there is J” such that xj∈5! f‘)rallゴ≧プ. Remark that if v∈戊㌔o(E), then.evely{九」}∈9(のis eventua皿y in E★(∋.    The fbllowing conditio皿(A.1°)will be丘equently assumed below:    (A.1°) For any ul∈チb(F)there is u2∈克oo(F)such that ul K u2.    LEMMA 1. S叩Pose that∫:1)→Fisηtimes R−v−diffe肥ntiable a‘α∈1), where

n>1、Then

   (1)There exist u’∈フも(F)and u”∈チ6(F)such that,9ive皿{hj}∈Q@),

{¢」}∈2(vn−1)and{㌧}∈A,        ・   ∫(n)(α)(λ」㌧,ち)−7>0 (P−ut),        フ        ∫(外一1)(α十λ」ち)(¢」)一∫(π一1)(α)(苫」)−7>0 (P−u”).        」    (2) If F satisfies(A.1°), the皿‘止ere isω’∈.チb(F)sロc血‘ha‘, give皿{九」}∈2(v), {・」}∈ρ(vn−1)紐d{㌧}∈A,‘h…q・e・ce{∫(n−1)(・+λ轟)(・」)}」」・event・ally fn E★(ω’);丘om this it‘hen」b」Uows‘ha‘‘here eXis’tsω”∈チb(F).such‘力a‘,91’ve皿 {んρ,」}」∈2(v),{ち,」}」∈2(njρ)and{λ,,」}」∈A(ρ=0,_,n−1);someゴ1 can be

f(川nd in such a way that       .  ..・ ’

      .i{’)(α+λρ,」んρ,」)(rp,,」)∈E−r(ω”). . . f‘)rall j≧」1 and a皿ρ=0,...,n−1.

5

(6)

6

HIGHER DERIVATIVES. hN LINEAR RANKED SPACES

PR・・P. P・t v={Vk}(∈X。。(E)),・nd 1・t理回二Vk・・…IVk.(p times). (1): By the relption ∫(n−1)(・+.h)(・)一∫(カー1)(・)(司=rn(九)(x)+∫(n)(・)伽) a皿dby(†), it su伍cies to show the eXistence of u’∈fo(.F)with the asserted property. A・∫(・)(・)i・v・一・・nti皿・u・at th…igi・, th・⊇・’∈f。(F)・U・h・th・t{∫(・)(・)(咋π】∩ E★(vn))}、く・’一・’.1・・・…=1, it i・・bVi・u・th・t∫(1)(・)(λ」㌧)→b(P一の.

Assume n≧2. Let{μ」}be a sequence of positive皿mbers such that朽↑oo a皿d

μ劫→0圃(the eXistence of such{pj・}follows from[4, Lemma 1.41, since the

le㎜a rem垣ns司id in E). Then we see         ∫(n)(・)(λ海・」)=f(”)(・)(μ」λ海μ;11( 1)・」)ニー0.(P−ut).   (2):We prove the f()rmer part. Assume n≧2. As f(n−1)(α)is vn−1−continuous ・t・th…igi・,.th・・e i・ω∈f。(F)・u・h th・t{f(・一・)(・)(咋 11∩E’f(・・一・))}k K・v一ω. Let u”∈端(F)be as in(1). By(A.1°), choose w’∈尻oo(∬)such that u”十ω一一くwt.

Then from

∫( 1)(・+λ」㌧)(・」)=∫(n−1)(・+λ」・ん」)㈲一∫( 1)(・)(・」)+λ;(n−1)∫(n−1)(・)(λ」Xゴ) it囹1㎝s that∫(n−1)(α十λ」九」)(¢」)∈E★(ω’)for.all the suficie皿tly largeゴ,s.1皿case n=1,chogse◎∈先(F)spch that∫(α)∈E★(◎). Then the plece(五ng argument is valid withω=◎.    CoRoLLARY 1. Leげ:1)→・F be n‘fmes R−v−(五fferentiable atα∈D, where n≧1a疎f v={Vk}. The皿,91’ven x∈E★(vn−1), t五ere js uエ∈チb(F)such that        {∫(n−1)((・+Vk)∩Dつω一∫( 1)(・)ω}、く・r・・ where 1)*=D∩(α十E★(の).   Tlle fbno理ing are e{rs. ily velified:

  PRoPosITIoN 3. Let 1)be R−v−(∼pe皿fbr some v∈foo(E). Let∫:D→F,

9:[α,β)(⊂Rl)→Fand lρ:[α,β)(⊂丑1)→1∼1, whe肥Fjs(π一T1)and丑1

f・th・・pace融n in{5, Ex・・iipl・1]. L・t b∈D, and・1・‘ん∈E be…虫‘h・‘

θ九∈(・D−b)∩E★(のfbr a∬θ∈{0,1].

  (1)1f bo‘h f and a map∫A;1)→Fare・n舌fmes脇一(晒肥皿‘jable a‘b,‘力en

s・」s‘he励p 8∫+坊血・my re㎡加mb・ぽ・姐dちa・d・then(3∫+㈲(n)(b)=

・∫(・)(b)+tfln)(b).

(7)

M.HIKIDA

7

  (2)iff’is n‘∫mes R−v−(lifferen‘iable・at xO十b.(¢o∈(D一乃)∩世@)), the丑so is ‘h・卿ゐ・(D−b)∩E・ω∋x,→∫(x+6)∈F・t・・x。a・d f,n)(x。)= −f(h)(x。+b);   (3) 1f bo‡h g and.9 are R−《h’fferen‘iabJe(」丑毒五e sense of同)a‡‡o∈[α,β),‘hen so js‘he map 91:(盈1:))【α,β)∋‘→9(t)9(老)∈・F andσ1“(¢o)=9’(τo)σ(to)+ 9(to)9’(to).      .,   (4) 1r∫∫sη‘∫mes】缶u−(lifferen‘∫aぴe a‘6十θ〇九(n≧1,θo∈[0,1)),伍e皿,血 ・ny・fix・d y∈E★(vn−1),¢h・・卿9、・(盈、⊃)[0,1]∋θ→∫(n−1)(6+θ九)ω∈Ff・ R一繊・㎝‘」・田・a‘θ。鋤dg、’ iθ。)=∫ω(b+θ。ん)(九,y).1    PRoPoslTloN 4. Le‘v∈尻oo(E), and Iet m..≧1be an integer. Suppose‘ha‘ L:B(vm)(⊂Em)→F蜘冊一con‘」皿uous and皿㎡碗皿ear, where F is(π一丁1). Then, f()rany i皿teger n≧0, we have      .   .    ・   ・:“    (i) L∫sη‘imes R−um−djfferen‘jable a‘eve」ry a.∈E★(vm);and L(冊)(α)js a con− s‘a・t.高≠堰E,・・Lω(α)=O・if n>m.    (2) The mapτ:(E⊃)E”(v)∋九→L〈九>m∈Fjs n tjmes R−v−(fifferentiable a‘ eve1ア九∈E★(句:and‘hen, if m−n=ρ≧0,   〆π)(h)(『1,・∴,Xn)       ・1        陸       8P      =  Σ  Z) L(・。(、),_,》,_,x。(」),X,・。(」.、),_,》,...,x。(。)).        1≦‘1<…<輌▲〈…◇ρ≦mσ w五eTe(¢1,...,xn)∈E★(vn).andσfs a permu tation of.{1,_、n};and so e{F)(ん).=0’

ifη>m,

2..Taylor,sゆula. In the.fg皿owing Theorems 1−3,,.Lemma 2 and Coro皿ary 2,16t Db・R−v−・p・nf・・s・rP・.v .E・T・・(E)・ndl・t Fb…卿・¢(・−T・)皿d・ati・fy 伍econdition(A.2’)of[5], where F being co皿vex means that the prenelghborhoQds of .the origin of F are convex:When∫:D→F js n times R−v−differentiable at a∈D,

we ppt

       ax(・)一∫(・+・)一主±∫ω(・)〈・〉・(・・(D−・卿)・

  The following is Taylor,s formUla correspondmg t。 the definition of(1 times) R−differential)畢ity:、    THEoR.EM 1. Le‘∫:1)→Fbe n times R−v−(fifferentjable a‘α∈1), whele n≧1 a皿dv={Vk}. SuppOse that F satfs6es(A.1°)and‘ha‘, jn‘五e case n≧2,‘力e

folloWing力dds:

(8)

8

HIGHER DERIVATrVES IN LINEAR RANKED SPACES

   (‖) For eachρ=0,...,n−2,‘here丞fOp suc力that Vkρ.⊂(1)一α)∩E★(のand ‘ha‘,」for any fixed九∈Vkp,舌he lnap        (Rl⊃)[0,1Dθ一一∫(・)(・+θ九)〈九〉・∈F fs c・ntinu・us・n[0,1].        令.. 丁五e皿      、    (1) There em’stsω∈チb(F)such that

      .  λ7( 1)se・一・(λ・九・)丁・(P−・)

f()revery{んゴ}∈9(v)and evely{λ」}∈A.       .    (2) There eXistsω*∈巧〕(F)such that if‘he restric tio40f∫(抱)(α)to E★({)n)is symmetric ft)r∂∈Fo(E)Wl’εh∂一〈V,‘hen       λ;・・”・een(λ」んゴ)丁゜(P二∋ f・・’ Ev・・y{h元}∈9(・)吐f・h・i・・eve・t・ally in E’(∂)and・町{λ」}∈A. Thus jf we ch・・se・di∈fo(F)such that・w+ω*一くdi,‘hjs励麗b・εh pr・perties()fω a皿(1ω゜.    PRooF。 When n=1, the theorem is obvious. Assume n≧2below.    (1):Let u∈fo(F), u’∈乃(F)andω”∈fo(F)be as in(†), as in Lemma 1(1) and as in Lemma 1(2)respectively. Chooseω∈foo(F)sllch that u十u’十ω”〈w. Putωニ{Wk}, a皿d let松be such that Wt⊂E★(ω).

   Let{ん」}∈9(のand{λ元}∈Abe given. Fix k≧max{ko,_,kn_2,松}, and

choose m>kso large that 4Wm⊂Wk. Then, by the choice Ofω, we can丘ndアin

such a way that        λフ<1, λ」んフ∈レ;iZ,        ∫(ρ)(α十θλJhj)〈ん」〉ρ∈E★(ω) (pニ0,...,n−1),        ∫(・)(・)(θλ」ん元,〈ん」〉・」1)∈Wm−Wm,        λ;1・。(θλ」ん」)〈ん」>n’1∈wバWm, w}leneverゴ≧ゴ’andθ∈[0,1]. Fixゴ≧ア, and define g:[0,1](⊂R1)→FI)y 9(θ) 一§ご(・一・)・λヲ∫…(・+・λ…)〈・・〉・+(。…、),(・一・)・一・λ7−・∫・・一・・(・)〈・・〉・一・・

(9)

.M. HIKIDA

Then g is continuous on[0,1]by(#), and, by Proposition 3, g is R−di丑erentiable at

everyθ∈[0,1)and

     ・’(・)一(嵩2λ7−・[f・n−1・(・+・λ・㌧)〈・・〉パー∫・−1・(・)〈・・>r       −(嵩2λ7−・[・・(脳・)〈・・〉・−1+∫…(・)(・λ・ん・・〈・・〉・−1)]・ Obv輌ously g([0, ID⊂E*(w)and g舎([0, i))⊂Et(ω);and for allθ∈[0,1)

      ・’(・)・(高2λ7−・(W・・−W・f−Wm一陶・・7−・2(Wm一嚇

Hence, by[5, Theorem 3.1]we obtain

   9(1)−9(0)∈λ7−12Wm−Wm(P一ω)⊂λ7−14(Wバ閲⊂λ7−1鰍一Wk),

th・t i・,λ;( 1)Sen.、(λ」ん」)∈Wk−W、.・Thi・end・th・p…f・f(1)。    Remark thaもif∫(n)(α)ニOon]ぽ(ur)f〈)r vl∈フ㌔(E)with vl 一くv, then in the above proof, assumingんゴ∈B(vl)fbr allゴ≧プ, we have        ・“(・)一(蒜2瓢・・…)〈・・>n−1∈・7(Wlm−Wm)・ and so it fbllows from the same reason as in the al)ove proof thatλ;π挽炉1(λ」ん」)∈ Wk−W[k. Consequently we see that if the restriction of∫(π)(α)to E★(vf)輌s identically O,thenλ;n貌π_1(λ」九」)→0(P一ω)f()正every{㌧}∈9(∋which is eventually in E★“1) and every{λゴ}∈A。    (2): By Propositions 3 and 4,貌n is n ti▲皿es R−v−differentiab}e at O∈(D一α)∩ E★(の;and obviously, for each g=0,_,n−2a皿d f()r any丘xed h∈Vk,, the map (Rl⊃)[0,1]∋θ→貌隻『)(θ九)〈九>q∈Fis continuous on[0,1], where kq is.as in(‖). Theref()re, by the remark give皿at the end of the proof of(1), there eXists w*∈JFIo(F) such that if電π)(o)=oon E★(吋)f〈)r v1∈チb(E)with vlくv, then

      ・7[een(・…)一嘉蹄・(・)〈・・hl>9]丁・嗣

f()revery{hj}∈Q(∋which is eventual}y in E★(vl)and every{λj}∈A. Now, using Propositions 3 and 4(2), we have       酬@・,……)一∫(・’(・)(……,・・)一;Σ∫(・’(・)(・・・……・・・…) f()rq=0,1,_,n, where(xl,_,xq)∈登㊤q)andσis a permutaもion of{1,_,q}. Trivially SeS())(0)=0;and靭)(0)=Oon E★(v);and, f()r g=2,...,n, SeSg)(0)〈x>q=0

9

(10)

‘10

HIGHER DERIVATIVES IN.HNEAR RANKED SPACES

f()ra皿y x∈B@). Furthermore, we have eeSn)(0)=Oon E★(∂π), since∫(n)(α)is symmetric on E★(∂n). Thus the proof of(2)is completed, since砥(ん)=拶∼ri(九)一 Σ:コ(1/q!)蹄)(0)〈ん>9・f・・el・・yん∈(D−・)∩E★(・)・    THEoREM 2. Leげ:D→Fbe n times R−v−(k’fferentiable a‘α∈D, where n≧1 and vニ{Vk}. Suppose that F sa‘isfies(A.1°)and that,」皿‘he case n≧2,伍e fbllowfng hdds:    (b) For eachρ=0,.◆◆,n−2, there is kp sueh that Vkp⊂(D−「α)∩E★(∋a刀d ‘haちfbr any五xedん1,ん2∈Vkp sa¢js加孕gん1十θん2∈レkp fbr aμθ∈[0,1]and fbr any fixed X∈⑰@ρ),舌力e map (R、⊃)[0,1Dθ一∫(・)(・+ん、+θん、)(x)∈F js con tjnuous on[0,1]. Th・n・th・re・eXi・t・・U∈ゐ(F)・U・h th・t,・f・r any v、∈万(E)W・’th・V、1+V、 K v, λ;嘲・(λゴhゴ)丁>o(P−u) f∼)revery{九」}∈9(∋which is eve皿加a1σjn E★@1)and’every{λ元}∈A.1h particular ifv+vKv,‘h・nλ;珊。(λ」ゐ」)→0(P−u)f…every{ん」}∈9(・)and・v・・y{λ」}∈A・    As(b)impliesω, TheQrem 2 fblows from Theorem 1(2)apd.the following:    LEMMA 2.びnder the same hhypotheses as in Theorem 2, the restrictio皿of∫(n)(α) ‘oE★@f)is symmetric f‘)r arlY Vl∈フ:b(E)with Vl十Vl一くv.    PRooF. The question arlses only whenη≧2. If the lemma is proved’for the case nニ2,the general case folloVis from the same argument as in[1, p.177]:So we prove the lemma only for nニ2.    As∫(2)(α)is bilinear on E★(vl),輌t sufiとes to show that∫(2)(α)is symmetlic on E(v∼) (note that(x,y)∈E(呼)implies(y,司∈E(呼)). Put vlニ{Vl ,k}. Let u∈To(F), u’∈fo(F)andω”∈冗(F)be as in(†), as in Lemma 1(1)and as in Lemma 1(2)respectively, where both in(†)and in Lemma 1 we take n = 2. Choose ω∈フ『}o(F)such that u十ut十ω”一くω. Putω={Wk}, a皿d let 2 be such that WVt⊂B(w);and let i be sUch that i≧ko and Vl,《十Vl ,i⊂Vk。,where ko is dS in(b).    Let(x,y)∈E(v?). Then{x}∈2(v,)and{y}∈2(vl). Let{λゴ}∈A. Fix ゐ≧max{i,松}, and choose m>k so large that 8VV.⊂Wk. Then, by the choice of w and by vl十v1一くv, we can findプin such a way that λ」¢∈Vl,m, λjy∈Vl,m,

(11)

M.耳IKIDA

11

       ∫(α+ρλ」エ+ξλjy)∈E*(ω),        ∫(2)(・)(いの∈vrバWm,∫(2)(・)(λ」y, x)∈wバWm,        λ;ir2(θλゴx+ξλjy)(エ)∈VVm−Wm, whenever j≧プand o≦θ,ξ≦1. F士xゴ≧プ, amd define g:[o,1](⊂Rl)→Fby    ’   9(θ)=λ;2{∫(・+θλ」・+λ」y)一∫(・+θλ翔・ Then g is continuouS on[0,1]by(b), and is R−differentiable at everyθ∈[0,1)and       .9’(θ)一λ72レ(1)(・+θλ」・+λゴy)(λ・.X)」∫(1)(・+θλ」・)(λ」・)]        =λ;1・、(θλ」¢十λjy)(・)一λ;1・・(θλ」・)(・)+∫(2)(・)(y,・)        ∈2(w冊一Wm)+∫(2)(・Xy,x). A・g{[・,1])⊂E’r(w)・nd g’([Q,1))CEI★(ω), by[5, Th…em 3・1]w・hav・        g(1)−g(0) ∈ 2(Wm−Wlm)十∫(2)(α)(y, x)(P一ω)  ・        = 2W,冊一Wm(P一ω)十∫(2)(α)(y,¢)        ⊆4(Wm’一閲+∫(2)(・)(y, x)・ Since g(1)−g(0)is symmetric in x a nd y, exchanging x and y in the ab()ve, we also

have

『.

D1’.

@,ω一6(・)・・悟一閲+∫(2)(・)(劔、「

Hence

       ∫(2)(・)(x,y)一∫(2)(・)(y, x)∈8(WバWlm)⊂Wk−VVk; …h・・∫(2)(・)(・・,・).一∫②(・)㈲,・i・・eFi・・(π一丁・)・    The following is Taylor,s fbrmula corresponding to the mean value theorem[5,. Theorem 3.1]:    THEoREM 3・Le‘・∫:ρ→Fbe n‘fmes R−v−differentiablρ o皿D・Le‘α∈1), and

le‘ん∈Ebe sロch thatθ九∈(D一α)∩E★(∋五)r al1θ∈[0,1]. Suppose砧a‡the

fbl10w壱i皿9(a)一(c)hdd:      「 ”    (・)F…ea・hρ=0,_,n, th・m・p(丑、⊃)[0,1]∋θ→∫(・)(・+θん)〈ん〉・∈F i・ c㎝‘inu・us㎝[0,1].    (b) There is a cguntablg set J⊂p,1)suc血‘haちf‘)r everyθ∈[0,1)\」,∫fs n+1times R−v−(k’fferentiable at a+θ九.    (c) The肥∫s u∈チb(F)suc血‘ha‡∫(ρ)(α十θ九)〈み>P∈E★(∋fbr a』1θ∈【0,ユ]and a皿P=0,._,η.

(12)

12

HIGHER DERIVATIVES IN LINEAR RANKED SPACES

1f B is a convex subset. of F andぜ∫(叶1)(α十θ九)〈九>n+1∈万(P−u)∩E★(u)for alI θ∈[0,1)\」,‘力en        1  _        λ一(n十1)sen(λん)∈        β(P−u)       (n+1)!

fbr everyλ∈(0,1],       .    ,

  PRooF. Fixλ∈(0,1]. pefine g:[0,1](⊂Rl)→Fand g:[0,1](⊂丑1)→丑1 by       ・(・)一主妾(1−・)・λ・∫ω(・+・λ・)〈・>P・       ・(・)一一(蒜1・ a皿dapply[5, Theorem 3.1]. We omit de.瞬ls(cf.[3]).    ,

  CoRo肌ARY 2・Let∫:.D→File n‘imes R二v−《liffe肥ntiable・Le‘α∈D・and let

九∈、E be as in ’sheorem 3. Sψpose that F satisfies(A.1°)and£ha‘(a)a皿《1(b)’of Theorem 3 hold.   (1)1f∫(“+1)(・+θん)〈九>n+1=0血訓θ∈[0,1)\」,‘h㎝       ∫(a.十θh)一嘉∫ω(・)〈・ん)・ fbr everyθ∈[q,1].

  (2)∬L・蜘π+1)→Fi・a・vn+1−・・n孟m・…頑‘迦・a・皿・p,」fB・f・a・・nv・x

subset of F and鵡fbr some u1∈To(F),∫(π+1)(α十θん)〈九〉π+1−L〈九>n+1∈B1(P−ul)∩ E’(u、)血訓θ∈[0,1)\J,th・n・th・・e」・u・∈万(F)…h‘h・‘u・や・a・d λ一・・+・・

m綱一

1 (n+1)! L〈・・〉・+・

n・(”,)!恥・)

f∼)reveryλ∈(0,1].   For the proof, use the fo皿owing Ploposition 5. R)r(2), apply Theorem 3 to the m・P fi(x)一∫(¢)一(1/(・+』1)!)L〈x−・>n+1(x∈D∩(・+E’(V)))・   PRoPoslTloN 5. Let F satis」ry(A.1°).1f g:[α,β」(⊂丑1)「◆F輌s con‘inuous on [α,β],砧en‘力ere eXists u∈jFb(F)5uc血‘力a‘9([α,βD⊂E★(μ)・ The proof is similar to that of[3, Lemma 1].

  REM・RK.(1)lri・Th…em・1−3, if鋤咋・f ll t閣i・ば画mrt・i・, th・n th・

as・・mpti・n・(‖)and(b)・・e・up・・‘1・…and ih th・as・umpti・h(a)the・・nti・㎡ty Of the maP is reqUired only fbr p:in. This is easily seen’ by Corollary 1.’

(13)

M.HIKIDA

13

   (2)We tempO正…㎡1y say that a lineal ranked sp㏄e is 3拠η1θ励if the pIeneighboτ一 hoods of the origi皿of出e space are symmetric. Our assuming a lineaロanked space t・・ati・fy(A・4)・・(A・宇)i・needless if・tb・鋼・is sy−t・i・and u+uKu f・・皿y O一血ndament品se輌enceμi皿the space. Thus if F is symmetric, then the assumption th・t F・ati・fi・・(A.4)i・ne・dless f・・Th…em・1−3, L・mm’・・2・and・c6・・皿・・y 2・    (3)Let X, y be linear ranked spaces of[4](these ale of course linear五mked

spaces in the sense of[5]and訂e sy㎜etric), Iet∫:S(⊂X)→Y and a∈S. We

de丘ned the“n tirries’ R−di丑brentiability of f.at a”(see[2]), and gave TaylOr,s f()rmula ([2],[3]).If f6(X)=Too(X), then[2, Theoiem l]and[3, Theorem 2]follow丘om Theorems ’2 and 3 ’respectively.’ shis iS ”See皿from(1),(2)and the fact that if u十u<u f()tany u∈戊も(Y),the皿the.“n times’ R−di葺{ rential)ility of f at a,, implies the n times R−v−differentiabMty of∫at a ’f()r every v∈究ooヤ(X)(cf. Ptopositions 1−2). Note輌n the case n>2that theηtimes R−v−differential)ility of∫atαf61 e寸e‡y v∈Too(X) (of course, with the assumption S being R戸ρ一〇pen fbr a皿y v∈foo(X))does not 皿ecessarily irriply the“n・times R.differential)ility of f at a,,.even if戊る(X)=須oo(X)

・』+・、く輌any・∈ろ(y)・By th・w・Yl・w・n・t・th・t.・㏄h・p㏄・Xgf[4,

Examples 1−3]satisfi6sフも(X).=Too(X)an(1’ v十vくv for aロy妙.∈チb1(X).    3.Notes..In this s㏄tion we Ie食r. to the n times p−differentiability. When v∈fo(E), we put          P−2(の={{hti}:{九」}is a P−v−(iuasi bounded sequence in E} where{ん」}being P−v7quasi bounded.mea皿s thatλ」ん」→0(P一句fbr every{λゴ}∈A ([5])・  、  .       .  . ・      ・    Let 1)be P−v・・ol)en for some v∈尤oo(E). Let∫:D→F, where F is(π一T1). T輪n we obtain the notion of n times P−v−differentiability(ヅ∫at a∈D by replacing, in the definition of n times R−v−differentiability of f atα, the sy血bols“R’, and“9,’with the symbols“P”and‘‘P−2”respectively. Clearly the n times?−u−differentiabili.ty implies theηtimes R−v−differentiability.    To exa㎡ne the above results fbr theカtimes P−v−diffe’ rehtiability We temporarily cal1 the statements ’of Propositions 3−4, Lemmas 1−2, Tkeorems、1−3 and Corollary 2 in which the symbols‘‘R,,,‘‘9,,,‘‘[α,β),l and‘‘[0,1),,「are respectively replaced with th・・ymb・1・“P,”“P−9,”“(α,β)”.q・d“(o,1)1’th・P−y・r・i・…f thg…resp・nding ones(of coutsel in the P−versions of Theorems 1−3, Lem血a 2 and Corollary 2, we assume F to be convex(π一T1)and satisfy(A2’)of[5D. It輌s easy to see that the P−versions of Propositions 3−4., Theorem 3 and Coronaly・2 hold;. and.:if E’satisfies (A.4)↓the皿,. in..the assumption(a)of these P−versions,.the co血ti血uity.of .the map is

(14)

14

HIGHER DERIVATIV’ES IN ,LINEAR RANKED SPACES

required only{brρ=n (c£ Corollary 1’below). For the P−versions of the other Ieslllts, we first pret》dXe     「  . 』 . ・;一 .   ・     :    ・    ?4・POslTI・・61‘Let E・・‘剛A・4°),血P即・e・・→・(P−・)・ぬ一↓ξ’E・a・d v∈・T・(E)・:.Th・n th・r・f・a、s−・e{・・}‥画誓一・、mP. bers fiuch t五・…↑。6鋤 ,μ」¢」→0(ll−v)・    PROgF・・Put v={Vk}・Let{y‘十.Vk(‘)}(k.(り↑oo)be a fUndam餌tal sequence in E ・u・h、th・t O∈∩(yi+Vk(の)and th・S・ f・・any・i,』・i・!・u・h th・t・」∈yi+V・(輌)f・・all       A        ゴ≧プ・Put・巧.r二Y,(8)・As.{Vi}∈チb(E), thele are{λ輌}aロd{m(り}such thatλ輌>0,        ハ      ハ       λi↓0,pt(り1.一∞and thQt V,1⊂λiレ;,i(‘)f()r every考. Si皿ce.0∈,yi十1陥⊂、yi.十λiVm(り, 0∈λ「1防+鬼(・);・a・d・・th・・Ci・{i(e)}・u・h t叫λ㍊)y・(・)+九㈹)}ぷ血・d・m・nt・1 .s・q・…e:.N・w,・h・。・e{n(り}・・th・t 1<・(1)<・(2)≦…<・(り.<、…dhd th・t         ハ・」∈yi + Vi吐eneve巧≧.n(i);and P・t ,        朽={λ;1if 1,≦ゴ<n(1))λτ1    .・if  、 n(i) ≦ゴ < 7♪(i・十:1).   .

慧‘・↑《dwC』・∈』)+9−・i・’)演η(1(り∼・Th酋→°

ぽ.1erom Pr叩ositions.1囁紐d・6it. follows that the P・vllrsion of Lemma’1.hdds・if E satisfies(A.4°). Consequelltly we see that the P−versions of Theolem.1, Lemma 2 ・・dTh…em、2 hgld if E.・tlti・6・F.(A・4°);fu・thr頂・・e, if恥t鉋6es(A・4)・th・n th・ assumptions(‖)and(レ)are super6uou』in theCe.P−velsions, since we have    CoRoLLARY 1’. Let E sa‘fs」ry(A.4). Le‘.∫:.1)」さ1・beη‘温6s PL−v−di丑とre皿tiable a‘α∈D,whereη≧1and v={Vk}. Then, gfven x∈E★@π一1),‘here is u∈チb.(F) .’S’ 狽堰fc力‘fiat』     ・. ・{戸一i)((α+Vk−Vk)∩P*)(x)一∫(・−1)向(x)}kくu−u wh・了・かrD∩(α+E’(ll))..    This follows from the P−version of Le㎜a 1.    REMARK. In the above comllaエy, if v十v.一くv,.then・we see that, fbr any fixed x’ クE★@π一1),there・is Ul∈チb(F)・such that {∫(n’1’)((・磁一Vk)・Dり((・』+オー1Lオー’1)卿π一1))一了(炉1’(・)(・)}k       一くUl−Ul wh・・e咋π一1LVk・…・Vk(・−1times);・・∫(一・), a・・th・m・p∫(・一・)・D・砕・一・)∋ (2,¢)→「∫(F−1)(z)(x)∈F,姪then vn−continuous at evely(α, x)(¢∈E★(vn−1)).

(15)

M.田KIDA

15

   ACknowlegdement. The author wishes to thank Professor Y. Nagakura and the referee・f()r their helpfu1 comments.        .      REFERENCES .[1]J.Dieudonn6,“Foundations of Modem Analysis,,, Academic Press,1960. [2]M.Hildda,0ηTay∼or討brη泌1α, Math. Japon.,36(1991),335−341. [3]M」ilikida,0ηTay∼or)s・」わ7’mula, II,(to appear). [4]Y.Nagakura, Difierentia’lca∼c・u∼us in∼輌πεα”αηえθ43ρα6e3, Hiroshima Math. J.,8    (1978),269−299. [5]Y.Nagakura, Differentiα’cα∼c包1促輌nα3ραceω“九b輌一co励ergences, treated by the    7ηθ鋤Jof ranked space, TRU Math.,21(1985),105−116.

Masato HIKmA

Depaltment of Apphed Mathematics

Faculty of Sdence Okayama University of Science l−1Rid…ri−ch6 Okayama 700, Japa皿

参照

関連したドキュメント

Trujillo; Fractional integrals and derivatives and differential equations of fractional order in weighted spaces of continuous functions,

Kiguradze, On some singular boundary value problems for nonlinear second order ordinary differential equations.. Kiguradze, On a singular multi-point boundary

Tskhovrebadze, On two-point boundary value problems for systems of higher order ordinary differential equations with singularities, Georgian Mathe- matical Journal 1 (1994), no..

Abstract The representation theory (idempotents, quivers, Cartan invariants, and Loewy series) of the higher-order unital peak algebras is investigated.. On the way, we obtain

For a higher-order nonlinear impulsive ordinary differential equation, we present the con- cepts of Hyers–Ulam stability, generalized Hyers–Ulam stability,

In this paper, we obtain strong oscillation and non-oscillation conditions for a class of higher order differential equations in dependence on an integral behavior of its

More general problem of evaluation of higher derivatives of Bessel and Macdonald functions of arbitrary order has been solved by Brychkov in [7].. However, much more

Here, the Zermello’s conditions are given in Lagrange-Hamilton spaces, introduced in [9] and presented at the Workshop on Finsler Geometry 2009, Debrecen.. It is proved that for