• 検索結果がありません。

ZERMELLO’S CONDITIONS AND ENERGIES OF HIGHER ORDER IN GENERALIZED LAGRANGE-HAMILTON SPACES

N/A
N/A
Protected

Academic year: 2022

シェア "ZERMELLO’S CONDITIONS AND ENERGIES OF HIGHER ORDER IN GENERALIZED LAGRANGE-HAMILTON SPACES"

Copied!
20
0
0

読み込み中.... (全文を見る)

全文

(1)

Vol. 40, No. 1, 2010, 57-76

ZERMELLO’S CONDITIONS AND ENERGIES OF HIGHER ORDER IN GENERALIZED

LAGRANGE-HAMILTON SPACES

Irena ˇComi´c1

Abstract. Many significant geometers contributed to the generalization of Riemann spaces in different directions. An almost complete list of them can be found in Miron’s books. Here are mention [1], [2], [17] and [18]

in which Hamilton and Finsler spaces are examined, further [3–9], where generalized Hamilton spaces are studied; [10] is most connected with the subject, and in [11–16] this problem also appears. Zermello’s condition in Miron’sOsckM was examined in [6]. Here, the Zermello’s conditions are given in Lagrange-Hamilton spaces, introduced in [9] and presented at the Workshop on Finsler Geometry 2009, Debrecen. It is proved that for a fundamental function for which the Zermello’s conditions are satisfied all energies of higher order are equal to zero.

AMS Mathematics Subject Classification (2000): 53B40, 53C60

Key words and phrases: Lagrange-Hamilton spaces, Zermello’s conditions

1. Some invariants in generalized Lagrange-Hamilton spaces

Group of coordinate transformations. Generalized Lagrange-Hamilton spaces are introduced in [9]. We shall recall only those parts of which are necessary for the understanding of Zermello’s condition in these spaces.

Let us denote by (LH)(nk)the (2k+ 1)ndimensionalCmanifold in which a point (y, p) = (x=y(0), y(1), y(2), . . . , y(k), p(1), p(2), . . . , p(k)) has the coordi- nates

(xa =y0a, y1a, y2a, . . . , yka, p1a, p2a, . . . , pka), a= 1, n.

Some curve c (LH)(nk) is given by c : t [a, b] c(t) (LH)(nk). A point (y, p)∈c(t) has the coordinates (xa(t) =y0a(t), y1a(t), . . . , yka(t), p1a(t), . . . , pka(t)), where

yAa(t) =dAty0a(t) A= 1, k, dAt = dA dtA, (1.1)

pαa(t) =dα−1t p1a(t), α= 1, k, dα−1t = dα−1 dtα−1.

1Faculty of Technical Sciences, 21000 Novi Sad, Serbia, e-mail: comirena@uns.ac.rs, http://imft.ftn.uns.ac.rs/~irena/

(2)

The allowable coordinate transformations are given by xa0 =xa0(xa)⇔xa=xa(xa0)

(1.2)

y1a0 =Baa0y1a, Baa0 =0axa0=axa0, ∂Aa=

∂yAa A= 0, k,

y2a0 = Ã

1 0

!

(d1tBaa0)y1a+ Ã

1 1

!

Baa0y2a=d1t(Baa0y1a),

y3a0 = Ã

2 0

!

(d2tBaa0)y1a+ Ã

2 1

!

(d1tBaa0)y2a+ Ã

2 2

!

Baa0y3a=d2t(Baa0y1a), . . . ,

yAa0 = Ã

A−1 0

!

(dA−1t Baa0)y1a+ Ã

A−1 1

!

(dA−2t Baa0)y2a+· · ·

· · ·+ Ã

A−1 A−1

!

Baa0yAa=dA−1t (Baa0y1a), . . . ,

yka0 = Ã

k−1 0

!

(dk−1t Baa0)y1a+ Ã

k−1 1

!

(dk−2t Baa0)y2a+· · ·

· · ·+ Ã

k−1 k−1

!

Baa0yka=dk−1t (Baa0y1a),

p1a0 =Baa0p1a Baa0 =0a0xa= ∂xa

∂xa0 =Baa0(t),

p2a0 = Ã

1 0

!

(d1tBaa0)p1a+ Ã

1 1

!

Baa0p2a=d1t(Baa0p1a),

p3a0 = Ã

2 0

!

(d2tBaa0)p1a+ Ã

2 1

!

(d1tBaa0)p2a+ Ã

2 2

!

Baa0p3a=d2t(Baa0p1a),

p4a0 = Ã

3 0

!

(d3tBac0)p1c+ Ã

3 1

!

(d2tBca0)p2c+ Ã

3 2

!

(d1tBac0)p3c+ Ã

3 3

!

Bca0p4c, . . . ,

pαa0 = Ã

α−1 0

!

(dα−1t Baa0)p1a+ Ã

α−1 1

!

(dα−2t Baa0)p2a+· · ·

· · ·+ Ã

α−1 α−1

!

Baa0pαa, . . . ,

pka0 = Ã

k−1 0

!

(dk−1t Baa0)p1a+ Ã

k−1 1

!

(dk−2t Baa0)p2a+· · ·

(3)

· · ·+ Ã

k−1 k−1

! Baa0pka.

Theorem 1.1. The transformations of type (1.3) on the common domain form a group.

Definition 1.1. The generalized Lagrange-Hamilton space of order k, (GLH)(nk), is an(LH)(nk)space, where the group of allowable transformations is given by (1.2) and in which a fundamental function F(x, y(1), y(2), . . . , y(k), p(1), p(2), . . . , p(k))is given, whereF :U →Ris differentiable onU˜ (where rank [y1a] = 1, rank [p1a] = 1) and continuous in those points of U, where y1a and p1a are equal to zero, U is a domain in (GLH)(nk).

The natural and special adapted bases in T(GLH)(nk) and T(GLH)(nk). The natural basis, ¯BLH of T(GLH)(nk) as usual consists of partial derivatives of variables, i.e.

B¯LH ={∂0a, ∂1a, . . . , ∂ka, ∂1a, ∂2a, . . . , ∂ka}, 0a =a=

∂xa =

∂y0a, (1.3)

Aa =

∂yAa A= 1, k, αa=

∂pαa, α= 1, k.

Theorem 1.2. The elements of B¯LH transform in the following way:

(1.4)

0a=(∂0ay0a0)∂0a0+(∂0ay1a0)∂1a0+(∂0ay2a0)∂2a0+(∂0ay3a0)∂3a0+· · ·+(∂0ayka0)∂ka0+ (∂0ap1a0)∂1a0+(∂0ap2a0)∂2a0+(∂0ap3a0)∂3a0+· · ·+(∂0apka0)∂ka0,

1a= (∂1ay1a0)∂1a0+(∂1ay2a0)∂2a0+(∂1ay3a0)∂3a0+· · ·+(∂1ayka0)∂ka0+ (∂1ap2a0)∂2a0+(∂1ap3a0)∂3a0+· · ·+(∂1apka0)∂ka0,

2a= (∂2ay2a0)∂2a0+(∂2ay3a0)∂3a0+· · ·+(∂2ayka0)∂ka0+ (∂2ap3a0)∂3a0+· · ·+(∂2apka0)∂ka0, ...

ka= (∂kayka0)∂ka0

1a= (∂1ap1a0)∂1a0+(∂1ap2a0)∂2a0+(∂1ap3a0)∂3a0+· · ·+(∂1apka0)∂ka0,

2a= (∂2ap2a0)∂2a0+(∂2ap3a0)∂3a0+· · ·+(∂2apka0)∂ka0,

3a= (∂3ap3a0)∂3a0+· · ·+(∂3apka0)∂ka0,

...

ka= (∂kapka0)∂ka0.

(4)

The natural basis ofT(GLH)(nk)is

B¯LH ={dy0a, dy1a, . . . , dyka, dp1a, dp2a, . . . , dpka}.

Theorem 1.3. The elements of B¯LH transform in the following way:

(1.5)

dy0a0 = (∂0ay0a0)dy0a

dy1a0 = (∂0ay1a0)dy0a+ (∂1ay1a0)dy1a, . . . ,

dyka0 = (∂0ayka0)dy0a+ (∂1ayka0)dy1a+· · ·+ (∂kayka0)dyka, dp1a0 = (∂0ap1a0)dy0a+ (∂1ap1a0)dp1a,

dp2a0 = (∂0ap2a0)dy0a+ (∂1ap2a0)dy1a+ (∂1ap2a0)dp1a+ (∂2ap2a0)dp2a, . . . ,

dpka0 = (∂0apka0)dy0a+ (∂1apka0)dy1a+· · ·+ (∂(k−1)apka0)dy(k−1)a+ (∂1apka0)dp1a+· · ·+ (∂kapka0)dpka.

Definition 1.2. The special adapted basis BLH of T(GLH)(nk)

(1.6) BLH =0a, δ1a, . . . , δka, δ1a, δ2a, . . . , δka}

(5)

is defined by (1.7)

δ0a0

0

¢0a ¡1

0

¢N0a1b1b ¡2

0

¢N0a2b2b ¡3

0

¢N0a3b3b − · · · − ¡k

0

¢N0akbkb

¡0

0

¢N0a1b1b¡1

0

¢N0a2b2b¡2

0

¢N0a3b3b− · · · − ¡k−1

0

¢N0akbkb

δ1a= ¡1

1

¢1a ¡2

1

¢N0a1b2b ¡3

1

¢N0a2b3b − · · · − ¡k

1

¢N0a(k−1)bkb

¡1

1

¢N0a1b2b¡2

1

¢N0a2b3b− · · · − ¡k−1

1

¢N0a(k−1)bkb

δ2a= ¡2

2

¢2a ¡3

2

¢N0a1b3b − · · · − ¡k

2

¢N0a(k−2)bkb

¡2

2

¢N0a1b3b− · · · − ¡k−1

2

¢N0a(k−2)bkb

δ3a= ¡3

3

¢3a − · · · − ¡k

3

¢N0a(k−3)bkb

− · · · −¡k−1

3

¢N0a(k−3)bkb, . . . ,

δka= ¡k

k

¢ka

δ1a= ¡0

0

¢1a ¡1

0

¢N2b0a2b ¡2

0

¢N3b0a3b − · · · − ¡k

0

¢Nkb0akb

δ2a= ¡1

1

¢2a ¡2

1

¢N2b0a3b − · · · − ¡k−1

1

¢N(k−1)b0a kb

δ3b= ¡2

2

¢3b − · · · − ¡k−2

2

¢N(k−2)b0a kb, . . . ,

δkb= ¡k−1

k−1

¢kb.

Definition 1.3. The special adapted basisBLH of T(GLH)(nk) is (1.8) BLH ={δy0a, δy1a, . . . , δyka, δp1a, δp2a, . . . , δpka}, where

δy0a=dy0a=dxa (1.9)

δy1a= µ1

1

dy1a+

µ1 0

M0b1ady0b

δy2a= µ2

2

dy2a+

µ2 1

M0b1ady1b+ µ2

0

M0b2ady0b,

δy3a= µ3

3

dy3a+

µ3 2

M0b1ady2b+ µ3

1

M0b2ady1b+ µ3

0

M0b3ady0b, . . . ,

δyka= µk

k

dyka+

µ k k−1

M0b1ady(k−1)b+ µ k

k−2

M0b2ady(k−2)b+· · ·

· · ·+ µk

0

M0bkady0b,

(6)

δp1a= µ0

0

M0a1bdy0b+ µ0

0

dp1a,

δp2a= µ1

0

M0a2bdy0b+ µ1

1

M0a1bdy1b+ µ1

0

M0a1bdp1b+ µ1

1

dp2a,

δp3a= µ2

0

M0a3bdy0b+ µ2

1

M0a2bdy1b+ µ2

2

M0a1bdy2b+ µ2

0

M0a2bdp1b+ µ2

1

M0a1bdp2b+ µ2

2

dp3a, . . . ,

δpka= µk−1

0

M0akbdy0b+ µk−1

1

M0a(k−1)bdy1b+· · ·

· · ·+ µk−1

k−1

M0a1bdy(k−1)b+ µk−1

0

M0a(k−1)bdp1b

+ µk−1

1

M0a(k−2)bdp2b+· · ·+ µk−1

k−1

dpka.

In [9], there are given the conditions for M’s and N’s such that the elements ofBLH andBLH are tensors and when these bases are dual to each other.

The J¯structure in (GLH)(nk)

Definition 1.4. The k-tangent structure J¯is aF linear mapping J¯:T(GLH)(nk)→T(GLH)(nk)

defined by

Jdy¯ 0a= 0,Jdy¯ 1a=dy0a,Jdy¯ 2a= 2dy1a, . . . ,Jdy¯ ka=kdy(k−1)a (1.10)

Jdp¯ 1a = 0,Jdp¯ 2a =dp1a,Jdp¯ 3a= 2dp2a, . . . ,Jdp¯ ka= (k1)dp(k−1)a, from which it follows

J¯ = dy0a⊗∂1a+ 2dy1a⊗∂2a+· · ·+kdy(k−1)a⊗∂ka+ (1.11)

dp1a⊗∂2a+ 2dp2a⊗∂3a+· · ·+ (k1)dp(k−1)a⊗∂ka. In [9], it is proved that the ¯J structure in the special adapted bases BLH

andBLH is given by

J¯ = δy0a⊗δ1a+2δy1a⊗δ2a+3δy2a⊗δ3a+· · ·+kδy(k−1)a⊗δka+ (1.12)

(7)

δp1a⊗δ2a+2δp2a⊗δ3a+3δp3a⊗δ4a+· · ·+(k1)δp(k−1)a⊗δka. Remark 1.1. From (1.11) and (1.12) it follows that thek-tangent structure J¯in the natural and special adapted bases has the same coordinates.

It is also proved that the following relations are valid

Jδy¯ 0a = 0,Jδy¯ 1a =δy0a,Jδy¯ 2a= 2δy1a, . . . ,Jδy¯ ka=kδy(k−1)a (1.13)

Jδp¯ 1a= 0,Jδp¯ 2a=δp1a,Jδp¯ 3a= 2δp2a, . . . ,Jδp¯ ka= (k1)δp(k−1)a, The Liouville vector field. If M(y0a, y1a, . . . , yka, p1a, p2a, . . . , pka) and M0(y0a+dy0a, y1a+dy1a, . . . , yka+dyka, p1a+dp1a, p2a+dp2a, . . . , pka+dpka) are two points in (GLH)(nk), then the vector M M0 expressed in the natural basisT(GLH)(nk)has the form [9]

M M0=dr = dy0a0a+dy1a1a+· · ·+dykaka+ (1.14)

dp1a1a+dp2a2a+· · ·+dpkaka. It is proved ([9]) thatdris coordinate invariant, i.e.

dr = δy0aδ0a+δy1aδ1a+· · ·+δykaδka+ (1.15)

δp1aδ1a+δp2aδ2a+· · ·+δpkaδka.

Definition 1.5. The Liouville vector fieldsΓ¯0,Γ¯1,Γ¯2, . . . ,Γ¯k are defined by (1.16)

Γ¯k=dr, J¯Γ¯A= ¯ΓAJ¯= (k(A1))¯ΓA−1, A¯= 1, k, J¯¯Γ0= ¯Γ0J¯= 0.

Remark 1.2. From (1.14)-(1.15) it is obvious thatdr has the same com- ponents in the natural and special adapted bases. The same property has the structure ¯J (see Remark 1.1). This fact allows that the action ¯J on drcan be written by the equations of the same form in both coordinate systems.

In (GLH)(nk) it is difficult to construct vector fields, but using dr, the structure ¯J, one family of the Liouville vector field can, be constructed.

From (1.16) it follows

J¯Γ¯0= ¯Γ0J¯= 0, J¯¯Γ1= ¯Γ1J¯=kΓ¯0, J¯Γ¯2= ¯Γ2J¯= (k1)¯Γ1, (1.17)

. . . ,J¯Γ¯k−1= ¯Γk−1J¯= 2¯Γk−2, J¯Γ¯k = ¯ΓkJ¯= ¯Γk−1.

Theorem 1.4. The Liouville vector fields Γ¯0,¯Γ1, . . . ,Γ¯k from (GLH)(nk) ex- pressed in the special adapted basis B of T(GLH)(nk), have the form [9]

(1.18) Γ¯0 =

µk 0

δy0aδka,

(8)

Γ¯1 = µk

1

δy1aδka+ µk−1

0

δy0aδ(k−1)a+ µk−1

0

δp1aδka,

Γ¯2 = µk

2

δy2aδka+ µk−1

1

δy1aδ(k−1)a+ µk−2

0

δy0aδ(k−2)a+ µk−1

1

δp2aδka+ µk−2

0

δp1aδ(k−1)a,

Γ¯3 = µk

3

δy3aδka+ µk−1

2

δy2aδ(k−1)a+ µk−2

1

δy1aδ(k−2)a+ µk−3

0

δy0aδ(k−3)a+ µk−1

2

δp3aδka+ µk−2

1

δp2aδ(k−1)a+ µk−3

0

δp1aδ(k−2)a, . . . ,

Γ¯k−1 = µ k

k−1

δy(k−1)aδka+ µk−1

k−2

δy(k−2)aδ(k−1)a+· · ·+ µ2

1

δy1aδ2a+ µ1

0

δy0aδ1a+ µk−1

k−2

δp(k−1)aδka+ µk−2

k−3

δp(k−2)aδ(k−1)a+· · ·+ µ1

0

δp1aδ2a,

Γ¯k = µk

k

δykaδka+ µk−1

k−1

δy(k−1)aδ(k−1)A+· · ·+ µ1

1

δy1aδ1a+ µ0

0

δy0aδ0a+ µk−1

k−1

δpkaδka+ µk−2

k−2

δp(k−1)aδ(k−1)a+· · ·+ µ0

0

δp1aδ1a.

Theorem 1.5. The Liouville vector fields Γ¯0,Γ¯1, . . . ,Γ¯k in (GLH)(nk) in the natural basis B¯ of T(GLH)(nk) have the form obtained from (1.18) if δyAa, δpαa, δAa, δαa, are substituted by dyAa, dpαa, ∂Aa, ∂αa respectively for ev- ery A= 0, k,α= 1, k.

Proof. The proof follows from Definition 1.5 and Remark 1.2.

(9)

2. The Zermello’s conditions

Letc be a curve in (GLH)(nk)such that

c:t∈[0,1]→xa(t)∂a+d1txa(t)∂1a+· · ·+dktxa(t)∂ka+ (2.1)

p1a(t)∂1a+· · ·+dk−1t p1aka=

=y0a(t)∂0a+y1a1a+· · ·+ykaka+ p1a1a+· · ·+pkaka andImc⊂U.

The integral of actionIc is (2.2) Ic=

Z1

0

F(x, y(1), y(2), . . . , y(k), p(1), p(2), . . . , p(k))dt.

Ic does not depend on the parametrization of the curvec: xa=y0a(t) =y0a, yAa =dAtxa =dAxa

dtA , A= 1, k, p1a =p1a(t), pαa =dα−1t p1a =dα−1p1a

dtα−1 α= 1, k if

Z1

0

F(x, y1, y2, . . . , yk, p1, p2, . . . , pk)dt= (2.3)

= Z1

0

F(x, y10, y20, . . ., yk0, p10, p20, . . . , pk0)ds,

wheres=s(t) is at leastCk function,s0(t)>0 fort∈[0,1],s(0) = 0,s(1) = 1 and

yAa0 =dsAxa =dAxa

dsA , A= 1, k, (2.4)

pαa0 =dsαp1a =dα−1p1a

dsα−1 , α= 1, k.

The equations, which give the conditions when (2.3) is satisfied are called Zer- mello’s conditions. The equality (2.3) will be satisfied if along the curvec we have

(2.5)

F(x, y1, y2, . . . , yk, p1, p2, . . . , pk) =F(x, y10, y20, . . . , yk0, p10, p20, . . . , pk0)s0,

(10)

where s0 = dsdt. To express (2.5) in invariant form we need some relations. We shall use the notation

s(α)= dαs

dtα, α= 1, k.

Asxa=xa(s),s=s(t), we have y1a = dxa

ds s0=y1a(s, s0), (2.6)

y2a = ∂y1a

∂s s0+∂y1a

∂s0 s00=y2a(s, s0s00), y3a = ∂y2a

∂s s0+∂y2a

∂s0 s00+∂y2a

∂s00s000 =y3a(s, s0, s00, s000), . . . , yka = ∂y(k−1)a

∂s s0+∂y(k−1)a

∂s0 s00+· · ·+∂y(k−1)a

∂s(k−1) s(k), p1a = p1a(s), s=s(t),

p2a = ∂p1a

∂s s0=p2a(s, s0), p3a = ∂p2a

∂s s0+∂p2a

∂s0 s00=p3a(s, s0, s00), . . . , pka = ∂p(k−1)a

∂s s0+∂p(k−1)a

∂s0 s00+· · ·+∂p(k−1)a

∂s(k−2) s(k−1)

= pka(s, s0. . . , s(k−1)).

Using the notations (2.7) Aa0 =dy0a

ds =dxa

ds =y1a0, AaA= dA

dtAAa0=dAtAa0 A= 1, k1,

(2.8) Ba1=dp1a

ds =p2a0, Baα= dα−1Ba1

dtα−1 =dα−1t Ba1, α= 1, k1 and the Leibniz rule for differentiation we can prove the following theorem.

Theorem 2.1. yAa,pαa ands(α),A,α= 1, k are connected by formulae:

y1a =Aa0s0, (2.9)

y2a = µ1

0

Aa1s0+

µ1 1

Aa0s00,

y3a = µ2

0

Aa2s0+

µ2 1

Aa1s00+

µ2 2

Aa0s000, . . . ,

(11)

yAa=

µA−1 0

AaA−1s0+

µA−1 1

AaA−2s00+· · ·+

µA−1 A−1

Aa0s(A), . . . ,

yka= µk−1

0

Aak−1s0+ µk−1

1

Aak−2s00+· · ·+ µk−1

k−1

Aa0s(k), p1a =p1a(s), s=s(t)

p2a =B1as0 p3a =

µ1 0

Ba2s0+

µ1 1

Ba1s00, . . . ,

pαa= µα−2

0

Baα−1s0+ µα−2

1

Bα−2a s00+· · ·+ µα−2

α−2

Ba1s(α−1), . . . ,

pka= µk−2

0

Bak−1s0+ µk−2

1

Bk−2a s00+· · ·+ µk−2

k−2

Ba1s(k−1). Theorem 2.2. The following relations are valid:

(2.10) AaA=

µA−1 0

∂AaA−1

∂s s0+ µA−1

1

∂AA−2

∂s s00+· · ·+

µA−1 A−1

∂Aa0

∂s s(A),

(2.11) AaA= dyAa

ds , A= 1, k1,

(2.12) Baα= µα−2

0

∂Bα−1a

∂s s0+ µα−2

1

∂Baα−2

∂s s00+· · ·+ µα−2

α−2

B1as(α−1),

(2.13) Baα=dpαa

ds , α= 2, k1.

Proof.

AaA = dAtAa0=dA−1t (d1tAa0) =dA−1t µ∂Aa0

∂s s0

=

dA−1t

∂s(Aa0s0) =

∂sdA−1t (Aa0s0) =

∂s

·µA−1 0

AaA−1s0+ µA−1

1

AaA−2s00+· · ·+

µA−1 A−1

Aa0s(A)

¸ . If we take∂/∂sfrom the sum in the middle bracket we obtain (2.10), and if we substituteyAa from (2.9) we obtain (2.11). In the similar way we have

Baα = dα−1t B1a=dα−2t (d1tBa1) =dα−2t µ

d1tdp1a

ds

=

(12)

dα−2t

·

∂s µ∂p1a

∂s s0

¶¸

=

∂sdα−2t (Ba1s0) =

∂s

·µα−2 0

Bα−1a s0+ µα−2

1

Baα−2s00+· · ·+ µα−2

α−2

Ba1s(α−1)

¸ . If we take ∂s from the sum in the middle bracket, we obtain (2.12) and if we substitutepαa from (2.9) we obtain (2.13).

The explicit form of (2.6) as follows

y1a =y1a0s0, yAa0 =dAsy0a(s), A= 1, k, (2.14)

y2a =y2a0(s0)2+y1a0s00,

y3a =y3a0(s0)3+y2a03s0s00+y1a0s000,

y4a =y4a0(s0)4+y3a06(s0)2s00+y2a0(3(s00)2+ 4s0s000) +y1a0s0v, . . . , p1a =p1a(s), pαa0 =dα−1s p1a, α= 2, k,

p2a =p2a0s0,

p3a =p3a0s02+p2a0s00,

p4a =p4a0(s0)3+ 3p3a0s0s00+p2a0s000,

p5a =p5a0(s0)4+p4a06(s02)s00+p3a0(3(s00)2+ 4s0s000) +p2a0s0v, . . . . From (2.14) it follows

Theorem 2.3. The following relations are valid:

(2.15) ∂y1a

∂s0 =∂y2a

∂s00 =· · ·= ∂yka

∂s(k) =y1a0 = dy0a ds

(2.16) ∂yAa

∂s(B) = A B

∂y(A−1)a

∂s(B−1) =· · ·= µA

B

∂y(A−B)a

∂s

(2.17) ∂p2a

∂s0 = ∂p3a

∂s00 =· · ·= ∂pka

∂s(k−1) =dp1a

ds =p2a0

∂pαa

∂s(β) = (α1) β

∂p(α−1)a

∂s(β−1) =· · ·= µα−1

β

∂p(α−β)a

∂s , (2.18)

k≥A≥B≥0, k≥α≥β+ 11.

(13)

Now we return to the purpose of this examination.

If we take the partial derivatives of F given by (2.5) with respect to s0, s00, . . . , s(k), taking into account (2.6), we get

(2.19) (∂1aF)∂y1a

∂s0 + (∂2aF)∂y2a

∂s0 + (∂3aF)∂y3a

∂s0 +· · ·+ (∂kaF)∂yka

∂s0 + (∂2aF)∂p2a

∂s0 + (∂3aF)∂p3a

∂s0 +· · ·+ (∂kaF)∂pka

∂s0 =F(x, y10, . . . , yk0, p1, . . . , pk0) (∂2aF)∂y2a

∂s00 + (∂3aF)∂y3a

∂s00 +· · ·+ (∂kaF)∂yka

∂s00 + (∂3aF)∂p3a

∂s00 + (∂4aF)∂p4a

∂s00 +· · ·+ (∂kaF)∂pka

∂s00 = 0, . . . , (∂(k−1)aF)∂y(k−1)a

∂s(k−1) + (∂kaF) ∂yka

∂s(k−1)+ (∂kaF) ∂pka

∂s(k−1) = 0, (∂kaF)∂yka

∂s(k) = 0.

On the left-hand side of (2.19) in all equationsF =F(x, y1, . . . , yk, p1, . . . , pk).

If in (2.19) we substitute (2.16) and (2.18) in the form

∂yAa

∂s(B) = µA

B

∂y(A−B)a

∂s =

µA B

y(A−B+1)adt ds

∂pαa

∂s(β) = µα−1

β

∂p(α−β)a

∂s =

µα−1 β

p(α−β+1)adt ds we obtain

[ µ1

1

y1a1a+ µ2

1

y2a2a+· · ·+ µk

1

ykaka](F) + (2.20)

[ µ1

1

p2a2a+ µ2

1

p3a3a+· · ·+ µk−1

1

pkaka](F) =

F(x, y10, . . . , yk0, p01, . . . , p0k)ds

dt =F(x, y1, . . . , yk, p1, . . . , pk) =F {[

µ2 2

y1a2a+ µ3

2

y2a3a+· · ·+ µk

2

y(k−1)aka] +

参照

関連したドキュメント

Our guiding philosophy will now be to prove refined Kato inequalities for sections lying in the kernels of natural first-order elliptic operators on E, with the constants given in

Keywords: nonlinear operator equations, Banach spaces, Halley type method, Ostrowski- Kantorovich convergence theorem, Ostrowski-Kantorovich assumptions, optimal error bound, S-order

– Solvability of the initial boundary value problem with time derivative in the conjugation condition for a second order parabolic equation in a weighted H¨older function space,

(Robertson and others have given examples fulfilling (a), and examples fulfilllng (b), but these examples were not solid, normed sequence spaces.) However, it is shown that

Using the multi-scale convergence method, we derive a homogenization result whose limit problem is defined on a fixed domain and is of the same type as the problem with

[Mag3] , Painlev´ e-type differential equations for the recurrence coefficients of semi- classical orthogonal polynomials, J. Zaslavsky , Asymptotic expansions of ratios of

In addition, we prove a (quasi-compact) base change theorem for rigid etale cohomology and a comparison theorem comparing rigid and algebraic etale cohomology of algebraic

Due to Kondratiev [12], one of the appropriate functional spaces for the boundary value problems of the type (1.4) are the weighted Sobolev space V β l,2.. Such spaces can be defined