• 検索結果がありません。

Aes MHD

N/A
N/A
Protected

Academic year: 2022

シェア "Aes MHD"

Copied!
21
0
0

読み込み中.... (全文を見る)

全文

(1)

Internat. J. Math. & Math. Sci.

VOL. 13 NO. (1990) 93-114

93

HODOGRAPHIC STUDY OF NON-NEWTONIAN MHD ALIGNED STEADY PLANE FLUID FLOWS

P.V. NGUYENandO.P.CHANDNA

Deprtm,’nt

of Mathematics and Statistics University ofWindsor

Winds,,r,Ontario N9B 3P4,Canada (Received May 22, 1989)

ABSTRACT. A study is made of non-Newtonian HHD aligned steady plane fluid flows to find exact solutions for various flow configurations. The equations of motion have been transformed to the hodograph plane. A Legendre-transform function is used to recast the equations Jn the hodograph plane in terms of this transform function. Solutions for various flow configurations are obtained. Applications are investigated for the fluids of finite and infinite electrical conductivity

bringing out the similarities and contrasts in the solutions of these types of fluids.

KEY WORDS AND PHRASES. Steady, Non-Newtonian Magnetofluid dynamic, incompressible, plane, Hodographic study, Aligned.

1980 AMS SUBJECT CLASSIFICATION CODE. 76W05.

1.

INTRODUCTION.

Transformation techniquesareoftenemplo:y-dforsolvingnon-linearpar- tialdifferential equations andhodographtransformalionmethodisoneof these techniqueswhich has been widely used in continuummechanics. W. F. Aes

[1]

has given an excellentsurveyof thismethodtogetherwith its applicationsin variousother fields. This paper deals with tle ap- plication ofthismethodfor solvingasystemof non-linear partialdifferentialequations governing steadyplaneincompressible flow ofanelectrical conducting second-gradefluid in thepresonceof

analignedmagneticfield. Recently, A. M. Siddiquiet al

[2]

usedthe hodograph and Legcndre transformationstostudynon-Newtoniansteady planefluid flows.

O. P.

Clandnaet al

[3]

hasalso

appliedthistechniquetoNavier-Stokes equations. Since electrical conductivityisfinite for most liquid metals andit is also finite forother electrically conducting second gradefluids to which singlefluidmodelcan be applied,ouraccounting for thefinite electrical conductivity makesthe flowproblemrealisticand attractivefrom bothaphysicalandamathematical point ofview. We havealso included electricallyconductingsecondgradefluids ofinfinite electrical coaductivityto makeathorough hodographic studyofthesefluidflows and torecognize the dawnan,tfuture of superconductivityin science.

Westudyourflowswiththe objective ofobtainingexactsolutions tovariousflowconfigura- tions. Westart withreducingthe order of governing equationsby employing M. l:I. Mtrtin’s

[4]

perceptiveideaof introducing vorticity and energy functions. Theplanofthispaperisasfollows:

In

section 2the equations arecast intoa convenientform for this work. Section 3 contains the transformationof equationstothe hodograph planesothat the role of independentvariables:.y and thedependentvariablesu,v

(the

twocomponentsof the velocity vector

field)

isinterchanged.

Weintroducea Legendre-transformfunctionof the streamfunctionand recast all ourequations inthehodograph planeintermsofthistransformfunction inSection4. Theoreticaldevelopment

(2)

94 P.V. NGUYEN AND O.P. CHANDNA

ofsection4 isillustratedbysolutions to thefollowingexamples in section 5:

(a)

flowswithelliptic and circular streamlines

(b)

hyperbolic flows

(c)

spiral flows

(d)

radialflows.

These applications are investigated for the fluids of finite and infinite electrical condlctivity bringingoutthe sinfilarity and contrastsin thesoluti,ns of these two types offlfids.

2.

EQUATIONS

OF MOTION. The steady, planeflow ofaninconpressible second-grad’flid of finite electricalconductivityisgoverned bythefollowingsystem of equations:

Ou + -

Oy

o

oo 0,,)

0-+v N +N

OHx. OH2

Oz +--y

=0

where u,varethecomponentsof velocityfield ]7

, H, H2

the components of the magm.ticvector field

]E?,

andp isthe pressurefunction: allbeingfunctions of x,y.

In

this system

and c2 arerespectively the constant fluid density,the constant coefficient of viscosity, thecon-

(3)

HODOGRAPHIC STUDY OF STEADY PLANE FLUID FLOWS 95

stant magnetic permeability, theconstant electrical conductivity and the normal stress moduli.

Furthermore,

K

isanarbitrary constant of integration obtained from thediffusionequation

We

nowintroduce the twodimensional vorticityfunction w, the current densityfunction j and energyfunctione definedby

Ov Ou OH2

where

q2

Ial

intothe above system of equations d obtn thefoong system:

+ Ov

0 (otity)

o V ax vV2w

*jH

(Bne momentm)

ug vg

j1

+

g

(ffusion)

OHa

OH,_

0--- +

0

(solenoidal)

OH: OHa

(current

density)

w

(vorticity)

0 0v

(2)

ofseven partial differential equationsin sevenunknown functions u,v, w,

Ha,

H2, j and e as functionsof z,y. This system governs the motionofsecond-gradefluidoffinite electrical con- ductivity.

For

themotionofsecond-gradefluid of infinite electrical conductivity,weonly replace thediffusionequationintheabove systemby

uH2

v

Hi

K.

ALIGNED FLOW.

A

flowissaidto beanalignedorparallelflow if the velocity and the magnetic fields areeverywhere parallel. Takingour flow to bean aligned flow, there exists some scalar function

f(z,y),

called theproportionality function,such that

it f(,v)V (3)

Introducingthisdefinition of the magnetic vector fieldintheabovesystem,thealignedflow isgoverned bythefollowingsystemofsevenequations

+

_x-- 0

(4)

Oe O

pvw I--a--

a,vV2w

I*fvj

(5)

(4)

96 P.V. NGUYEN AND O.P. CHANDNA

#,oj+K=0

1

(7)

" of Of +’N Of

=0

(s)

f + i

=w

(10)

Oz

i i,,k-ofu-tio-

,,(:, ), ,,(:, ),,,,(:, ), f(, ),./(:, u), (:, )

,d

=

bit,-yo.t,t

K. Once

a solutionof this system isdetermined, the pressure and the magnetic functions are obtainedbyusing the definition ofein

(1)

and the definition of in

(3)

respectively.

3.

EQUATIONS

IN

THE HODOGRAPH PLANE.

Letting the flowvariables

u(z,y),v(z,y)

be suchthat,inthe region offlow,theJacobian

0(.,) g(’Y)

o(:y) # o, o < IJI < ()

wemay considerx and yasfunctionsofuandv.

By

meansofz

:r(u,v),y

y(u,v),wederive thefollowingrelations

Ou Oy Ou

o-

o%

J-- Or’ Oy -= Ov Ov Oz I (12)

and

Og O(g, z) =O(:) (13)

h.

a a(,) a((., ), (,)) (.,)i

.y oti.uo]y aifftiUtion nd

J J(’/=

0(,/- [0(,/l J(’/" (4/

Emplonghese transformation relations fortge flrs order partiderivatieesappearingi systemof

euations (4) (10)

and thetransformationequations for thefunctions,j,

],

edefined by

.(,) ((=,),(=,)) z(=,), j(,) j((,),(,))

j(,),

f(x,y) f((u,v),y(u,v)) f(u,v),

(,) ((,),(,)) (,),

thesystem

(4)-(10)

istransformedintothefollowing systemofsevenequationsinthe

(u,

v)-ple:

-0(, [o(, o(,

x,

)

+ + ,"

fuj

(17)

,.) - +.gw + ’] t(’Jw’) o(w,)

(5)

HODOGRAPHIC STUDY OF STEADY PLANE FLUID FLOWS 97

where

p.--j + K

0

(18)

o(f ,) o(,f)

uO(u,v) + O(u,v)

0

(19)

-[ o(7,,) o(,,7)]

I + s ,,,,) "o(,,,,)j s (uo)

J 0v "- (21)

0(,=)

/

w =w(,)- 0(,) (2)

0(,v)

for the sixunknown functions, z, y, w, e,

,

ofu,v andan arbitrary constant

K

when

, W, Wu

areenated, using

(14)

and

(22).

Once a solution x

x(u,v),

y y(u,v),

(u,v), (u,v),

j j(u,v),

f f(u,v)

isdeterned, we are led to thesolutionofu

u(x,y),

v v(x,y) and thereforew

(u(x,y),v(z,y)) w(x,y),

e

e(x,y),

j j(x,y),

f

](x,y) for the system

(4) (10)

governingthefitely conductingflow.

The aboveanMysis

Mso

holdstrue forinfinitely conducting

second-grade

fl,fidflows. How- ever,for theseflows,the arbitrary constant

K

0 and equation

(7)

anditstransformed equation

(18)

are identicMlysatisfied.

4.

EQUATIONS FOR THE

LEGENDRE

TRANSFORM FUNCTION

AND

F(U, V).

Theequa- tionof continty impfies the

estence

ofastreaunction(x,y) such that

d=-vdx+udy or =-v, =u.

(23)

Likewise,

(15)

impliestheexistenceofafunction

L(u, v),

called the

Legendre

transformfunction of thestreamfunction

(z,y),

sothat

OL OL

dL=-ydu+zdv or

0u =-Y’ 0v =x

(24)

and the twofunctions

(z,y), L(u, v)

are related by

(25)

Introducing

L(u,v)

intothe system

(15)-(21),

with

J,

W1,

W

givenby

(14), (22)

respec- tively,itfollows that

(15)

isidenticallysatisfiedandthissystemmaybereplaced by

-o s ( w. ) o(o,sW‘)

o-..,

’0

.sw ,,.s O(u,v)

--,o, , o(r,Tw,)

-o-(V..; -,,..o,+ .sw. + ....s

O(u,v)

(,-w,)

00L (,7) o(OL

+ ’7) o 19.9

o(,,,,,) o(,,,,,)

(28)

(6)

98 P.V. NGUYEN AND O.P. CHANDNA

wherenow

(30)

(31)

J Ov \ (32)

w, O(u,v)

W_=

O(u,v) (33)

for thefive functions

L(u,v), (u,v), E(u,v),

j(u,v),

f(u,v)

andan arbitraryconstant

K,

after

J, Wz, W2

areelinfinated.

By

using theintegrabilitycondition OL 0

OuOv

0%

i.e.

oro---

2e

o,o---=t

in

(z,

y)-plane,weeliminate

(u, v)

from

(26)

and

(27)

andobtain

-[ O(

or

,j-)

+ t,*f ,,

O(u,,) +" 0(,,,,,) j

(34)

(a)

Since j has a constant value

-#*oK

forafinitely conductingfluidas givenby

(28),

it follows that

L(u,v), f(u, v)

satisfyequations

(29), (30)

and

v(,,- + ,,w).

(35)

(b)

Equation

(28)

isidenticallysatisfiedforaninfinitely conducting fluid flow

_and

j isgiven

by

(30).

Elirninating from

(30)

and

(34),

we

nna

that

o

the

nows L(,,v)la/(=,)

satisfy equations

(29)

and

(7)

HODOGRAPHIC STUDY OF STEADY PLANE FLUID FLOWS 99

o(, ,) o,

o( 7{o( -w,)/o,,,+o(

L

7w)/oo, }) + a

v

(u, v) +u O(L’ 7{0( ffW)

/O(u’v)+O(O(u,v) , 7W:) /O(u v)})]

J

(36)

+ .]

0

o o

where

F

and

F

are defined

O( o(

(’ 0(, 0(,

Suingup,wehave thefoowingtheorems for finitely conductingandinfitelyconducting

TgeoN

I.

If

(, v)

is le Legendre lrsfom function ofa streunction ofseady ple gned

o

of incompressible

econd-grede

d of

te

ecricMconductivity d

f(, v)

is

te

lrsformed proporlionty function,le

(, v)

d

I(, v)

mlsatisfy equations

(29), (0)

d

() ere

j(,v),

{,v), J(,v), W(,v), W(,v)

e

en b

equations

(28), () o ().

Teoe

II. (, v)

ileLegendrelrsform fnction ofareunction of

te

eque- lions

goerMng leed

ple

gned o

ofincompressiNe

second-ade

dofinteelecN-

cM

conductity d

f(u, v)

isthetrsformed proportionty function, then

L(u, v)

d

f(u, v)

mustsatisfyequations

(29)

d

(36)

where

(u,v), (u,v), ff(u,v), W(u,v), W(u,v), F(u,v), F(, ) Once

a

.

sdution

y (30) L

to

L(u,v),f (33) a (3Z). 1(u,v)

isfound, for wh’ch

J

evuatedkom

(32)

satisfy

0

< IJI < ,

the solutionsfor thevdocitycomponentse obtMnedbysdngequations

(24)

simteously. Having obtMned the vdocity componentsu

u(z,y),

v v(x,y), weobtMn

f(x,y)

in thephysicMple

om

the sdution for

f(u,v)

in the

hodograph

ple.

We,

then, obtMn the vorticity, the current density d the

ener

functionsbyusing

V(z,y)

d

f(z,y)

in equations

(10), (9), (5)

d

(6).

FinMly, the pressurefunctiond the magneticvector fi’cldare

deterned

om (1)

d

(3).

Asvariousassumed forms forLegendretransformfimctionarebest handledifpolarcoordi- natesinthehodograph planeareemployed,wenowdevelopthe results of the above theoremsin polarcoordinates (q,

0)

inthe hodograph plane. Expressing

u

+

iv qe

i#, (38)

wehave the followingtransformations:

(8)

100 P.V. NGUYEN AND O.P. CHANDNA

0 0 sin 0 0 0 0 cos0 0

=cosOoq

q

00’

o%

--=sinOb// +

q O0

0( F, G) 0(F*, G"

0(q,0 1

0( F’,

G*

O(u,v) O(q,O) "O(u,v)

q

O(q,O) (39)

where

F(u,v)=

F(q,O),

G(u,v) G*(q,O)

are continuo.sly differentiablefunctions. On using theserelations,and regarding (q,

O)

as newindependentvariables, the expressions for J,

, Wa.

W,Fa, F

and j inthe (q,

O)

plane,take the forms

j.(q,O)=q4 [q202L* -0

2

(OL* q+ OL ") (OL* 3-qb 02L’)2] -’ (40)

[OL 10:L

IOL*

w’(q,O)

=S"

[+ q,

00

+ j (41)

W;(q,) 0 (

sin+

o,

q

O(q,) (42)

W;(q,) (43)

q

(44) F;(q,)

0

o

oz"

I"

q

O(q,)

F;(q,O)=-IO

sinO+ o,

(45)

q O(q,

O)

0

0 cosO

"

,i=oz"

/.

j*(q,O)=f*w’+J* sin

(

0

i

oo’

)

o(,o

cos0

0(q, 0)

j’(q,O)

-’eK

i

aen

in

(46)

ifthefluid is

flnitel

conducting. Equations

(29), (aS)

and

(a6)

aretransformedto the

(q,O)-plane

0 L*

Of"

0 L"

Of"

10L"

Of"

-

=0

(47)

Oq

O0

OqO0

0q q

O00q

(48)

(9)

HODOGRAPHIC STUDY OF STEADY PLANE FLUID FLOWS i01

(49)

where

X*

isdefinedas

(50)

Having developedthe abovetransformations,westate thefollowingcorollaries which respec- tively follow fromtheorem andII:

COROLLARY I.

/fL*(q, O)

andf*(q,

O)

istheLegendretransformfunctionofastreamfunction and the proportionalityfunctionrespectively ofthe equationsgoverning themotion ofsteadyplane alignedflow ofanincompresslblesecond-gradefluidof tinite electricM conductivity, thenL*(q,

0)

and

f*(q,O)

mustsatisfy equations

(46), (47)

and

(48)

whereJ*(q,O), o*(q,

0),

W(q,O), W(q,O) and

x*(q, O)

aregiven by

(40)

to

(43)

and

(50).

COROLLARY" II.

lf

L*(q,O)

andf*(q,O) aretheLegendretransform ofastreamfimctionand the proportionalityfunctionof the equations governing themotionof steadyplane alignedflow of anincompressible second-gradefluid ofin/niteelectrical conductivity, thenL’(q,

O)

and

f’(q,O)

must satisfy equations

(47)

and

(49)

where

J*(q,O), w*(q,O), W(q,O), W(q,O), F(q,O), F(q,O)

and

x*(q,O)

aregivenby

(40)

to

(45)

and

(50).

Once

asolution

L*(q,O), f*(q,0)

isobtained,weemploytherelations

OL* cos00L* sin00L* OL*

z sinO

_---- +

y

+

cosO--

(51)

q O0 q O0

Oq

oq

and

(38)

to obtain the velocity components u u(z,y), v v(z,y) in the physical plane.

Followingthedeterminationof velocitycomponentsu

+

iv qei inphysical planeweget

f(z, V)

and the other remaining flowvariables.

(10)

I02 P.V. NGUYEN AND O.P. CHANDNA

5. APPLICATIONS. In thissectionweinvestigatevariousproblemsas apI)licationsofTl,’(,rem and

II,

and theircorollaries.

APPLICATION

I. Let

L(u,v)

Au

+

Bv

+

Cu

+

Dv

+ E (52)

be the Legendretransformfunctionsuch that

A, B, C, D, E

arearbitrary constants and A,

B

are nonzero. Using

(52)in

equations

(31)

to

(33),

weget

1

A+B

Wa

=0,

W2=0. (53)

J= 4AB 2AB

Wenowconsider finitelyconductingand infinitely conductingcasesseparately by applying theorem and theorem

II

respectively.

FINITELYCONDUCTINGFLUID.

EIiminatingL(u,v),

(u,v), J(u,v), Wa(u,v), W2(u,v)

and j(u,v) from equations

(29), (30), (35)

byusing the expressions for these functions from

(52), (53)

and

(28),

wefind that equation

(35)is

identicallysatisfied and f(u,

v)

must satisfy

AuOf

Bv =0

cO] cO-] (54)

(A + B)f + av-v + Bu-- + 2ABK,*o

0

if

L(u,v)

given by

(52)

is the Legendre transform function ofa streamfunction offinitely con-

ductingfluid flow.

Solvingequations

(54),

wehave

, (,, + .)-.-5 (.)_

a.

K,’.;

-f(u, v)

AKin" atn(u +

v

:) + (u)

where arbitraryfunctions

(u)

and

(u)

mustsatisfy

A - -B } (55)

A=-B

and

{B’(u)}v + {B’(u)u + -(A

1 :z

B2)u(u)}

0

{’(u)}v + {4AK*au}v + {u’(u)}

0

(56)

Since equations

(56)

and

(57)

hold true for everyv, and

A #

0,

B #

0,it follows that we

have thefollowingthree possiblecases:

(i) L(u,v) A(u + v:) + cu +

Dv

+ E, -](u,v)

C,(u

+ v’)

-*

AKI’a

when

A B #

0 andCis an arbitrary constant.

(ii) L(u v) Au

2

+ Bv +

Cu

+

Dv

+ E, -](u v)

-2AB_,’,,A+B

whenA#0, B:/=0

and

A #

+B.

(iii) L(u,v)=A(u 2-v 2)+cu+ov+E, f(u,v)=C2

when

A=-B#0, C2

isanarbitraryconstantand

K

0.

Wenow proceedtostudy thesethreecasesseparately.

CASE

(I).

Using

L(u, v) A(u +

v

2) +

Cu

+ Dv + E

in

(24)

and solving the resulting equations simultaneously,weget

Employing(58)in

f(u,v) Ca(u

2

+ v2) - AKIn*a,

weobtain

(57)

(11)

HODOGRAPHIC STUDY OF STEADY PLANE FLUID FLOWS 103

f(z,y)

4C1A [(y + C) + (, D)2)]

-1

AK#’a.

Substitutingfor

u(z,y),v(z,y)

and

f(z,y)

inequation

(3),

wehave

]q(z,y) {4CxA2[(y + .( y+C

2A

z-D) C)’

2A

+ (z D):] - AK#’a}

(59)

Usingw

X’

e(z,y). Usingthis solutionfor

e(z,y)

and

(58)in (1),

thepressure function isfound to be p(z

y) (

8A:P

K2#’3a2

4

) [(Y + c)2 + (z

+ K#"aC:

Agn

[(y + C)’ + (z 9) + C3

where

C3

isanarbitrary constant.

(60)

j

-K#’o,

equations

(58), (59)

in

(5), (6)

and integrating, wedeternfine

(61)

CASE

(II). In

this case, wehave

L(u,v) Au + Bv +

Cu

+ Dv + E,

and

A #

-I-B. Proceedingasin case

(i),

weobtain

f{u ,)=

-AOU.’,,A+B

2A 2B

where

C4

isan arbitrary constant.

CASE (III). In

this case,

L(u,v) A(u

v

) + Cu + Dv + E

and

-](u,v) C2.

Flowvariables forthiscaseare:

2A 2A

i7 c=V

P

[(y+C) 2+(z-D) 2] +

p(=,)

C

where

C5

isanarbitrary constant.

3ax + 2a2 (63)

INFINITELY CONDUCTING FLUID.

Using theexpressions for

L, J, , W,

W2,

F, F2

as

givenby

(52), (53), (37)

inequations

(29)

and

(36),

wefindthat

st(u, v)

must satisfy

o.t oI

Au-- Bv--

0

of o!

v

N - =o (64)

Solving equations

(64)

for

f(u, v),

wefindthat

f(u, v) (u +v 2)

if

A

Band

f(u, v) C

if

A : B,

where is an arbitrary function ofits argument and

C6

is an arbitrary constant.

Therefore,wehave the followingtwocases:

(12)

104 P.V. NGUYEN AND O.P. CHANDNA

(i) L(u, v) A(u

2

+

v

) + Cu + Dv + B, "(u, v) q(u + v),

where isanarbitrary

function ofitsargument.

(ii) L(u,v) Au

:

+

By

+Cu+Dv+E,,’-/(u,v) C6

where

C6

isanarbitraryconstant

andB

#A.

We

now consider these twocases

separately.

CASE

(I).

Without loss ofgenerality, wetake j(u,v) u

+

v

.

Using

L(u,v) A(u +

v

2) +

Cu

+

Dv

+ E

inequations

(24),

weobtain

-i=(u,v)= ( Y+C2A’z-D)2A (65)

andtherefore.

,((x,y)

1

-- [(y + C) + (x D)]. (66)

Employing

(65)

and

(66)in (9),

weobtain j(z,y) 1

A [(u + C) + (z D)].

(67)

Using

(65)

to

(67)

inequationsinthephysicalplane,weobtain

[(Y+C)+(z-D)] y+C 2A’

z2A

D

(68)

(,) (

P

’)

where

Cv

is arbitryconstant.

CASE

(II).

Using

L(u, v) Au +

By

+

Cu

+ Dv + E

where

A B,

and

(u, v) C,

weobtn

V=(u,v)= ( Y+C2A ’x-D)2B

j(z,y)

A+B 2AB..Un

3aa +

(,U)= [(u+C)’+(’-D)’]+

8

AB

(69)

8A:B

where

Ca

is arbitraryconstant.

Suingup,wehave thefollowingtheorems:

TnEoaE III. H L(u,v) Au + Bv + Cu + Dv + E

is the

Legene

trsform ofa

streunctionforasteady, ple, gned

o

of incompressiblesecond-grade dof nite ectricMconductity, then the

ow

in the physicMple

(a)

avortex

o ven

byequations

(58)

to

(51)

when

A B

in

L(u, v).

(b)

a

o

withhyperboc

strenes

with

o

viablesgivenby

(63)

when

B -A

in

L(u, v).

when

B #

iA.

TnEORE

IV. H L(u,v) Au + Bv + Cu +

Dv

+ E

is the Legcndre transform ofa

strenfunctlon for a steady, ple, Migned, incompressible innitely conducting second-grade uid

o,

then the

o

in the physicMpleis:

(13)

HODOGRAPHIC STUDY OF STEADY PLANE FLUID FLOWS 105

(a) (b)

a vortexflowwith flowvariablesgiven by

(65)-(68)

when

A B

in L(u,v).

aflow withflowvariablesgivenbyequations

(69)

with thestreangincswhen

B A

in

L(u,v).

APPLICATION II" Welet

L(u,v) (Au + B)v +

Cu

+

Du

+

E (70)

to be the Legendre transform function, where

A,B,C,D,E

are arbitrary constants and

A

is

nollzero.

Evaluating

J, , W1

and W2, byusing

(70)

inequations

(31)

to

(33),

weget

J=

2C

A:’

W-

A:’ W, =W

=0.

(71)

FINITELY CONDUCTING

FLUID.

Using equations

(28), (70), (71)

in equations

(29), (30), (35),

wefindthatequation

(35)

isidenticallysatisfiedandf(u,

v)

mustsatisfy equations

(2Cu + Av)- Au--

0

(72)

Of Of A K

2C

I -t-(2Cv A

u

-v A

V

-u

Multiplying

(72)

byv,

(73)

byuandsubtracting,weobtain

(73)

Of

2Cu u

-- A(u: + v)f + AK#’au + v

0

(74)

Solvingequations

(72)

and

(74),

weget

A

](u v)= exp[-tan-’ ;](u)+n

a,

C0

-AK*at-’ () + (u), C

0

where arbitrary functions

(u)

and

1/,(u)

must satisfy

[Au’(u)]v -[4Cu(u)]v + [Aua’(u) 4C -X- (,,)] o,

c#o

(75)

and

[u’(u)lv + [2AKp oulv + [u’(u)l

O,

C=O.

(76)

Equations

(75)

and

(76)

hold true for all v if

(u)

0 and

/,(v)

D, where D, is an

arbitrary constant. Therefore,wehave the followingtwo cases:

(i) L(u,v) (Au + B)v +

Cu

+

Du

+ E, f(u,v) K.’o,

when C 0.

(ii) L(u,v)=(Au+B)v+Du+E,f(u,v)=Dx-

Using

L(u,v)

and

](u,v)

for the two cases and proceeding as in application I, the flow variablesin thephysicM planeareobtained to be:

(14)

I06 P.V. NGUYEN AND O.P. CHANDNA

CASE

(I).

V (u’v) (

z

,2CB- AD-

2Cz-

] A K

2Cl a

-

P

[(x B): +

(y

+ D) 2]

2A

gl

.3a

[Ay(x-B)+C(x-B) :+ADz,]

2C

A +C + (6al + 4a2)

A4

+ D

where

D2

isan arbitrary constant.

(77)

CASE (II).

u’v

(

z y

+ D

p

6al + 4a2

V(x,V) D3 [(z B) +

(y

+ D) ] +

A2

(78)

where

Da

isan arbitrary constant.

INFINITELY

CONDUCTING FLUID.

Using

L, , , Wa,

W2,

Fx, F2

#yenby

(70), (71), (37)

in equations

(29)

d

(36),

wefind that

l(u, v)

must satisfy

(ff + v)

0

Solving

(80),

weobtain

(u,v) D4 (80)

where

D4

isan arbitraryconstant.

We employ

L(u,v), f(u,v)

givenby

(70), (80)

respectivelyin

(24), (3)

and equationsin the physicalplane,and obtain

(u’v) (

z

,2CB- AD-

2Cx

and

p(z,y)=DL- -i[(z-B +(y+D

2nl*C

C

(x

B)

A:

y(z

B) + + Dx (81)

A +C

+ (6Ctl + 4Ct2)

A4

where

D5

isan arbitrary constant.

Summingup,wehave thefollowingtheorems:

THEOREM V. /f

L(u,v) (Au + B)v + Cu +

Du

+ E

istheLegendre transform fimction ofastreamfunctionforasteady, plane, ah’gned, incompressible,tlnitelyconducting second--grade fluidflow,then the flowin the physicMplaneis

(15)

HODOGRAPHIC STUDY OF STEADY PLANE FLUID FLOWS 107

() (b)

given byequations

(77)

havingCx

+ Axy ABy +

(AD

2BC)z

constantas

itsstreamlines whenC 0 in L(u,

v).

a flowwih recangd hyperbol

(z

B)(y

+ D)

constan itsstreamlines d isgiven byequations

(78)

whenC 0in

L(u, v).

THEOREM VI.

HL(u,v) A(u + B)v+Cu +

Du

+ E

istheLegendre transformfinction of astreamfunction ofasteady, plane, ah’gned, inconpressible, intinitelyconducting second-grade fluidflow,then the flowin the physicalplaneisgivenbyequations

(81)

with

Cz

+ Azy- ABy + (AD 2BC)z

constant

asitsstreamlines.

APPLICATION III: Let

L*(q,O)

F(q); F’(q) O, F"(q) #

O.

(82)

Using

(83)

in

(40)

to

(43)

and

(51)

toevaluateJ*, w*,

W*, W,

z and y, weget

j. q

,.

aF"(q)

+

F’(q)

F’(q)F"(q)’

F’(q)F’(q)

W lw" cosOF’(q), W; -w" sin0F’(q),

q q

x

F’(q)sin e,

y

=-F’(q)cosO (83)

Wenowstudyfinitely conductingfluidflowandinfinitely conductingfluidflow as applica- tionsofcorrolaries and

II

respectively.

FINITELY CONDUCTING FLUID.

Eliminating

L*, J*, WI*, W:*

frOIll equations

(46), (,t7)

and

(48)

by using($2) and

(83),

wcfindthat F(q) andf*(q,O) mustsatisfy

q

Of*

f’w*

-t F"(q)

Oq

I-

Kl*a

0

(84)

of"

=0

(85)

00

w_"(q) ]’

0

(86)

w*’(q) + F’(q)

F"(q)J

sothat F(q)is the Legendretransform function ofastreamfimction. Here w*(q) isgivenin

(83)

and j* -Kp*ahas been usedforthefinitelyconductingcase. Since equation(86)isidentically satisficdwhenw* 0 andcan bercwrittenas

w*"(q) F"(q) F"’(q)

=0

(87)

w*’(q) F’(q)

F"(q)

when

w*’(q) #

O,it follows that wehaveto deal separatelywithL*(q,

O)

F(q) havingvariable vorticityand L*(q,O) F(q) havingconstantvorticity.

CASE1. (VariableVorticity). Fromtheexpressionsforx,y in

(83).

wehave

v/ + v +/-F’(q),

dr

+F"(q). (88)

dq Integrating

(87)

twice withrespect toq, weobtain

w*(q)

MinlF’(q)l + M: (89)

(16)

I08 P.V. NGUYEN AND O.P. CHANDNA

where

M1

and

M2

arearbitrary constants.

Substituting forw*(q)givenin

(83)

into

(89),

weget

q

+ r-r

dq

4-(Mrtnr + Mr) (90)

since

F"(q) :it:

0and,therefore,

Integrating the differential equation

(90),

weget

q

+

rent

+

r

+ (91)

where

M

is an arbitrary constant.

Employing

(88), (91)

inequations

(51)

and making useof the definitionsu

qcosO,

v Ov 8u

qsinOandw 0 0, weobtain

u(x

y) _y

[_M_gn(x2 + y2) + (2M2 M ) Mz

M f.n(x: y ( 2M2- Mi) M

-4- + )+

4

+

---

,(,y)

-t,,( + y’-) + M=

Using expression forw*(q) from

(83)

inequation

(84)

and makinguseof(85),wehave

(92)

qF’(q)(q) + _K__p’a F,2(q)

0

2

f’(q,O) (q).

Integrating the above equation,weget

M4 K’aF’(q)

if(q,

8)

(q) (93)

qF’(q) 2q

where

M4

is arbitrary constant.

Substitutingexpressions for

F’(q)

and qgiven by

(88)

and

(91)

respectively intoequation

(93),

weobtain

f(x,y)

=M4 --4-(x

:

+

)gn(x -4-

+ (x +

4-

Ma

2

+

4

(94)

We

use

u(x,y), v(x,y)

and l(z,y)givenby

(92)

and

(94)in

equation

(3)

andobtain

-M.ty

Kl*ay

Mz Kv*az)

(z,y)=

z

2+y---+

2

’z

2+y’- 2

(95)

(17)

HODOGRAPHIC STUDY OF STEADY PLANE FLUID FLOWS 109

Usingj

-#’oK,

equations

(92), (94)

in equations

(5)

and

(6)

and integrating, we get e(z,y). Employingthis solutionfore(z,y) and

(92)

in

(1),

the pressurefunctionisdeterufined to be

where

Ms

is anarbitrary constant.

(96)

CASE2.

(Constant

Vorticity).

Usingw* w0 constantinthe expression for w* givenin

(83),

wehave

qF"(q) + F’(q) -woF’(q)F"(q)

O.

(97)

Integratingequation

(97)

with respecttoq, weget

woF"(q) 2qF’(q) + 2Me

0

(98)

where

Me

is an arbitrary constantand if0 0then

Me #

O.

Substitutingfor F’(q)givenby

(88)

intoequation

(98)

andsolvingfor q,we obtain

[wo V/’2 M6 +

Vi

]

q=+ -V/+y + (99)

Thesolutionfor

.f*(q,O)

satisfyingequations

(84)

and

(85)

isgivenby

(93),

wherenowqis givenby

(99).

We

proceedasin variable vorticitycaseandobtain ,(,y)

-v

- +

May k#"

ay

Mz

z2

+

V

+

2

’z

+V

(18)

II0 P.V. NGUYEN AND O.P. CHANDNA

and

where

M7

isan arbitrary constant.

+ M7

(100)

INFINITELY CONDUCTING FLUID.

Employing the expressions for

L , J’, W*, W*, F{

and

F2*

asgiven by

(83), (84), (44)

and

(45)in

equations

(47), (49),

we find that F(q) and f*(q,O)

must satisfy

O0 0

(101)

LF" 2’f"

-0.

Solving

(101), (102),

weobtain

l’(q, 0)

(102)

(103) where

isan arbitrary function ofitsargument,and

F(q)

satisfying

F"/ 0.

(104)

Analysingequation

(104),

wehave thefollowingtwocases asinfinitely conductingfluidflow:

(1) L*(q,O) F(q)

havingvariable vorticity.

(2) L*(q,0)

F(q) havingconstant vorticity.

CASE

1.

(Variable

Vorticity). Followingthe sameanalysis as in finitelyconductingfluid flow,

weobtain q,

u(z,y), v(z,y), w(z,y)

as givenby

(91)

and

(92). Hence,

f(x,y) (q) (105)

where qisgivenby

(91).

Proceedingasinpreviousexample,weget

M/n(z y

j(z,y)

=(q)

- + + U

+ ’(q)[--,n(z’ +yZ)+ (2M:

4

)-M1

Ma M x + y:tn(z + y2)

g(x,y) (q)(u(x,y),v(x,y))

(106)

(107)

(19)

HODOGRAPHIC STUDY OF STEADY PLANE FLUID FLOWS iii

p(z

V) =gu

P

M+--- M1cz +2 [tn(z + V:

(MIM2-M?) y2]

+

p

MM (z+

MM

2 4

[t. * + u*)] + +- u,u . +

[ (2M=-M) M

+

a

M tn(

x

+ y= +

4

+

z

+ y=

3 + 2a M 4M M M

+

2

+ (z+y} z+y +Ms

where

Ms

is arbitrary constt andj,

H, H2

e

ven

by

(106), (107).

CASE

2.

(Constant

Vorticity).

In

tsce, using

L*(q,)

F(q)having constantvorticity w*

w0, and

f*(q,8)

(q), weobtn q, u(x,y),

v(x,y) ven

by

(99)

andin

(100),

f(x,y)

where qisnow

ven

by

(99),

(.,) () + ’() V +

*

4. +

2](x,y) (q)(u(x,y),v(x,y)) (110)

[w

8

woM6tn(x

y

M woM6

P(’) = + * ( [f

jH.d

+ )+ + -- f jH.dy] + + 6a (’ )- + + 2(. 4a)M u’)’ + )

2

(111)

where

M

is arbitraryconstant,and j,

H, Hz

are

iven

by

(109), (110).

Sumng

up,wehave thefollowingtheorems:

TaEOREM VII.

H

L*(q,8) F(q) is theLegendre ransformfunction ofastreamfunction forasteady, plane, Migned, incompressible,nitclyconducting second-gradeBuid

Bow,

then the

Bow

in thephysicM planeis

() . ln(x

by

,o. + y2)

constant

(). () o ()

itsstreauHincs, when vorticity

( + u) [ut(,.

is

+

not

u:)+

a constant.

M] + (b)

given byequations

(100)

having

wo(x + y) + 2Mn(x + y2)

constant its

strearines, when vorticityisaconstant.

THEOREM VIII.

H

L*(q,O) F(q)is theLegendre transformfinction ofastreamfinction /’orasteady, plane,aligned,incompressible, intlnitely conductingsecond--gradefluid flow,the flow in thephysicMplaneis

(a)

given byequations

(92), (105)

to

(108) having(z: +y2) [_tn(z + y:) + -P.t +

tn(z + y)

constantasitsstreamlines, when vorticityisnota constant.

(b)

given byequations

(100), (109)

to

(111)

with

w0(x: + y-) + 2Mtn(z + y:)

constantasitsstream/ines, when vorticityis aconstant.

(20)

I12 P.V. NGUYEN AND O.P. CHANDNA

APPLICATION

IV.

Let

L*(q,O)

AO

+ B (112)

be theLegendretransform function, where

A, B

arearbitrary constantsand

A

isnonzero.

Weevaluate

J*,

to*,

W*, W

by using

(112)in

equations

(40)

to

(43)

and obtain

J*

q4

A2

W* W*

0.

(113)

FINITELY

CONDUCTING FLUID.

Employing

(112), (113)

inequations

(46), (47)

and

(48),

we

findthat equation

(48)

isidenticallysatisfied and

f*(q,8)

mustsatisfy

O I__* AK I’_______o

O0 q2

/ (114)

0/*

0 Solvingequations

(114),

weobtain

f*(q,o) 4,(o)

wlmreanarbitrary function

b(O)

must satisfy

q2b’(0) + AIr*oK

O.

(115)

Equation

(115)

holds trueforall q if

’(0)

0 and

AK#*o

0. Therefore,wehave

f* (q,O) (0) N (116)

where

N

is anarbitrary constant and

K

0.

Using

L*(q,O)

AO

+ B

and

f*(q,O)= N,

weobtain

-V=(,v)= +,+

p(z,y) N2

2(** + y*) + (6a, + 4a2) z, + y- (117)

where

N2

is anarbitraryconstant.

INFINITELY CONDUCTING FLUID.

Employing

L*, J*,

*,

W, W, F

and

F

#yen by

(112), (113), (44)

and

(45)

inequations

(47), (49),

wefind that

[*(q,O)

mustsatisfy

of"

=o

o ()

of" o

OO

Solving equations

(118),

weobtain

I*(q,O) N3

where

Na

isanarbitrary constant.

Proceedingas

before,

wehave thefollowingresults:

./=0

(21)

HODOGRAPHIC STUDY OF STEADY PLANE FLUID FLOWS 113

p(x,y)

=N4-

2(x2+y:)

+(6ai +4a2) :+y (119)

where

N4

is anarbitraryconstant.

Summingup,wehave thefollowingtheorem.

TnwORWM

IX.

If

L*(q,O)

AO

+ B

isthe Legendretransformfunctionofastreamfunction /’orasteady, plane, aligned, incompressible,Iniielyconducting

second-grade

auid

Sow,

then the aowinthephysical planeisgiven byequations

(117)

withtan-1

()

constantasitsstreamlines.

TrlEORIM X. If

L(q, O) At + B

isthe Legendretransform function ofa s/reamfunction for asteady, plane, a/igned, incompressible, in6nitelyconducting second--gradeBuid

ttow,

then the flowin the physicalplaneis given byequations

(119)

havingtan

- ()

constant as its

stream/ines.

REFERENCES

1.W. F. Ames,"Non-linearpartialdifferentialequations,"AcademicPress, NewYork, 1965.

_9.A. M. Siddiqui, P. N. Kaloni andO. P.Chandna, Hodograph fransfo,’mafton,ncfhods ,on-Neu, tontan fluids, J.ofEngineeringMathematics11(1956),203-216.

3.O. P.

Ch---n-clna,

R. M. Barron and

A.C.

Smith, Rotationalplaneflows of vtscousflutd, Sia,nJ. Appl.

Math.

4

(1982),1323-1336.

4.M.H.Martin, Theflow

o.I

viscousfluidI,Arch. Rat. Mech.Anal.41 (1971),266-286.

参照

関連したドキュメント

As with subword order, the M¨obius function for compositions is given by a signed sum over normal embeddings, although here the sign of a normal embedding depends on the

One can show that if C e is a small deformation of a coassociative 4–fold C of type (a) or (b) then C e is also of type (a) or (b) and thus, Theorem 1.1 implies analogous results on

Kilbas; Conditions of the existence of a classical solution of a Cauchy type problem for the diffusion equation with the Riemann-Liouville partial derivative, Differential Equations,

We show that for a uniform co-Lipschitz mapping of the plane, the cardinality of the preimage of a point may be estimated in terms of the characteristic constants of the mapping,

It turns out that the symbol which is defined in a probabilistic way coincides with the analytic (in the sense of pseudo-differential operators) symbol for the class of Feller

We give a Dehn–Nielsen type theorem for the homology cobordism group of homol- ogy cylinders by considering its action on the acyclic closure, which was defined by Levine in [12]

We give another global upper bound for Jensen’s discrete inequal- ity which is better than already existing ones.. For instance, we determine a new converses for generalized A–G and

We study the classical invariant theory of the B´ ezoutiant R(A, B) of a pair of binary forms A, B.. We also describe a ‘generic reduc- tion formula’ which recovers B from R(A, B)