• 検索結果がありません。

Themainpurposeof thispaperisclarifyingtheconnectionbetween some characteristicsofadecidingbodyandtheprobabilityofitsmakingcorrectdecisions.In ourmodelagroupofdecisionmakersisrequiredtoselectoneoftwoalternatives

N/A
N/A
Protected

Academic year: 2022

シェア "Themainpurposeof thispaperisclarifyingtheconnectionbetween some characteristicsofadecidingbodyandtheprobabilityofitsmakingcorrectdecisions.In ourmodelagroupofdecisionmakersisrequiredtoselectoneoftwoalternatives"

Copied!
21
0
0

読み込み中.... (全文を見る)

全文

(1)

Expert Rule Versus Majority Rule Under

Partial Information, II

DANIELBEREND y

berend@cs.bgu.ac.il

Departmentsof Mathematicsand ofComputerScience,Ben-GurionUniversity,Beer-

Sheva,84105,Israel

LUBASAPIR

*

lsapir@cs.bgu.ac.il

DepartmentofMathematics,Ben-GurionUniversity,Beer-Sheva,84105, Israel

Abstract. Themainpurposeof thispaperisclarifyingtheconnectionbetween some

characteristicsofadecidingbodyandtheprobabilityofitsmakingcorrectdecisions.In

ourmodelagroupofdecisionmakersisrequiredtoselectoneoftwoalternatives. We

assumethe probabilitiesofthe decisionmakersbeingcorrectareindependentrandom

variables distributedaccordingto the samegivendistributionrule. Thisdistribution

belongstoageneralfamily,containingtheuniformdistributionasaparticularcase. We

investigatethebehavioroftheprobabilityof theexpert rulebeing optimal,as wellas

thatofthemajorityrule,bothasfunctionsofthedistributionparameterandthegroup

size. Themainresultisthatforanyvalueofthedistributionparametertheexpertrule

isfarmorelikelytobeoptimalthanthemajorityrule,especiallyasthedecidingbody

becomeslarger.

Keywords: Decisionrule,Expertrule,Majorityrule,Optimality,Probability

1. Introduction

Inawidevarietyofareas{science,business,familyandothers{decisions

aretobemadeonagroupbasis. Evensomenominallyindividualdecisions

are inuenced by external advice and information. Thus group decision

makingisatleastasimportantasindividualdecisionmaking.

In this paperwefocus onthe binary choice model, which goesback at

leastasfarasCondorcet[10]. Inthismodel,agroupofdecisionmakersis

requiredtoselectoneoftwoalternatives,ofwhichexactlyoneisregarded

as correct. Weassumethedecisionmakersto beindependent. Unlikethe

classicalsocialchoicemodel,theindividualsinthegroupshareacommon

goal { to identify the correct alternative. A decision rule is a rule for

y

RequestsforreprintsshouldbesenttoDanielBerend,DepartmentsofMathematics

andofComputerScience,Ben-GurionUniversity,Beer-Sheva,84105,Israel.

*

ResearchpartiallysupportedbyanEshkolFellowshipfromtheIsraeliScienceMin-

(2)

translatingthe individual opinionsof themembersinto agroupdecision.

Ifthesizeofthegroupisn,thenumberofallpossibledecisionrulesis2 2

n

.

A decision rule is optimal if it maximizes the probability that the group

willmakethecorrectdecisionforallpossiblecombinationsofopinions. If

theprobabilityofeachmembertomaketherightchoiceisknownandthe

alternatives are symmetric, then the optimal decision rule is a weighted

majorityrule. (SeeNitzanandParoush[16],[17], [19].)

Thereareseveraldirectionsinthestudyofthedichotomouschoicemodel.

Condorcet'sJuryTheoremisstudiedinvarioussetups. Somedealwiththe

casewherethecorrectnessprobabilitiesofthedecisionmakersarenotnec-

essarily equal { Grofman, Owen and Feld [13], Miller [15], Young [22],

Paroush[20],Berend andParoush[2]. Othersrelateto thegeneralization

whereby there may be some dependence between the group members {

Boland[8],Berg[4],[5]andLadha[14]). Specialattentionhasbeendrawn

to specialdecision rulesarising from indirectvoting systems(see, for ex-

ample, Boland, Proschan and Tong [9], Berg[6], Berg and Paroush[7]).

In some of the models, the group has freedom in choosing the decision

rule. Theidentication oftheoptimalrule isof primaryimportance here

(see, forexample, Nitzanand Paroush[16],[17],[19], Grofmanet al [13],

GradsteinandNitzan[12]).

Ourgoalisidentifyingtheoptimaldecisionruleunderpartialinformation

onthedecisionskills. Specically,weassumethecorrectnessprobabilities

ofthegroupmemberstobeindependentrandomvariables,distributedac-

cording to somegivendistribution rule. Moreover,while thevaluesthese

variables takeare unknown, we assumethat therankingof the members

in terms of their individual correctness probabilities is (at least partly)

known. Thus, one can followrules based onthis ranking. Theextremes

aretheexpertrule {followingtheadvice ofthemostqualied individual

whileignoring alltherest, andthemajorityrule{alwaystakingthema-

jorityadvice,evenwhenadvocatedbymostlylessqualiedgroupmembers

(strictlyspeaking,thelatterruleisdenedonlyforoddn). Clearly,there

arenumerousotherdecisionrulesin-betweenthesetwoextremes.

Denote by P

e

(n) the probability of the expert rule being optimal and

byP

m

(n)theprobabilityof themajorityrulebeingoptimal. Nitzanand

Paroush [19] obtained an explicit expression for P

e

(n) for the case of

log-normaldistributionofthe individualcorrectnessprobabilities. Nitzan

and Paroush [18], [19] considered the case where these probabilities are

uniformlydistributedon[ 1

2

;1]. UsingMonteCarlomethodtheyestimated

P

e

(n) for small values of n, from 3 to 9. They also identied all rules

whichcouldbeoptimalforn=5,andagainbyMonteCarloestimatedthe

(3)

rule comes last, with P

m

(5) = 0:022,while theexpert rule is the second

best,withP

e

(5)=0:199,andthe leadingoneisthebalanced expert rule

oforder4,givenbytheweights(2,1,1,1,0),withprobability0.229ofbeing

optimal. This line of researchwascontinued by Berend and Harmse[1],

still foruniform distributionon[ 1

2

;1]. They obtainedanexplicitformula

forP

e

(n)andanupperboundforP

m

(n). Thecombinationoftheseresults

impliesthatthelatterprobabilitydecaysto0muchquickerthantheformer.

This direction was followed by Sapir [21], dealing with the situation of

logarithmic expertise levels distributed exponentially. In this case, the

probabilities P

e

(n) and P

m

(n) (as well as that of the so-called balanced

expert ruleof order n) were calculated explicitly. A comparison of these

probabilitiesshowsthat,again,the expert rulehasamuch better chance

ofbeingoptimalthanthemajorityrule.

This paper continues in the direction of Berend and Harmse [1]. The

correctnessprobabilitiesaredrawnfromafamilyofdistributions,contain-

ing theuniform distribution asaparticularcase. Our goalis tocompare

theasymptoticbehavioroftheprobabilityoftheexpertrulebeingoptimal

withthatofthemajorityrule. ItturnsoutagainthatforsuÆcientlylarge

ntheprobabilityoftheexpertrulebeingoptimalexceedsbyfarthatofthe

majorityrule. Thusthemainquestionaddressedinthispaperisnotwhat

theprobabilityofeachdecisionruleistoprovidetherightdecision. These

probabilitiesmaybeassumedtobequitehigh,andinfactconvergeto1as

thenumberof expertsincreases,aslongasa\reasonable"decisionruleis

employed. Theseprobabilitiesarewhatcouldbecalled\theaveragecase".

Herewedealratherwith\theworstcase". Namely,eachdecisionrulehas

someborderlinecases. Oneshouldhesitatetousethemajorityruleif,say,

inacommitteecomprisingof11members,the6membersknowntobeleast

qualiedhappentofavoroneviewwhileall5morequaliedmembershold

theoppositeview. Similarly,employingtheexpertrulewouldseemstrange

ifthetopexpert isopposedbyall theothers. Toclaimthat,inaspecic

case,themajorityrule(expertrule,respectively)isoptimal,istantamount

toassertingthat weshouldindeedfavortheopinionofthe6againstthe5

intherstexample(ofthetopexpertinthesecondexample,respectively).

Consequently,comparing the optimalityprobabilities, asdonein thispa-

per,wecannot concludethat onerule is better than another. Rather, it

providesuswithaviewoftheperformanceoftherulesinquestioninsome

extremecases,and hintstowhat extentweshould rathermodifythem in

thosecases.

Section 2 is devoted to a more accurate description of our model. In

Section3wepresentthemainresults,andinSection4{theirproofs.

(4)

Theauthorsexpress theirgratitudetoJ.Raynerand totherefereesfor

theirveryhelpfulcommentsontherstdraft ofthepaper.

2. The Model

The group consists of n members, faced by two alternatives, of which

exactly one is correct. The alternatives are assumed to be symmetric.

Namely,theyare apriori equallylikelyto becorrect,and thebenet(or

loss)associatedwithasuccess(correctchoice)orafailure(incorrectchoice)

isindependent ofthe particularalternativecorrectly (or incorrectly)cho-

sen. Weassumethatthemembersareindependentintheirchoices. Denote

byp

i

theprobabilityoftheithexpertmakingtherightchoice. Thevector

~ p=(p

1

;p

2

;:::;p

n

)iscalledthevectorofabilitiesorskills.

Designatingthealternatives(inanarbitraryway)asrstandsecond,we

alsodenetherandomvariables

X

i

=

1; theithexpertselectstherstalternative;

1; theithexpertselectsthesecondalternative:

Adecisionprole~x=(x

1

;x

2

;:::;x

n

)isthen-tupleobtainedfromaspecic

instance of these variables. A decision rule is a rule for translating the

individualopinions intoagroupdecision. Moreformally,usingthetermi-

nologyofNitzanandParoush [19],adecisionrule'isafunctionfromthe

setof allpossibledecisionprolesto thesetf 1;1g:If'(~x )=1then the

rstalternativeisselected,whileif'(~x )= 1thenthesecondalternative

is selected. The number of all possibledecision rules is 2 2

n

. A decision

rule is neutral if'( x

1

; x

2

;:::; x

n

) = '(x

1

;x

2

;:::;x

n

)for everydeci-

sionprole~x=(x

1

;x

2

;:::;x

n

). Weassumeourdecisionrulestobeneutral.

A decisionrule is optimal ifit maximizesthe probabilityof the groupto

makethe correctdecisionforallpossiblecombinationsofopinions. Ifthe

membersindexedbysomesubsetAf1;2;:::;ngofthegrouprecommend

therstalternative,whilethoseindexedbyB=f1;:::;ngnArecommend

thesecond,thentherstalternativeshouldbechosenifandonlyif

Y

i2A p

i

1 p

i

>

Y

i2B p

i

1 p

i

(2:1)

or,equivalently,

X

ln

p

i

1 p

i

>

X

ln

p

i

1 p

i

(2:2)

(5)

(see Nitzanand Paroush[16], [17], [19]). Theoptimal decisionrule for a

groupofnexpertsturnsouttobeaweightedmajorityrule. Hereadecision

rule is a weighted majority rule if it satises '(~x ) =sign(

P

n

i=1 w

i x

i ) for

everydecisionprole~x,wherew~=(w

1

;w

2

;:::;w

n

)hasnon-negativeentries

andsatises P

n

i=1 w

i x

i

6=0foranyprole~x.Suchavectorw~isasystemof

weights. Notethat aweightedmajorityrulemayberepresentedby many

systemsof weights.

Inviewof(2:1)and(2:2)itisnaturaltodenethe expertiseofanindi-

vidual,whoseprobabilityofbeingcorrectisp,as p

1 p

,andhislogarithmic

expertiseasln

p

1 p

. ItwillbeconvenienttoconsiderthefunctionsF and

f denedby:

F(p)= p

1 p

; f(p)=ln p

1 p

=lnF(p):

Withthesenotations,(2:2)mayberestatedtosaythattheoptimaldecision

ruleisaweightedmajorityrule,withweightsw

i

=f(p

i

). Inotherwords,

'(~x )=sign(

P

n

i=1 f(p

i )x

i

)(seeNitzanandParoush[19],Theorem2:3:1).

Inthesequel,wewillemploymulti-dimensionalversionsofthefunctions

f and F, denoted in the same way. Thus, the combined expertise of a

set of l experts with correctness probabilities p

1

;:::;p

l is F(p

1

;:::;p

l ) =

Q

l

j=1 F(p

j

);andthecombinedlogarithmic expertiseofthesameexpertsis

f(p

1

;:::;p

l )=

P

l

j=1 f(p

j ):

3. MainResults

Theresultsinthissectionattempttogeneralizethoseofthecaseofuniform

distribution,discussedbyBerendand Harmse[1]. Weareconcernedwith

theprobabilityP

e

(n)of theexpertrulebeingoptimalandtheprobability

P

m

(n)for themajority rulebeingoptimal. Oneverieseasily that P

e (n)

istheprobabilitythat,in thecasethetopexpert disagreeswithallother

experts, thetopexpert ismorelikelyto becorrect thantherest. Strictly

speaking, P

m

(n) is dened only for odd n = 2s+1. It is equal to the

probability that the bottom s+1 experts, when opposed by the top s

experts, are more likely to be correct than the top ones. Our primary

goalistocomparetheprobabilitythattheexpertruleisoptimalwith the

probabilitythatthemajorityruleisoptimal. Thepointofthiscomparison

isthat itsubstantiatestheconclusionobtainedbyBerend andHarmse[1]

in theuniform case, byshowingthat theexpert rule isfar morelikelyto

(6)

whichcontainstheuniformdistributionasaveryparticularcase. Herewe

assumethatthe probabilityp

i

ofthei-thexpertto makeacorrectchoice

isdistributed accordingtothe(same)densityfunction

(x)= 8

<

:

2(2x 1) 1

; 1

2

x1;

0; otherwise;

(3:1)

whereisanypositiveparameter. If=1wegettheuniformdistribution

U[ 1

2

;1]asaspecialinstanceof(3:1).

Whyshould oneconsider thisfamilyof distributions? Theuniform dis-

tribution in theinterval[ 1

2

;1] lookslikea naturalguesswhen onehasno

information on the distribution, yet assumes that people perform better

by considering the possibilities than by tossing a coin. Yet, the results

obtained in the case of the uniform distribution may seem too narrow,

and invite the question as to how applicablethey are if the distribution

issomewhat perturbed. Thefamilyselectedhereis wideenoughto cover

bothcaseswhere theexpertsare mostlycorrect (large) andwhere they

mostlyperform onlymarginallybetterthan cointossing (0). Let us

alsomentionin passing,thatifp

i

isdistributedasin (3:1),andwedenote

q

i

=1 p

i ,then

1

p

i q

i

isdistributedParetowithparameter. Thusthe

resultsofthecurrentpaperprovetherobustnessof thoseobtainedearlier

onlyfortheuniform distribution.

Itwillbeconvenienttointroducethefollowingconstants:

I

k

=2 Z

1

0

(1 t) 1

t k

(1+t) +1

dt; k=0;1;2;::: :

Itiseasytosee that1=I

0

>I

1

>I

2

>::: .

ThefollowingtheoremdescribestheasymptoticbehaviorofP

e (n).

Theorem 1 The probability of the expert rulebeingoptimal decays expo-

nentially asthe numberof experts grows. Moreprecisely:

1)If 0<

1

2

;then

2nI n 1

1

2 2

nI n 1

2 P

e

(n)2nI n 1

1

2 2

nI n 1

2

+nI n 1

3

: (3:2)

2)If 1

2

;then

2nI n 1

2 2

nI n 1

P

e

(n)2nI n 1

: (3:3)

(7)

Remark 1. Clearly, for large n we may omit the last twoterms onthe

righthand sideof (3:2)and obtainthe(less accuratebut simpler) bound

of(3:3). However,thisisnotthecaseforsmalln.

Ournextresultrelatesto P

m

(n). Itprovidesanupperboundforit.

Theorem 2 Forodd-size n=2s+1;the probability of the majority rule

beingoptimal isboundedaboveas follows:

1)If 0<1;then

P

m (n)

s

s!

2 :

2)If >1;then

P

m (n)

n

s!

2

2

s

:

In Theorem 2 we chose the simplest form of upperbounds for P

m (n).

Actually,ourcalculationsenableustoobtainmoreaccurateresults,given

byTheorem3below. Topresentthemweusethefollowingnotations:

A

s;

= Z

1

0

(1 x 2

)x 2 1

ln 1+x

1 x

s

x 1

dx;

B

s;

= Z

1

0

(1 x 2

)x 1

ln 2

1+x

1 x

s

x 1

dx:

(3:4)

Theorem 3 Forodd-size n=2s+1;the probability of the majority rule

beingoptimal isboundedaboveas follows:

1)If 0<1;then

P

m (n)

n

s!

2

2

s

A

s;

n

s!

2 2

3

3

2+2

+1

!

s

:

2)If >1;then

P

m (n)

n

s!

2

2

2(+1)

1

+1

1

2

!

s

B

s;

n

s!

2

ln(4+7:14)

e

n 1

:

Remark 2. For = 1, Theorem 3 yields P

m (n)

n

s!

2

3

8

s

; which is

somewhat worse than the upper bound P

m (n)

n

2

1

s

obtained by

(8)

Berend andHarmse[1]. Ourmethod enablesus toobtaintighter bounds

for0<1 bysimplytakingmoretermsoftherelevantTaylorseriesin

theproof. Forexample,takingonemoretermwegetfor0<1:

P

m (n)

n

s!

2 0

@

+1

3 1

(2+) 2

11+14 p

55(+1) 2

30

+1+ 1

5 p

55(+1) 2

30

1

A s

: (3:5)

For=1thisalreadyimpliesP

m (n)

n

s!

2

1

3

s

. Thederivationof(3:5)

willbeexplainedafter theproofof Theorem2.

Combiningtheabovetheorems,wecancomparetheasymptoticbehavior

of P

e

(n)and P

m

(n). We see that, for any valueof ,P

e

(n) decaysto 0

exponentiallyasnincreases,while P

m

(n)decaysto 0super-exponentially

fast.

Theorem1alsoshowstheinuenceofontheprobabilityoftheexpert

rulebeingoptimal. Infact,routineestimatesshowthat

1

2(+1) I

1

1

+1 :

This showsthat,as afunction of,P

e

(n)decreasesas 1

n 2

forlarge.

Table 1 provides the values of P

e

(n) for a few values of and n. The

calculationsweredonebyMonteCarlomethodusing10 4

iterations.

Table1. Theprobabilityoftheexpertrulebeingoptimal.

e

e

e

e

n

0.05 0.25 0.5 1 1.5 2 3 10 100

3 0.99 0.94 0.85 0.68 0.57 0.48 0.36 0.14 0.02

5 0.98 0.74 0.48 0.20 0.10 0.05 0.02 0.00 0.00

7 0.95 0.54 0.23 0.05 0.01 0.00 0.00 0.00 0.00

15 0.79 0.10 0.01 0.00 0.00 0.00 0.00 0.00 0.00

Numerical calculations tend to show that the inuence of on P

m (n)

is opposite to its inuence on P

e

(n). Thus Table 2 indicates that, as a

function of ,P

m

(n) isincreasing. (Notethat this also agreeswith what

onemightguessin viewof Theorem2.) Thedatawasagaincomputedby

MonteCarlomethod.

Figure 1 represents graphically the data of Table 1 and 2 in the case

(9)

Table2. Theprobabilityofthemajorityrulebeingoptimal.

e

e

e

e

n

0.05 0.25 0.5 1 1.5 2 3 10 100

3 0.01 0.06 0.15 0.32 0.43 0.52 0.64 0.86 0.99

5 0.00 0.00 0.00 0.02 0.05 0.07 0.13 0.40 0.85

7 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.08 0.49

15 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Figure1. Pe(5)andPm(5)asfunctionsof

0 0.2 0.4 0.6 0.8 1

0.5 1 1.5 2 2.5 3

Ρ

α

Ρ m (5)

Ρ e (5)

α 1.815

(10)

For integer=m, (x) isapolynomialon[ 1

2

;1]. Inthiscase, onecan

obtain anexact expression for P

e

(n) in terms of an innite Leibniz-type

series. An expansionofthis typemay beobtainedfor= 1

2

aswell. We

refertoBerendandSapir[3]fordetails.

4. Proofs

FortheproofofTheorem1weneedthefollowinglemma.

Lemma 1 Thefollowing inequalities hold:

1)(1 x)

1 x; 0x1; 1:

2)

1 x

1+x

1 2x+2

2

x 2

x 3

; 0x1; 0<

1

2 :

3)

1 x

1+x

1 2x+2

2

x 2

; 0x1; >0:

Theproofistechnical,andweomitthedetails.

Proof of Theorem 1: Let p;q

1

;:::;q

n 1

be independent random vari-

ables with the same density (x). Denote ~q = (q

1

;:::;q

n 1

); F(~q) =

Q

n 1

i=1 F(q

i

)andd~q=dq

1 :::dq

n 1

. Notethat F 1

(t)= t

1+t . Then:

P

e

(n) =nProb F(p)>

n 1

Y

i=1 F(q

i )

!

=n(2) n

Z

:::

Z

| {z }

[ 1

2

;1]

n 1 n 1

Y

i=1 (2q

i 1)

1 Z

1

F 1

(F(~q))

(2p 1) 1

dpd~q

=n(2) n 1

Z

:::

Z

| {z }

[ 1

2

;1]

n 1 n 1

Y

i=1 (2q

i 1)

1

1

2F(~q)

1+F(~q) 1

d~q

=n n(2) n 1

Z

:::

Z

| {z }

[ 1

2

;1]

n 1 n 1

Y

i=1 (2q

i 1)

1

2F(~q)

1+F(~q) 1

d~q

(11)

Substitutingt

i

= 1 q

i

q

i

andusingtheinequality 1

1+ Q

n 1

i=1 t

i 1

Q

n 1

i=1 t

i

;

weobtain:

P

e

(n) =n n(2) n 1

Z

:::

Z

| {z }

[0;1]

n 1 n 1

Y

i=1 (1 t

i )

1

(1+t

i )

+1

!

1 Q

n 1

i=1 t

i

1+ Q

n 1

i=1 t

i

!

d

~

t

n n(2)

n 1 Z

:::

Z

| {z }

[0;1]

n 1 n 1

Y

i=1 (1 t

i )

1

(1+t

i )

+1

!

1 n 1

Y

i=1 t

i

!

2

d

~

t:

(4:1)

If 1

2

,thenbyLemma1.1with x= Q

n 1

i=1 t

i

and =2this implies

P

e

(n)n 1 I n 1

0

+2I n 1

1

:

NowI

0

=1;andtherefore

P

e

(n)2nI n 1

1

: (4:2)

Denote x= n 1

Y

i=1 t

i

. Let 1

2

. By Lemma 1.2 and the equality part of

(4.1)weobtaintheupperbound:

P

e

(n) n 1 I n 1

0

+2I n 1

1

2 2

I n 1

2 +I

n 1

3

=2nI n 1

1

2 2

nI n 1

2

+nI n 1

3 :

(4:3)

Theequalitypartof(4.1)andLemma1.3providealowerboundforP

e (n):

P

e

(n) n 1 I n 1

0

+2I n 1

1

2 2

I n 1

2

=2nI n 1

1

2 2

nI n 1

2 :

(4:4)

Combining(4.2),(4.3)and(4.4)weobtainthetheorem.

TheproofofTheorem2isavariationofpartoftheproofofTheorem3.

Itwillthereforebeconvenientto provethelatterrst.

ProofofTheorem3: Theproofwillbecarriedoutinthreestages.Inthe

rststagewetransformoursituationtoonewithauniformdistribution. In

thesecondstageweobtaintheleftupperboundsforP

m

(n)inthetheorem,

which contain the integrals A

s;

and B

s;

. We will need to distinguish

between twocases: 1 and > 1. The proof in each of these cases

(12)

=1. Thethird stage is technical, dealingwith estimationsof A

s;

and

B

s;

. Hereweproducethenalupperbounds forP

m (n).

Stage 1: Suppose the correctness probability of the middle (i.e., (s+

1)st) expert is a for some a 2 [ 1

2

;1]. Denote the conditional correctness

probabilitiesofthestopexpertsbyP

1

;P

2

;:::;P

s

;andthoseofthesbottom

experts by Q

1

;Q

2

;:::;Q

s

. All variables are independent, with the rst s

takingvaluesin[a;1],andthelatters{in[ 1

2

;a]:Withthesenotations,the

desiredprobabilityistheprobabilitythat theinequality

f(Q

1

;Q

2

;:::;Q

s

;a)f(P

1

;P

2

;:::;P

s

) (4:5)

holds. Denote t

i

= (2p

i 1)

+1

2

; i=1;2;:::;2s+1: It is easy to see

thattherandomvariablest

i

arei.i.duniformlydistributedin[ 1

2

;1]. Putting

=

(2a 1)

+1

2

,and

T

j

= (2P

i 1)

+1

2

; V

j

= (2Q

i 1)

+1

2

; j=1;2;:::;s;

we observethat T

j

U[;1]and V

j

U[1=2;] foreach j, andall these

variablesareindependent. Letg(t)=ln

1+(2t 1) 1=

1 (2t 1) 1=

bethelogarithmic

expertise,expressedasafunctionoft(whichcorrespondstothevariablet

i ).

Aswiththelogarithmicexpertisefunctionf,wehaveamulti-dimensional

versionofg,alsodenoted byg, denedby

g(t

1

;t

2

;:::;t

k )=

k

X

j=1 g(t

i ):

Then(4:5)takesplaceifandonlyif:

g(V

1

;V

2

;:::;V

s

;)g(T

1

;T

2

;:::;T

s

): (4:6)

Weshallusethersttwoderivativesofg(t):

g 0

(t)= 4

(2t 1) 1

1

1 (2t 1) 2=

; (4:7)

g 00

(t)= 8

2

1 +(1+)(2t 1) 2=

1 (2t 1) 2=

2

(2t 1) 2

1

: (4:8)

Clearly,g 0

(t)0for1=2t1. With respectto g 00

, if0<1;then

00

(13)

its sign in the interval. Hence we have to distinguish between the cases

0<1and>1.

Stage 2:

Case2.1: 0<1.

Since the one-variable form of g is convexon [ 1

2

;1] and g(

1

2

) = 0, we

obtaintheupperbound:

g(V

j )

V

j 1

2

1

2

g()=g()

V

j

1

2

g(): (4:9)

Theconvexityofg alsoimpliesthelowerbound:

g(T

j

)g()+(T

j )g

0

()=g()+ T

j

1

g 0

()(1 ): (4:10)

Thusthedesiredevent(4.6)cannothold unless

g 0

()(1 ) s

X

j=1 X

j +g()

s

X

j=1 Y

j

g(); (4:11)

whereX

j

= T

j

1

andY

j

=

V

j

1

2

areindependentuniformlydistributed

in[0;1]. Asin theproofofTheorem4inBerend andHarmse[1],this im-

pliesthattheprobabilityoftheeventin(4.11)doesnotexceed

g() n 1

(g()g 0

()(1 )) s

(n 1)!

:

Now thecorrectnessprobabilityof the(s+1)st expert isitself arandom

variablewithdensityfunction

()= 8

<

: 2

n

n

s;s;1

( 1

2 )

s

(1 ) s

; 1

2

1;

0; otherwise;

(4:12)

(cf. Golberg[11],Sec. 11.5). Hence

P

m (n) =

Z

1

1

2 P( g(V

1

;V

2

;:::;V

s

;)g(T

1

;T

2

;:::;T

s

)) ()d

1

(n 1)!

Z

1

1

2

g()

g 0

()(1 )

s

()d:

(14)

Substituting (4:7)and(4:12) inthelastinequality,weobtain:

P

m (n)

2

s

2n

s!

2

Z

1

1

2

1 (2 1)

2

s

(2 1) s(2

1

)

ln

1+(2 1) 1=

1 (2 1)

1=

s

d:

Thechangeof variablex=(2 1) 1=

yieldstherstinequalityasserted

inthis case:

P

m (n)

2

s+1

2n

s!

2 R

1

0

(1 x 2

)x 2 1

ln 1+x

1 x

s

x 1

dx

= n

s!

2

2

s

A

s;

;

(4:13)

Case2.2: >1.

By (4:8)we see that g 00

(t) changes signs in the interval[ 1

2

;1]. In fact,

g 00

vanishes at the point t

= 1

2 +

1

2

1

+1

=2

, so that g 00

(t) < 0 for

t 2[ 1

2

;t

) andg

00

(t)>0fort 2(t

;1]. Thus in this caseg(t)is concave

in [ 1

2

;t

)and convexin (t

;1]. We proceed similarly to Case2.1. When

estimatingtheintegrandin

Z

1

1

2

P( g(V

1

;V

2

;:::;V

s

;)g(T

1

;T

2

;:::;T

s

)) ()d

asafunction of ,weshallproceed dierentlyfor>t

and for<t

.

Namely,write:

P

m (n) =

R

1

1

2 P( g(V

1

;V

2

;:::;V

s

;)g(T

1

;T

2

;:::;T

s

)) ()d

= R

t

1

2 +

R

1

t :

(4:14)

Werstconsidertheintegralovertheregion[t

;1]. Sinceg(t)isconvex

on[;1],thelowerbound(4:10)ong(T

j

)isstillvalid. Boundingtheg(V

j )'s

from aboveis lessobvious. Wewantto bound g(t)oninterval[;

1

2 ] by a

linearfunction. Tothisend,weusetheuniquepointt

0 2[

1

2

;t

]suchthat

thetangenttothegraphofgatthepointt

0

passesthrough(;g()). This

tangentprovidesalinearfunction asrequired,andin particular:

g(V

j

)g() g 0

(t

0 )( V

j

)=g() g 0

(t

0 )(

1

2 )

V

j

1

2

: (4:15)

(15)

Figure2. Linearboundsforgwhen>t

0 1 2 3 4 5

0.5 0.6 0.7 0.8 0.9 1

t α

t 0 µ t

g(t)

Thus(4:10)and(4:15)implythat (4:6)cannotholdunless

g 0

()(1 ) s

X

j=1 X

j +g

0

(t

0 )(

1

2 )

s

X

j=1 Y

j

g(); (4:16)

whereX

j

= T

j

1

andY

j

=

V

j

1

2

: Denotetheprobabilityoftheevent

(4:16)byProb

1

(n):Asin Case2.1,

Prob

1 (n)

g() n 1

(n 1)! g 0

(t

0 )(

1

2 )g

0

()(1 )

s :

Sinceg isconcavein[ 1

2

;t

],wehaveg 0

(t

)g

0

(t

0

). Hence:

Prob

1 (n)

g() n 1

(n 1)! g 0

(t

)(

1

2 )g

0

()(1 )

s

: (4:17)

Now consider the rst integral on the right hand side of (4:14). The

function g(t) is concavefort 2 [ 1

2

;], and (4:9) takesplace. We wantto

boundg on (;1]from belowby alinearfunction. Lett

0 2(t

;1) bethe

uniquepointsuchthatthetangenttothegraphofgatthepointt

passes

(16)

through(;g()). Thistangentliesbelowthegraphofgthroughout[;1],

thatis:

g(T

j

)g()+g 0

(t

0 )(T

j

)=g()+g 0

(t

0

)(1 ) T

j

1

: (4:18)

Thefollowinggureexplainspictorially(4.9)and(4.18).

Figure3. Linearboundsforgwhen<t

0 1 2 3 4 5

0.5 0.6 0.7 0.8 0.9 1

µ t

α

t 0

t g(t)

Thus(4:9)and(4:18)implythat(4.6)cannotholdunless

g 0

(t

0

)(1 ) s

X

j=1 X

j +g

0

()(

1

2 )

s

X

j=1 Y

j

g(); (4:19)

where X

j and Y

j

are as before. Denote the probability of the event in

(4:19)byProb

2

(n):Again,similarlytoCase2.1weobtain

Prob

2 (n)

g() n 1

(n 1)! g 0

(t

0 )(

1

2 )g

0

()(1 )

s :

Sinceg isconvexin[t

;1],wehaveg 0

(t

)g

0

(t

0

). Hence:

Prob

2 (n)

g() n 1

(n 1)! g 0

(t

)(

1

)g 0

()(1 )

s

: (4:20)

(17)

Fortunately, the right hand sides of (4:17) and of (4:20) are the same.

Substituting (4:17)and(4:20)in (4:14)weobtain:

P

m (n)

Z

1

1

2

g() 2s

(n 1)! g 0

(t

)(

1

2 )g

0

()(1 )

s

()d:

By(4:12):

P

m (n)2

n

n

s;s;1

1

(n 1)!(g 0

(t

))

s Z

1

0 g()

2s

(g 0

()) s

d:

Replacing g() and g 0

() by their explicit values and substituting x =

(2 1) 1=

;weget:

P

m (n)

n

s!

2

g 0

(t

)

s Z

1

0

(1 x 2

)x 1

ln 2

1+x

1 x

s

x 1

dx:

Pluggingin thevalueofg 0

(t

)wearriveattherstinequalityforpart2.

Stage3: Forthesecondinequalityinpart1,wehavetoboundA

s;

from

above. Denote:

h(x)=(1 x 2

)x 2 1

ln 1+x

1 x

; x2[0;1]: (4:21)

Weclaimthat

h(x)h

1

(x)=2x 2

1 2

3 x

2

; x2[0;1]: (4:22)

Indeed,usingTaylor'sexpansionofln 1+x

1 x

weobtain:

h(x)=(1 x 2

)x 2 1

2x 1

X

k =0 x

2k

2k+1

=2x 2

1 2 1

X

k =1 x

2k

4k 2

1

!

: (4:23)

Takingonlytherstterminthe sumontherighthandsideof (4:23),we

obtain(4:22). Sinceh

1

(x)attainsitsmaximumatthepointx

= q

3

2+2

;

wehave

h(x)h

1 (x

)= 2

+1

3

2(+1)

; x2[0;1]:

Substitutingintheexpression(3:4)forA

s;

andcombiningwith(4:13),we

(18)

Tocompletetheproofofpart2,weneedtoestimateB

s;

. Denote:

(x)=ln 1+x

1 x

;

h

2

(x)=(1 x 2

)x 1

;

h

3 (x)=h

2 (x)

2

(x):

The better partof the remaining work is designed to nd a good upper

boundon h

3

(x) for>1(see(4:29) infra). Clearly, h

3 (0)=h

3

(1 )=0

and h

3

(x) >0forx 2 (0;1). Letx

2 (0;1)bea maximumpoint of h

3 .

Putting (x)=4x+ 1 (+1)x 2

(x),wendthat

h 0

3 (x)=x

2

(x) (x): (4:24)

Sinceh 0

3

vanishesatx

,sodoes ,andtherefore

(x

)=

4x

(+1)x 2

( 1)

: (4:25)

Thefunction

4x

(+1)x 2

( 1)

isnegativein

0;

q

1

+1

,andpositiveandde-

creasingin q

1

+1

;1

. Since(x)ispositiveandincreasingin(0;1),there

exists aunique pointx

satisfying (4:25). Thus x

isthe onlymaximum

point of h

3

(x). A routine calculationshowsthat q

+1:285

+2:285

< 0and

( +4

+5

)>0for>1,sothat x

2

+4

+5

; q

+1:285

+2:285

.

Since(x)isincreasing,forx2

+4

+5

; q

+1:285

+2:285

wehave:

(x)

r

+1:285

+2:285

!

=2ln( p

+2:285+ p

+1:285): (4:26)

Thefunctionh

2

decreasesfrom thepoint q

1

+1

on,andin particular:

h

2 (x)h

2

+4

+5

; x2

+4

+5

; r

+1:285

+2:285

!

: (4:27)

Thus

h

3 (x)h

3 (x

)h

2

+4

+5

2

r

+1:285

+2:285

!

: (4:28)

Combining(4:26);(4:27)and(4:28)weobtain:

h

3 (x

)

2+9

2

+4

1

4ln 2

( p

+2:285+ p

+1:285): (4:29)

(19)

Substituting (4.29)intheexpression(3:4)forB

s;

,weobtain:

P

m (n)

n

s!

2 0

@ +4

+5 r

1

+1

!

1

4

2

(+4:5)

(+5) 2

(+1) ln

2

( p

+2:285+ p

+1:285)

s

:

Alengthybutroutinecalculationshowsthattherighthandsideinthelast

inequalityis smallerthan that in part2of thetheorem, which concludes

theproof.

Proof of Theorem 2: Denote h

4 (x) =

1 x 2

x ln

1+x

1 x

for x 2 [0;1]: With

h(x)asin(4:21) wehaveh

4

(x)=h(x)=x 2

;andtherefore,by(4:23):

h

4

(x)2; x2[0;1]:

Substituting thisbound intheexpressionforA

s;

,wearriveat:

A

s;

2 s

Z

1

0 x

n 1

dx=2 s

1

n :

Combiningthiswith(4:13), wecompletetheresultintherstpartofthe

theorem:

P

m (n)

s

s!

2 :

Tocompletethesecondpart,denote:

h

5 ()=

+1

1

+1

1

2

; h

6 ()=

+1

+1

2

:

Clearlyh

5

()h

6

(). Itiseasytoseethath

5

()isdecreasing. Aroutine

calculationrevealsthatthefunctionh

7

(x),denedby

h

7

(x)=(1 x 2

)ln 2

1+x

1 x

; x2[0;1);

isboundedaboveby1.76,which produces:

P

m (n)

n

s!

2

(s 1 1

+1)

(0:88h

5 ())

s

:

Nowfor>1

h

5

() lim

!1 h

5

() lim

!1 h

6

()h

6 (1)=

1

;

(20)

andcombiningthelasttwoinequalitiesweproducetherequiredresult:

P

m (n)

n

s!

2

( 0:88h

5 ())

s

n

s!

2

0:88

2

s

n

s!

2

2

s

:

Proof ofRemark2: Theprooffollowsthesamelinesasthethird stage

oftheproofofTheorem3. Theonlydierenceisthatwetakethersttwo

termsin the sumof therighthand side of (4:23). Thus insteadof (4:22)

wereceive

h(x)H(x)=2x 2

1 2x

2

3 2x

4

15

:

ThemaximumpointofH(x)turnsouttobe

x

=

3

(+1) q

1+

6(+2)+1

5(+1) 2

:

CalculatingH(x

)andproceedingasintheproof, weobtaintherequired

result.

References

1. D.BerendandJ.Harmse,Expertruleversusmajorityruleunderpartialinforma-

tion. Theoryand Decision,35:179{197,1993.

2. D.BerendandJ.Paroush,WhenisCondorcet'sJuryTheoremvalid?SocialChoice

andWelfare,15:481{488,1998.

3. D.BerendandL.Sapir, Optimalityoftheexpertruleunderpartialinformation.

preprint,2001.

4. S.Berg,Condorcet'sJuryTheorem,dependenceamongjurors. SocialChoiceand

Welfare,10:87{95,1993.

5. S.Berg,Condorcet'sJuryTheoremrevisited.EuropeanJournalofPoliticalEcon-

omy,9:437{446,1993.

6. S.Berg,Indirectvotingsystems:Banzhafnumbers,majorityfunctionsandcollec-

tivecompetence.EuropeanJournalofPoliticalEconomy,13:557{573,1997.

7. S.BergandJ.Paroush, Collectivedecisionmakinginhierarchies. Mathematical

SocialSciences,35:233{244,1998.

8. P.Boland, MajoritysystemsandtheCondorcetJuryTheorem. TheStatistician,

38:181{189,1989.

9. P.Boland,F.Proschan,andY.Tong,Modellingdependenceinsimpleandindirect

majoritysystems.JournalofAppliedProbability,26:81{88,1989.

10. N.C.deCondorcet,Essaisurl'applicationdel'analysealaprobabilitedesdecisions

renduesalapluralitedesvoix.Paris,1785.

11. M.A.Golberg, Anintroduction toprobabilitytheory withstatisticalapplications.

(21)

12. M. Gradstein and S.Nitzan, Performance evaluation of somespecialclasses of

weightedmajorityrules.MathematicalSocialScience,12:31{46,1986.

13. B.Grofman, G.Owen, and S.Feld, Thirteen theorems insearch of the truth.

TheoryandDecision,15:261{278,1983.

14. K.Ladha, Information polling throughmajorityrule voting: Condorcet's Jury

Theoremwithcorrelatedvotes. JEconBehaviorOrganizat,26:353{372,1995.

15. N. Miller, Information, electorates, and democracy: someextensions and inter-

pretationsofCondorcetJuryTheorem,ininformationpoolingandgroupdecision

making.ed.B.GrofmanandG.Owen,Greenwich,CT:JAIPress,1986.

16. S.NitzanandJ.Paroush,Optimaldecisionrulesinuncertaindichotomouschoice

situations. InternationalEconomic Review,23:289{297,1982.

17. S.NitzanandJ.Paroush, Ageneraltheorem andeightcorollariesinsearchofa

correctdecision. TheoryandDecision,17:211{220,1984a.

18. S.NitzanandJ.Paroush, Partialinformationondecisionalcompetencesandthe

desirabilityofthe expert ruleinuncertaindichotomouschoicesituations. Theory

andDecision,17:275{286,1984b.

19. S.NitzanandJ.Paroush,Collectivedecisionmaking.CambridgeUniversityPress,

Cambridge,1985.

20. J.Paroush,Stayawayfromfaircoins:acorrectCondorcet'sJuryTheorem.Social

ChoiceandWelfare,15:15{20,1998.

21. L.Sapir, The optimality of the expert and majorityrules under exponentially

distributedcompetence.TheoryandDecision,45:19{35,1998.

22. H. Young, Condorcet's Theory of voting. American Political Science Review,

82:1231{1244,1989.

参照

関連したドキュメント

For the multiparameter regular variation associated with the convergence of the Gaussian high risk scenarios we need the full symmetry group G , which includes the rotations around

Keywords and Phrases: moduli of vector bundles on curves, modular compactification, general linear

In our paper we tried to characterize the automorphism group of all integral circulant graphs based on the idea that for some divisors d | n the classes modulo d permute under

We show that a discrete fixed point theorem of Eilenberg is equivalent to the restriction of the contraction principle to the class of non-Archimedean bounded metric spaces.. We

[56] , Block generalized locally Toeplitz sequences: topological construction, spectral distribution results, and star-algebra structure, in Structured Matrices in Numerical

In recent years, several methods have been developed to obtain traveling wave solutions for many NLEEs, such as the theta function method 1, the Jacobi elliptic function

Answering a question of de la Harpe and Bridson in the Kourovka Notebook, we build the explicit embeddings of the additive group of rational numbers Q in a finitely generated group

It is also well-known that one can determine soliton solutions and algebro-geometric solutions for various other nonlinear evolution equations and corresponding hierarchies, e.g.,