• 検索結果がありません。

Capillary Gel Electrophoresis for Ligase Detection Reaction Products

N/A
N/A
Protected

Academic year: 2022

シェア "Capillary Gel Electrophoresis for Ligase Detection Reaction Products "

Copied!
7
0
0

読み込み中.... (全文を見る)

全文

(1)

Capillary Gel Electrophoresis for Ligase Detection Reaction Products

Masahiko HASHIMOTO*, Jun KAMIGORI** and Kazuhiko TSUKAGOSHI***

(Received October 7, 2009)

One technique that can distinguish low-abundant mutant DNA from wild-type DNA is the ligase detection reaction (LDR) coupled to a primary polymerase chain reaction (PCR). The LDR products obtained by the PCR/LDR assay can be analyzed in a variety of fashions such as microarray and slab gel electrophoresis. In the present work, we applied capillary gel electrophoresis (CGE) with fluorescence detection (FL) (CGE-FL) for analyzing the LDR products. Polyethylene oxide (PEO) polymer solution containing SYBR Gold, which could bind to a single strand DNA, was used as a separation matrix in the CGE-FL system. The LDR products could successfully be separated from other DNA fragments such as LDR primers and template, enabling the determination of the single base substitutions on codon 12 of K-ras gene.

-G[YQTFU: capillary gel electrophoresis, polymer solution, point mutation, ligase detection reaction

ࠠ࡯ࡢ࡯࠼: ࠠࡖࡇ࡜࡝࡯ࠥ࡞㔚᳇ᵒേ㧘ࡐ࡝ࡑ࡯ṁᶧ㧘ὐ⓭ὼᄌ⇣㧘࡝ࠟ࡯࠯ᬌ಴෻ᔕ

ࠠࡖࡇ࡜࡝࡯ࠥ࡞㔚᳇ᵒേߦࠃࠆ࡝ࠟ࡯࠯ᬌ಴෻ᔕ↢ᚑ‛ߩಽᨆ

ᯅᧄ 㓷ᒾ㧘਄㇭ ⚐㧘Ⴆ⿧ ৻ᒾ

ߪߓ߼ߦ

TCU ㆮવሶߪߘߩ߹߹ߢߪ⊒≸ᵴᕈࠍᜬߚߥ޿

߇㧘ߎࠇࠄߩㆮવሶߦᄌ⇣߇↢ߓࠆߣ⊒≸ᵴᕈࠍ᦭

ߒ㧘⹥ᄌ⇣ࠍ᦭ߔࠆ⚦⢩߇ᒻ⾰ォ឵ߐࠇࠆߎߣ߇⍮

ࠄࠇߡ޿ࠆ㧚TCU ㆮવሶ⟲*TCU㧘-TCU㧘0TCU㧘 4TCUࠍ᭴ᚑߔࠆ -TCU ㆮવሶߩᵴᕈൻဳᄌ⇣૕

-TCU ≸ㆮવሶߪ㧘ࡅ࠻ߩ≸ߦ߅޿ߡᦨ߽ᄙߊ

⷗޿ߛߐࠇࠆ≸ㆮવሶߩ৻ߟߢ޽ࠅ㧘ߎࠇࠄߩ≸ߢ ߪ㧘-TCU ≸ㆮવሶ߆ࠄߩᄌ⇣ဳ -TCU ࠲ࡦࡄࠢ⾰

ߩᜬ⛯⊛ߥ⊒⃻㧘↢ᚑ߇⚦⢩ߩ≸ൻ߅ࠃ߮≸⚦⢩ߣ ߒߡߩᒻ⾰⛽ᜬߦᔅⷐਇนᰳߢ޽ࠆߎߣ߇᣿ࠄ߆ ߣߥߞߡ޿ࠆ㧚଀߃߫㧘-TCU ㆮવሶߩࠛࠠ࠰ࡦ 㧘

ࠦ࠼ࡦ ))6ߦ߅ߌࠆႮၮߪ㧘)#6㧘)%6㧘)66

߳ߣ৻Ⴎၮ⟎឵ߐࠇࠆ႐ว߇޽ࠅ㧘ߘࠇߙࠇࠕࡒࡁ

㉄ᱷၮ #UR㧘#NC㧘8CN ߳ߣ⠡⸶ߐࠇࠆ㧚ߎࠇࠄߩࠕ ࡒࡁ㉄ߪ㧘)62 ⚿วߦ߅޿ߡ㊀ⷐߥᓎഀࠍᨐߚߒߡ ߅ࠅ㧘ߎߩࠦ࠼ࡦߦ߅ߌࠆὐ⓭ὼᄌ⇣ߪ㧘)62 ߩട

᳓ಽ⸃ࠍᛥ೙ߒ㧘ᕡᏱ⊛ߦᵴᕈࠪࠣ࠽࡝ࡦࠣᯏ⢻ࠍ

᦭ߔࠆ≸ㆮવሶ RTCU ࠲ࡦࡄࠢ⾰ࠍ↢ᚑߔࠆ㧚ᄢ

⣺≸ߦ߅޿ߡߪ㧘ߔߴߡߩᄢ⣺≸ᖚ⠪ߩ⚂ ̆ ߦ߅޿ߡ≸⊒㆐ߩೋᦼᲑ㓏ߦ -TCU ㆮવሶߦὐ⓭ ὼᄌ⇣ࠍᜬߟߎߣ߇⍮ࠄࠇߡ޿ࠆ 㧚ߘࠇࠁ߃ -TCU ㆮવሶߦ߅ߌࠆ⓭ὼᄌ⇣ߩ᦭ήߦ㑐ߔࠆᖱ ႎࠍᓧࠆߎߣߪ㧘≸∔∛ߩ▤ℂߦ᦭↪ߢ޽ࠆ㧚

* Department of Chemical Engineering and Materials Science, Doshisha University, Kyoto Telephone:+81-774-65-6594, Fax:+81-774-65-6803, E-mail: mahashim@mail.doshisha.ac.jp

** Former graduate student of Doshisha University

*** Department of Chemical Engineering and Materials Science, Doshisha University, Kyoto Telephone:+81-774-65-6595, Fax:+81-774-65-6803, E-mail: ktsukago@mail.doshisha.ac.jp

(2)

⓭ὼᄌ⇣ߩᬌ಴ߦ߅޿ߡᦨᄢߩ㓚ოߪ㧘ᬌ಴ߩኻ

⽎ߣߥࠆᄌ⇣ &0# ࠦࡇ࡯߇㧘࿶ୟ⊛ᄙᢙࠍභ߼ࠆᱜ Ᏹဳ &0# ࠦࡇ࡯⟲ߩਛߦ௖߆ߒ߆ሽ࿷ߒߡ޿ߥ޿

ߎߣߢ޽ࠆ㧚ᄙߊߩ≸ߦ߅޿ߡ㧘ਥⷐߥ≸⚵❱ߦ߅

޿ߡߔࠄ㧘ᱜᏱ⚦⢩ߩ฽᦭₸ߪ 㧑ߦ߽ߥࠆ 㧚 ߘࠇࠁ߃㧘⣲≌⚦⢩ߩ ୚૕ࠥࡁࡓߩ৻ᣇߦߩߺᄌ

⇣߇ሽ࿷ߔࠆߥࠄ߫㧘ᄌ⇣ &0# ߩ฽᦭₸ߪ 㧑ߢ ߒ߆ߥ޿㧚ߎߩ୯ߪ㧘ࠨࡦࡊ࡞ណข߇ਥⷐߥ≸⚵❱

߆ࠄ㔌ࠇߡߒ߹ߞߚ႐ว㧘⪺ߒߊૐਅߔࠆ㧚ߒߚ߇ ߞߡ㧘ᄢᄙᢙߩᱜᏱဳ⚦⢩⟲ߦᭂዋ㊂฽߹ࠇࠆᄌ⇣

⚦⢩ࠍᱜ⏕߆ߟ㜞ᗵᐲߦ․ቯߔࠆᛛⴚߩ㐿⊒߇ᔅ ⷐߢ޽ࠆ㧚

ᱜᏱဳ &0# ߩਛ߆ࠄᓸ㊂ߩᄌ⇣ &0# ࠍ⼂೎ߔࠆᚻ ᴺߩ৻ߟߦ㧘ࡐ࡝ࡔ࡜࡯࠯ㅪ㎮෻ᔕ࡝ࠟ࡯࠯ᬌ಴

෻ᔕ2%4.&4ࠕ࠶࠮ࠗ߇⍮ࠄࠇߡ޿ࠆ 㧚 2%4.&4 ࠕ࠶࠮ࠗߢߪ㧘෻ᔕ⚳ੌᓟ㧘෻ᔕ↢ᚑ‛

.&4 ↢ᚑ‛ࠍᧂ෻ᔕߩ෻ᔕ‛߆ࠄಽ㔌ߒᬌ಴ߔ ࠆᔅⷐ߇޽ࠆ㧚ᧄ⎇ⓥߢߪ㧘2%4.&4 ࠕ࠶࠮ࠗߦ߅ ߌࠆಽᨆല₸ߩะ਄ࠍ⋡⊛ߣߒ㧘↢૕㜞ಽሶߦኻߒ 㜞ㅦ߆ߟ㜞ಽ㔌⢻ࠍ᦭ߔࠆࠠࡖࡇ࡜࡝࡯ࠥ࡞㔚᳇

ᵒേCGEߦࠃࠅ .&4 ↢ᚑ‛ߩಽᨆࠍⴕߞߚ㧚

2%4.&4 ࠕ࠶࠮ࠗߩේℂ

PCR/LDR

ࠕ࠶࠮ࠗߩ᭎⇛࿑ࠍFig. 1ߦ␜ߔ㧚߹

ߕ㧘PCRߦࠃࠅࠥࡁࡓ DNAߩὐ⓭ὼᄌ⇣ࠍ฽߻

㗔ၞࠍPCRߦࠃࠅჇ᏷ߔࠆ㧚ߎߎߢᓧࠄࠇߚPCR

↥‛ࠍ࠹ࡦࡊ࡟࡯࠻DNAߣߒߡ↪޿LDR෻ᔕࠍ ⴕ߁㧚

LDR

ߢߪ㧘

ᧃ┵ߦߘࠇߙࠇ⇣ߥࠆ࠿ࠢ࡟ࠝ

࠴࠼

(A, G, T, C)

ࠍᜬߟ

4

⒳ߩ⼂೎ࡊ࡜ࠗࡑ࡯㧘

ᧃ┵߇࡝ࡦ㉄ൻߐࠇ

ᧃ┵߇Ⱟశ࡜ࡌ࡞ൻߐࠇߚ

౒ㅢࡊ࡜ࠗࡑ࡯ߩ㧞⒳ߩ

LDR

ࡊ࡜ࠗࡑ࡯߅ࠃ߮

DNA

࡝ࠟ࡯࠯ࠍ࠹ࡦࡊ࡟࡯࠻

DNA

ߦട߃ࠆ㧚ߎ ߩ

LDR

෻ᔕࠞࠢ࠹࡞ࠍടᾲߔࠆߎߣߦࠃߞߡ㧞ᧄ

㎮ߩ࠹ࡦࡊ࡟࡯࠻

DNA

1

ᧄ㎮

DNA

ߦᾲᄌᕈߐ ߖ㧘ߘߩᓟ

LDR

ࡊ࡜ࠗࡑ࡯ߩTm୯ઃㄭ߹ߢ಄ළߒ㧘

LDR

ࡊ࡜ࠗࡑ࡯ࠍ࠹ࡦࡊ࡟࡯࠻

DNA

ߩ⋧⵬㎮ߦ ࠕ࠾࡯࡝ࡦࠣߐߖࠆ㧚⼂೎ࡊ࡜ࠗࡑ࡯ߩ

ᧃ┵ߩႮ ၮ߇ᄌ⇣ㇱ૏ߩႮၮߣ⋧⵬⊛ߥ႐วߦߩߺ㧘⼂೎ࡊ

࡜ࠗࡑ࡯ߩ

ᧃ┵ߣ౒ㅢࡊ࡜ࠗࡑ࡯ߩ

ᧃ┵ߪ

DNA

࡝ࠟ࡯࠯ߦࠃࠅㅪ⚿ߐࠇ㧘

ᧃ┵߇Ⱟశ࡜ࡌ

࡞ൻߐࠇߚ৻ᧄߩࠝ࡝ࠧ࠿ࠢ࡟ࠝ࠴࠼

(LDR

↢ᚑ

)

߇ᓧࠄࠇࠆ㧚

LDR

෻ᔕߪ㧘⠴ᾲᕈ

DNA

࡝ࠟ࡯

࠯ࠍ↪޿ࠆߎߣߦࠃࠅ㧘਄⸥᷷ᐲࠨࠗࠢ࡞ࠍ➅ࠅ㄰

ߔߎߣ߇น⢻ߣߥࠅ㧘

LDR

↢ᚑ‛ࠍჇ᏷ߐߖࠆߎ ߣ߇ߢ߈ࠆ㧚

LDR⚳ੌᓟ㧘

LDR

↢ᚑ‛ߩ᦭ήࠍ⏕⹺ߔࠆߚ߼

ߦ㧘

LDR

↢ᚑ‛ࠍᧂ෻ᔕߩ౒ㅢࡊ࡜ࠗࡑ࡯߆ࠄಽ 㔌ߒⰯశᬌ಴ߔࠆᔅⷐ߇޽ࠆ㧚ᧄ⎇ⓥߢߪ㧘LDR

⚳ੌᓟߩ෻ᔕṁᶧਛߩ

LDR

↢ᚑ‛ࠍᧂ෻ᔕߩ౒ㅢ ࡊ࡜ࠗࡑ࡯߆ࠄ

CGE

ߦࠃࠅಽ㔌ߒ㧘ࠝࡦ࡜ࠗࡦߢ

Ⱟశ (FL) ᬌ಴ߒߚ㧚

Fig. 1. Conceptual schematic of the PCR/LDR assay.

(3)

⹜⮎߅ࠃ߮ታ㛎ᣇᴺ ⹜⮎

ᧄ⎇ⓥߦ↪޿ߚ⹜⮎ߪ㧘ోߡᏒ⽼ߩ․⚖ຠࠍ↪޿

ߚ㧚ࠞ࡞ࡏࠠࠪࡔ࠴࡞࠮࡞ࡠ࡯ࠬ

(CMC)

㧘ࠣ࡝ࠪ

ࡦߪ㧘๺శ⚐⮎Ꮏᬺࠃࠅ⾼౉ߒߚ㧚࠻࡝ࠬ

(

ࡅ࠼ࡠ

ࠠࠪࡔ࠴࡞

)

ࠕࡒࡁࡔ࠲ࡦ

(Tris)

㧘ࠛ࠴࡟ࡦࠫࠕࡒ

ࡦ྾㈶㉄

(EDTA)

ߪ㧘࠽ࠞ࡜ࠗ࠹ࠬࠢࠃࠅ⾼౉ߒߚ㧚

10x Tris-

ࡎ ࠙ ㉄

-EDTA

✭ ⴣ ṁ ᶧ ߪ 㧘

Bio-Rad Laboratories

ࠃࠅ⾼౉ߒߚ㧚Taq DNAࡐ࡝ࡔ࡜࡯࠯㧘

dNTP mix

߅ࠃ߮ᱜᏱဳ

(wild-type)

ࡅ࠻ࠥࡁࡓ

DNA (G12G; GGT)

ߪ㧘

Promega

ࠃࠅ⾼౉ߒߚ㧚Taq

DNA

࡝ࠟ࡯࠯ߪ㧘

New England BioLabs

ࠃࠅ⾼౉ߒ ߚ㧚

SYBR Gold

ߪ㧘

Invitrogen

ࠃࠅ㧘ࡐ࡝ࠛ࠴࡟ࡦ

ࠝࠠࠪ࠼

(PEO; M

r

8,000,000)

߅ࠃ߮ࡐ࡝ࡆ࠾࡞ࡇ ࡠ࡝࠼ࡦ

(PVP; M

r

130,000)

ߪ㧘

Sigma-Aldrich

ࠃࠅ

⾼౉ߒߚ㧚

PCR

߅ࠃ߮

LDR

ߦ↪޿ߚࠝ࡝ࠧ

DNA (Table 1)

ߩวᚑߪ㧘

Invitrogen

߹ߚߪ

Sigma Genosys

ߦଐ㗬ߒߚ㧚

෻ ᔕ ṁ ᶧ ߩ ⺞ ⵾ ߦ ߪ 㧘

nuclease-free water (Promega)

ࠍ↪޿ߚ㧚

CE

ಽᨆ↪ߩṁᶧߩ⺞⵾ߦߪ㧘

⚐᳓⵾ㅧⵝ⟎

(MILLIPORE, Elix 3 UV)

ߢ♖⵾ߐ ࠇߚ

RO

᳓ࠍ↪޿ߚ㧚

K-ras

ㆮવሶߩࠛࠠ࠰ࡦ

1

ࠦ࠼ࡦ

12.2

ߦᄌ⇣

(G12V; GTT)

ࠍᜬߟࡅ࠻ᄢ⣺

≸↱᧪⚦⢩ᩣ

(SW480)

ߪ㧘

Gene Tex

ࠃࠅ⾼౉ߒ㧘

Wizard SV Genomic DNA Purification System (Promega)

ࠍ↪޿ߡ♖⵾ߒߚ㧚

ታ㛎ᣇᴺ 2%4

200

μLߩ

PCR

࠴ࡘ࡯ࡉߦ㧘

1.5 mM

ߩ

MgCl

2

฽߻

1x PCR

ࡃ࠶ࡈࠔࠍട߃㧘ߘߩᓟ

200 μM dNTPs

500 nM K-ras forward

߅ࠃ߮

reverse

ࡊ࡜ࠗࡑ࡯

(Table 1)

4.2 ng/ȝL

࠹ࡦࡊ࡟࡯࠻

DNA

ࠍ㗅ߦട߃ ߚᓟ㧘

Master cycler (Eppendorf)

ߦ

PCR

࠴ࡘ࡯ࡉࠍ

࠮࠶࠻ߒߚ㧚

95

͠ߢ

2 min

଻ߞߚᓟ㧘

2.5 U DNA

࡝ࡔ࡜࡯࠯ࠍട߃ߚ

(

෻ᔕᶧో㊂

50 μL)

㧚ᒁ߈⛯߈㧘

95

͠ߢ

30 s

60

͠ߢ

1 min

72

͠ߢ

1 min 30 s

㑆଻

ᜬߒ㧘ߎߩࠨࠗࠢ࡞ࠍ

40

࿁ⴕߥߞߚ㧚ࠨࠗࠢ࡞⚳

ੌᓟ㧘ቢోߥ

2

ᧄ㎮

DNA

ࠍᓧࠆߚ߼ߦ

72

͠ߢ

3 min Table 1. Sequences of oligonucleotide used in the PCR/LDR assays

Primer Sequences (5’ ĺ 3’) Size (mer)

K-ras forward TTAAAAGGTACTGGTGGAGTATTTGATA 28

K-ras reverse AAAATGGTCAGAGAAACCTTTATCTGT 27

K-ras Com-2 pTGGCGTAGGCAAGAGTGCCT-Fluorescein 20

K-rasc12.2 WtG AAACTTGTGGTAGTTGGAGCTGG 23

K-ras c12.2V AAACTTGTGGTAGTTGGAGCTGT 23

K-ras c12.2D AAACTTGTGGTAGTTGGAGCTGA 23

K-ras c12.2A AAACTTGTGGTAGTTGGAGCTGC 23

Fig. 2. Size confirmation for the PCR products derived from (a) wild-type and (b) mutant (SW480).

500 bp PCR product was used as a size standard.

Conditions: gel matrix, 0.5%(w/v) PEO in 1xTBE buffer containing 1x SYBR Gold; applied voltage, 12 kV.

(4)

෻ᔕߐߖߚ㧚ᓧࠄࠇߚ

PCR

ࡊࡠ࠳ࠢ࠻ߩࠨࠗ࠭

㧔290 bp㧕ߪ㧘PEO ࠍಽ㔌ࡑ࠻࡝࠶ࠢࠬߦ↪޿ߚ

CGE

ߦࠃࠅ⏕⹺ߒߚ (Fig. 2)㧚

.&4

200

μl ߩࡑࠗࠢࡠ࠴ࡘ࡯ࡉߦ㧘20 mM Tris-HCl

(pH 8.3)㧘25 mM

㈶㉄ࠞ࡝࠙ࡓ㧘10 mM ㈶㉄ࡑࠣ

ࡀࠪ࠙ࡓ㧘10 mM DTT㧘1 mM NAD+߅ࠃ߮

0.1 % Triton X-100

ࠍ฽߻

LDR Reaction buffer㧘30 nM

೎ࡊ࡜ࠗࡑ࡯㧘

30 nM

ࡈ࡞ࠝࡠ࠮ࠗࡦᮡ⼂౒ㅢࡊ࡜

ࠗࡑ࡯ (Table 1)㧘PCRࡊࡠ࠳ࠢ࠻߅ࠃ߮

2 U Taq DNA Ligase

ࠍᷙวߒߚ (ో㊂

50 μL)㧚Master cycler

ࠍ↪޿ߡ෻ᔕṁᶧࠍ

94͠ߢ 2 min

ടᾲߒߚᓟ㧘

94͠

ߢ

30 s㧘ߘߩᓟ 65͠ߢ 2 min

଻ᜬߔࠆ᷷ᐲࠨࠗࠢ࡞

40

࿁➅ࠅ㄰ߒߚ㧚

ᧄ⎇ⓥߦ߅ߌࠆ

LDR

ߢߪ㧘

4

⒳ߩ⇣ߥࠆႮၮࠍ

ᧃ┵ߦᜬߟ⼂೎ࡊ࡜ࠗࡑ࡯ࠍߘࠇߙࠇട߃ߚ

4

ߟ ߩ෻ᔕṁᶧࠍ⺞⵾ߒߚ㧚ߘߩਛߢ㧘࠹ࡦࡊ࡟࡯࠻

DNA (G12V) ߩᄌ⇣ߒߚႮၮߦኻߒ⋧⵬⊛ߥႮၮ

3ƍᧃ┵ߦᜬߟ⼂೎ࡊ࡜ࠗࡑ࡯ (K-ras c12.2V in

Table 1)

ࠍട߃ߚ෻ᔕṁᶧߦ߅޿ߡߩߺ㧘Ⱟశ࡜ࡌ

࡞ൻߐࠇߚ

43-mer

ߩ

LDR

↢ᚑ‛߇ᓧࠄࠇ㧘ὐ⓭ὼ ᄌ⇣߇ᬌ಴ߐࠇࠆ㧚

ಽ㔌ࡑ࠻࡝࠶ࠢࠬ

ᧄ⎇ⓥߢߪ㧘1x TBE✭ⴣᶧ (89 mM Tris-ࡎ࠙㉄

-2 mM EDTA (pH 8.3)) ߢ⺞⵾ߒߚ 0.5 % (w/v)

ߩ

PEO

ࡐ࡝ࡑ࡯ṁᶧ߅ࠃ߮

25 mM TGE

✭ⴣᶧ (25

mM Tris-ࠣ࡝ࠪࡦ-5 mM EDTA (pH 8.3)) ߢ⺞⵾ߒ

ߚ

0.3 % (w/v) CMC

ࡐ࡝ࡑ࡯ṁᶧࠍಽ㔌ࡑ࠻࡝࠶ࠢ

ࠬߣߒߡ↪޿

CGE

ಽᨆࠍⴕߞߚ㧚ࡐ࡝ࡑ࡯ṁᶧ⺞

⵾ᤨߦߪ㧘޽ࠄ߆ߓ߼ࠬ࠲࡯࡜࡯ߢ✭ⴣṁᶧࠍ

900 rpm

ߢᠣᜈߒߡ޿ࠆ⁁ᘒߢ㧘⒊㊂ߒߚࡐ࡝ࡑ࡯ࠍߘ ߩਛᔃ߳ṛࠅߥߊട߃ࠆߎߣߢ㧘ߢ߈ࠆ㒢ࠅဋ৻ߦ ṁ⸃ߐߖߚ㧚߹ߚ㧘60 minᠣᜈߒߚᓟ㧘15 min⿥ 㖸ᵄᮏߦ౉ࠇࡐ࡝ࡑ࡯ࠍቢోߦṁ⸃ߒߚ㧚

%'(. ಽᨆ

ᧄ⎇ⓥߦ↪޿ߚ

CE

ࠪࠬ࠹ࡓߪ㧘ࡈࡘ࡯࠭࠼ࠪ࡝

ࠞࠠࡖࡇ࡜࡝࡯࠴ࡘ࡯ࡉ (GL Sciences)㧘㜞࿶㔚Ḯ

(Model HZCE-30PNO.25㧘Matsuda Precision Devices

Co.)㧘FL

ᬌ಴ེ (RF-550㧘Shimadzu)㧘ࠗࡦ࠹ࠣ࡟

࡯࠲࡯ (CR-6A㧘Shimadzu)ߢ᭴ᚑߐࠇߡ޿ࠆ㧚ࠠ

ࡖ ࡇ ࡜ ࡝ ࡯ ࠴ ࡘ ࡯ ࡉ ᄖ ო ߩ ࡐ ࡝ ࠗ ࡒ ࠼ ⵍ ⷒ ࠍ

Window Maker

TM

(Micro Solv) ࠍ↪޿ߡ㐳ߐ 2 mm

὾㒰߈ᬌ಴⓹ߣߒ㧘ബ⿠శ߇ᬌ಴⓹ࠍᾖ኿ߔࠆࠃ߁ ߦࠠࡖࡇ࡜࡝࡯࠴ࡘ࡯ࡉࠍ⸳⟎ߒߚ㧚ࠠࡖࡇ࡜࡝࡯

࠴ࡘ࡯ࡉߪ㧘೨ಣℂߣߒߡ

1 M NaOH

᳓ṁᶧߢ

10 min㧘0.2 M NaOH

᳓ṁᶧߢ

5 min㧘ߐࠄߦ RO

᳓ߢ

2 min

ᵞᵺߒߚ㧚߹ߚ㧘㔚᳇ᶐㅘᵹࠍዊߐߊߒߚ޿

႐วߦߪ㧘૶↪೨ߦ

2.0 % (w/v) PVP

ࡐ࡝ࡑ࡯ṁᶧ ࠍࠠࡖࡇ࡜࡝࡯ౝߦㅢߒߚ㧚೨ㅀߒߚ

PEO

޽ࠆ޿

ߪ

CMC

ࡐ࡝ࡑ࡯ṁᶧࠍలႯߒ㧘㜞࿶㔚Ḯࠍ↪޿ߡ

ࠠࡖࡇ࡜࡝࡯࠴ࡘ࡯ࡉ (ౝᓘ

75

μm㧘ᄖᓘ

150

μm,

70 cm (ታല㐳 50 cm))

ߩਔ┵ߦ㜞㔚࿶ࠍශടߒ㧘ⵍ ᬌ૕ࠍᵒേߐߖ

FL

ᬌ಴ེࠍ↪޿ߡᬌ಴ߒߚ㧚߹ߚ㧘

FL

ᬌ಴ེߩബ⿠߅ࠃ߮ᬌ಴ᵄ㐳ࠍ㧘ⵍᬌ૕ߩᦨᄢ ബ⿠ᵄ㐳߅ࠃ߮ᦨᄢⰯశᵄ㐳ߦวࠊߖߡታ㛎ࠍⴕ ߞߚ㧚

⚿ᨐ߅ࠃ߮⠨ኤ

%/% ࡐ࡝ࡑ࡯ṁᶧࠍ↪޿ߚ %'(. ಽᨆ

ᧄ⎇ⓥߦ↪޿ߚࡅ࠻ᄢ⣺≸⚦⢩↱᧪ᩣ

SW480 (G12V)

ߪ

K-ras

ㆮવሶߩࠛࠠ࠰ࡦ

1㧘ࠦ࠼ࡦ 12.2

ߦ߅޿ߡ㧘Ⴎၮ߇

C

߆ࠄ

A

ߦᄌ⇣ߒߡ޿ࠆ6)㧚ࠃ ߞ ߡ

4

⒳ ߩ ⼂ ೎ ࡊ ࡜ ࠗ ࡑ ࡯

(K-ras c12.2WtG, c12.2V, c12.2D, c12.2A) (Table 1) ߩ ਛ ߢ K-ras c12.2V

ࠍ↪޿ߡ

LDR

ࠍⴕߞߚ႐วߦߩߺ

LDR

↢ ᚑ‛߇ᓧࠄࠇࠆߎߣ߇੍ᗐߐࠇࠆ㧚

LDR

ᓟߦᓧࠄࠇߚ

4

ߟߩ

LDR

෻ᔕṁᶧࠍ

FL

಴ߦࠃࠆ

CMC

ࡐ࡝ࡑ࡯ᵒേᶧࠍ↪޿ߚ

CGE

ߦࠃ ߞߡߘࠇߙࠇಽᨆߒߚ㧚෻ᔕᓟߩṁᶧߦ

LDR

↢ᚑ

‛߇↢ᚑߒߡ޿ࠇ߫㧘ߘߩ↢ᚑ‛ߩࡇ࡯ࠢ߅ࠃ߮ᱷ

ᷲߩⰯశᮡ⼂౒ㅢࡊ࡜ࠗࡑ࡯ߩࡇ࡯ࠢ߇ᓧࠄࠇࠆ ߣ⠨߃ࠄࠇࠆ㧚ߒ߆ߒ㧘Fig. 3(a) ߦ␜ߔࠃ߁ߦ

4

ߟߩ෻ᔕᶧߣ߽ߦࡈ࡞ࠝ࡟࠮ࠗࡦᮡ⼂౒ㅢࡊ࡜ࠗ

ࡑ࡯ߦࠃࠆ㕖ᏱߦዊߐߥⰯశࠪࠣ࠽࡞ߩߺ߇ᬌ಴

ߐࠇ㧘⋡⊛ߩ

LDR

↢ᚑ‛ߩࡇ࡯ࠢࠍᬌ಴ߔࠆߎߣ ߪߢ߈ߥ߆ߞߚ㧚ߎࠇߪ㧘ᧄಽᨆࠪࠬ࠹ࡓ߇㧘ᓸ㊂

(5)

ߩ

LDR

෻ᔕ↢ᚑ‛ࠍᬌ಴ߔࠆߩߦචಽߥᬌ಴ᗵᐲ ߦ⥋ߞߡ޿ߥ޿ߚ߼ߢ޽ࠆߣ⠨߃ࠄࠇࠆ㧚

FL

ᬌ಴

ߦࠃࠆࡈ࡞ࠝ࡟࠮ࠗࡦᮡ⼂౒ㅢࡊ࡜ࠗࡑ࡯ߩᬌ಴

㒢⇇

(2 x 10

-7

M)

߆ࠄ㧘

LDR

ߩ෻ᔕ෼₸ߪ

30 %

એ ਅߢ޽ࠆߎߣ߇ផ᷹ߐࠇࠆ㧚

ᰴߦ㧘

LDR

ᓟߩ෻ᔕṁᶧࠍỚ❗ߒߡಽᨆࠍⴕߞ ߚ㧚Ớ❗ߩ㓙ߦߪ

4

࿁ಽߩ

LDR

෻ᔕṁᶧ

(

50

μL) ࠍ

1

ߟߩ࠴ࡘ࡯ࡉߦട߃

(

ో㊂

200

μL)㧘ߎࠇ ࠍᷫ࿶ਅߢੇ῎ߐߖౣ߮ṁᇦࠍ

10 μl

ട߃ࠆߎߣߢ

20

୚ߦỚ❗ߒߚ㧚ห᭽ߦ㧘

CMC

ࡐ࡝ࡑ࡯ࠍಽ㔌ࡑ

࠻࡝࠶ࠢࠬߦ↪޿ߚ

CGE-FL

ᬌ಴ߦࠃߞߡߎߩỚ

❗ߒߚ෻ᔕṁᶧࠍಽᨆߒߚ㧚ߎߩߣ߈㧘

Fig. 3 (b)

ߦ

␜ߔࠃ߁ߦ㧘Ớ❗೨ߣห᭽ߦࡈ࡞ࠝ࡟࠮ࠗࡦᮡ⼂౒

ㅢࡊ࡜ࠗࡑ࡯ߦၮߠߊࡇ࡯ࠢߩߺ߇ᓧࠄࠇ㧘

LDR

↢ᚑ‛ࠍᬌ಴ߔࠆ߹ߢߦᬌ಴ᗵᐲࠍᡷༀߔࠆߎߣ ߪߢ߈ߥ߆ߞߚ㧚࡟࡯ࠩ࡯శḮࠍ↪޿ߚ

LDR

↢ᚑ

‛ߩᬌ಴߇ႎ๔ߐࠇߡ޿ࠆ߇㧘ࠕ࡯ࠢశḮࠍ↪

޿ߚ႐วߪ㧘౒ㅢࡊ࡜ࠗࡑ࡯ߦ࠲ࠣߐࠇߚⰯశߦၮ ߠߊᬌ಴ߪᗵᐲߩὐߢ࿎㔍ߢ޽ࠆߣ⠨߃ࠄࠇࠆ㧚

2'1 ࡐ࡝ࡑ࡯ṁᶧࠍ↪޿ߚ %'(. ಽᨆ

ࠗࡦ࠲࡯ࠞ࡟࡯࠲࡯ߪ

2

ᧄ㎮

DNA

ߩࠄߖࠎ᭴ㅧ ߦࠗࡦ࠲࡯ࠞ࡟࡯࠻ߒ㧘

DNA

ߩ⋧⵬⊛Ⴎၮኻߩਛ ߦ౉ࠅㄟ߻ߎߣߢᒝ޿Ⱟశࠍ␜ߔ‛⾰ߢ޽ࠆ㧚ࠗࡦ

࠲࡯ࠞ࡟࡯࠲࡯ߩ৻⒳ߢ޽ࠆ

SYBR Gold

ߪ㧘

2

㎮ߛߌߢߥߊ

1

ᧄ㎮ߩ

DNA

ߣ߽⚿วߔࠆߎߣ߇⍮

ࠄࠇߡ߅ࠅ㧘ㄭᐕ㧘

SYBR Gold

߅ࠃ߮ዩ⚛ࠍᵒേ

ᶧߦട߃ߚ

CGE

ߦ߅޿ߡ㧘

1

ᧄ㎮

DNA

ߩቯ㊂ࠍⴕ

ߞߚ଀߇ႎ๔ߐࠇߡ޿ࠆ9)

౒ㅢࡊ࡜ࠗࡑ࡯ߩ

ᧃ┵ߦᮡ⼂ߐࠇߚⰯశߦၮ ߠߊᬌ಴߇࿎㔍ߢ޽ߞߚ೨ㅀߩ⚿ᨐࠍฃߌ㧘

SYBR Gold

ࠍᵒേᶧߦട߃ߚ

LDR

↢ᚑ‛ߩᬌ಴ߦߟ޿ߡ ᬌ⸛ߒߚ㧚

SYBR Gold

ࠍᧄࠪࠬ࠹ࡓߦㆡ↪ߔࠆ႐

ว㧘

SYBR Gold

ߦࠃߞߡᨴ⦡ߐߖࠆߎߣ߇น⢻ߥ

LDR

↢ᚑ‛ߣ෻ᔕᶧߦ฽߹ࠇࠆߘߩઁߩ

DNA

࡜ࠣࡔࡦ࠻

(

࠹ࡦࡊ࡟࡯࠻

DNA

㧘⼂೎ࡊ࡜ࠗࡑ࡯㧘

౒ㅢࡊ࡜ࠗࡑ࡯

)

ࠍಽ㔌ߔࠆᔅⷐ߇޽ࠆ㧚ߎߩಽ㔌 ࠍ㆐ᚑߢ߈ࠇ߫㧘

LDR

↢ᚑ‛ߩㆬᛯ⊛ᬌ಴߇น⢻

ߣߥࠅ㧘ߘߩᄌ⇣ߩ⒳㘃ࠍ․ቯߢ߈ࠆ㧚

LDR

ᓟߩ෻ᔕṁᶧࠍ

20

୚Ớ❗ߒ㧘

SYBR Gold

ࠍ ṁ⸃ߐߖߚ

PEO

ࡐ࡝ࡑ࡯ᵒേᶧࠍࠠࡖࡇ࡜࡝࡯ߦ లႯߒ

CGE

ಽᨆࠍⴕߞߚ㧚෻ᔕṁᶧߦ

K-ras c12.2 WtG

c12.2V

c12.2D

߅ࠃ߮

c12.2A

ࡊ࡜ࠗࡑ࡯

ࠍߘࠇߙࠇട߃ߡ

LDR

෻ᔕࠍⴕ޿㧘ߎࠇࠄࠍ

CGE-FL

ࠪࠬ࠹ࡓߢಽᨆߒߚ⚿ᨐࠍ

Fig. 4 (a)

̆

(d)

ߦ␜ߔ㧚

Fig. 4 (a)

(c)

߅ࠃ߮

(d)

ߦ߅޿ߡ㧘ห᭽

ߩ

3

ᧄߩࡇ࡯ࠢ߇⷗ࠄࠇߚ㧚ߎࠇࠄߪ⼂೎ࡊ࡜ࠗࡑ

࡯㧘౒ㅢࡊ࡜ࠗࡑ࡯߅ࠃ߮࠹ࡦࡊ࡟࡯࠻

DNA

ߦࠃ ࠆࡇ࡯ࠢߢ޽ࠆߣ⠨߃ࠄࠇࠆ㧚ߎߩಽ㔌♽ߦ߅޿ߡ ߪ㧘ࠨࠗ࠭߇ዊߐߥ߽ߩ߶ߤṁ಴ᤨ㑆߇ᣧ޿ߚ߼㧘

11 min

ઃㄭߦ⷗ࠄࠇࠆ㧞ᧄߩࡇ࡯ࠢ߇ߘࠇߙࠇ

⼂೎ࡊ࡜ࠗࡑ࡯߅ࠃ߮౒ㅢࡊ࡜ࠗࡑ࡯ߦၮߠ߈㧘⚂

13 min

ઃㄭߦ⷗ࠄࠇࠆࡇ࡯ࠢ߇࠹ࡦࡊ࡟࡯࠻ߦࠃ

ࠆ ߽ ߩ ߢ ޽ ࠆ ߣ ⠨ ߃ ࠄ ࠇ ࠆ 㧚 ౒ ㅢ ࡊ ࡜ ࠗ ࡑ ࡯

(20-mer)

ࠃࠅ௖߆ߦࠨࠗ࠭ߩᄢ߈޿⼂೎ࡊ࡜ࠗࡑ

(23-mer)

߇వߦᬌ಴ߐࠇߚߩߪ㧘౒ㅢࡊ࡜ࠗࡑ

Fig. 3. Electropherograms of the LDR products without (a) and with 20-fold

preconcentration (b).

Conditions: gel matrix, 0.3%(w/v) CMC in 25 mM TGE buffer; applied voltage, 12 kV.

(6)

࡯ߦ࠲ࠣߐࠇߡ޿ࠆⰯశ⦡⚛ࡈ࡞ࠝ࡟࠮ࠗࡦߩᓇ 㗀ߢ޽ࠆߣ⠨߃ࠄࠇࠆ㧚Fig. 4(b) ߦ߅޿ߡߪ㧘Fig.

4(a), (c), (d)ߢߪⷰࠄࠇߥ޿․⇣⊛ߥࡇ࡯ࠢ߇ᬌ಴

ߐࠇ㧘ߘߩࠨࠗ࠭ࠃࠅ್ᢿߔࠆߣ㧘LDR ↢ᚑ‛ߩ ࡇ࡯ࠢߢ޽ࠆߣ⠨߃ࠄࠇࠆ㧚ߎߩߣ߈↪޿ߚ⼂೎ࡊ

࡜ࠗࡑ࡯ߪ

K-ras c12.2V

ࡊ࡜ࠗࡑ࡯ߢ޽ࠆߎߣ߆ ࠄ㧘G ψ Tߩ

DNA

ὐ⓭ὼᄌ⇣ࠍᬌ಴ߔࠆߎߣ߇ ߢ߈ߚ㧚ߎࠇࠄߩߎߣࠃࠅ㧘ࠗࡦ࠲࡯ࠞ࡟࡯࠲࡯ߣ ߒߡ

SYBR Gold

ࠍ↪޿ߚ

CGE

ߦࠃߞߡ

LDR

↢ᚑ

‛ࠍಽᨆߔࠆߎߣߢ

DNA

ὐ⓭ὼᄌ⇣ߩ․ቯ߇น⢻

ߢ޽ࠆߣ⠨߃ࠄࠇࠆ㧚

⚿⺰

ᧄ⎇ⓥߢߪ㧘PCR/LDRࠕ࠶࠮ࠗߦ߅ߌࠆᦨ⚳ࡊ ࡠ࠳ࠢ࠻ߢ޽ࠆ

LDR

↢ᚑ‛ࠍ

CGE

ߦࠃࠅಽ㔌ߒ㧘

࡟࡯ࠩ࡯శḮࠃࠅ቟ଔߥࠕ࡯ࠢశḮࠍ↪޿Ⱟశᬌ

಴ߔࠆߎߣࠍ⹜ߺߚ㧚ᧄታ㛎♽ߦ߅ߌࠆ

LDR

ߩ෻

ᔕ෼₸ߪ

30 %એਅߢ޽ࠅ㧘ᓸ㊂ߩ LDR

↢ᚑ‛ࠍᬌ

಴ߔࠆߦߪ㧘౒ㅢࡊ࡜ࠗࡑ࡯ߦ࠲ࠣߐࠇߚ⦡⚛ߩⰯ

శߦၮߠߊᬌ಴ᴺߢߪᬌ಴ᗵᐲ߇ਇචಽߢ޽ߞߚ㧚

ࠗࡦ࠲࡯ࠞ࡟࡯࠲࡯ߢ޽ࠆ

SYBR Gold

ࠍಽ㔌ࡐ

࡝ࡑ࡯ṁᶧߦᷝടߒߚ

LDR

↢ᚑ‛ߩ

CGE

ಽᨆᴺߦ ߟ޿ߡᬌ⸛ߒ㧘⚦⢩♽

SW480 (G12V)ߩ K-ras

ㆮવ ሶ㧘ࠛࠠ࠰ࡦ

1㧘ࠦ࠼ࡦ 12.2

ߦ߅޿ߡႮၮ߇

C

߆ ࠄ

A

߳ᄌ⇣ߒߡ޿ࠆߎߣ߇⏕⹺ߢ߈㧘PCR/LDRࠕ

࠶࠮ࠗߦ

SYBR Gold

ࠍಽ㔌ࡑ࠻࡝࠶ࠢࠬߦᷝടߒ

ߚ

CGE-FL

ᬌ಴ᴺ߇

DNA

ὐ⓭ὼᄌ⇣ߩ․ቯߦ᦭↪

ߢ޽ࠆߎߣࠍ⷗಴ߒߚ㧚

ᧄ⎇ⓥߩ৻ㇱߪ㧘ޟℂᎿቇ⎇ⓥᚲ 2008 ᐕᐲหᔒ

␠ᄢቇℂᎿቇ⎇ⓥᚲ⎇ⓥഥᚑ㊄㧔୘ੱ㧕ޠߩᡰេࠍ ฃߌߚ㧚ߎߎߦ⸥ߒߡ㧘⻢ᗧࠍ⴫ߔࠆ㧚

ෳ⠨ᢥ₂

1) M. Hashimoto, F. Barany and S. A. Soper, “Polymerase chain reaction/ligase detection reaction/hybridization assays using flow-through microfluidic devices for the detection of low-abundant DNA point mutations”, Biosens. Bioelectron., 21, 1915-1923 (2006).

2) N. P. Gerry, N. E. Witowski, J. Day, R. P. Hammer, G.

Barany and F. Barany, “Universal DNA microarray method for multiplex detection of low abundance point mutations”, J. Mol. Bio., 292, 251-262 (1999).

3) M. Khanna, P. Park, M. Zirvi, W. Cao, A. Picon, J. Day, P. Paty and F. Barany, “Multiplex PCR/LDR for detection of K-ras mutations in primary colon tumors”, Oncogene, 18, 27-38 (1999).

4) K. Li, B. Chen, Y. Zhou, R. Huang, Y. Liang, Q. Wang, Z. Xiao and J. Xiao, “Multiplex quantification of 16S rDNA of predominant bacteria group within human fecal samples by polymerase chain reaction-ligase detection reaction (PCR-LDR) ”, J Microbiol Methods., 76, 289-294 (2009).

5) D. K. Toubanaki, T. K. Christopoulos, P. C. Ioannou and C. S. Flordellis, “Identification of single-nucleotide polymorphisms by the oligonucleotide ligation reaction:

Fig. 4. Electropherograms of the LDR products obtained using the different discriminating primers of (a) K-ras c12.2WtG, (b) K-ras c12.2V, (c) K-ras c12.2D and (d) K-ras c12.2A.

Conditions: gel matrix, 0.5%(w/v) PEO in 1xTBE buffer containing 1x SYBR Gold; applied voltage, 12 kV.

(7)

a DNA biosensor for simultaneous visual detection of both alleles”, Anal. Chem., 81, 218-224 (2009).

6) M. Hashimoto, M. L. Hupert, M. C. Murphy and S. A.

Soper, “Ligase detection reaction/hybridization assays using three-dimensional microfluidic networks for the detection of low-abundant DNA point mutations”, Anal.

Chem., 77, 3243-3255 (2005).

7) R. Sinville, J. Coyne, R. J. Meagher, Y.-W. Cheng, F.

Barany, A. Barron and S. A. Soper, “Ligase detection reaction for the analysis of point mutations using free-solution conjugate electrophoresis in a polymer microfluidic device”, Electrophoresis, 29, 4751-4760 (2008).

8) P. Yi, Z. Chen, Y. Zhao, J. Guo, H. Hu, Y. Zhou L. Yu and L. Li, “PCR/LDR/capillary electrophoresis for detection of single-nucleotide differences between fetal and maternal DNA in maternal plasma”, Prenat. Diagn., 29, 217-22 (2009).

9) R. Oba, Y. Kudo, N. Sato, R. Noda and Y. Otsuka, “A new method of competitive reverse transcription polymerase chain reaction with SYBR Gold staining for quantitative analysis of mRNA”, Electrophoresis, 27, 2865-2868 (2008).

参照

関連したドキュメント

CONCLUSIONS: We recommend using the precuneus and hippocampus as ROIs without modulation and smoothing for DARTEL-based voxel-based morphometry as a tool for diagnosing

The sensitive and selective detection method for enantiomers of D , L - GLUF is developed by combining the SPE and the LVSS with γ -CD-CZE, and is used for the absolute and

When Misdetection radius was large, the ID length long, or the number of devices large, the Pair method was the best since it could reduces sequential blinking by adding bits

21-28 In one of these studies, we reported that the mode of self-motion of a camphoric acid boat characteristically changes depending on the concentration of phosphate ion or

Polishing of silicon nitride has been conducted by using a newly-developed which is able to give the polishing pressure to the workpiece.. The polishing an electrophoresis is

The resulting nonlinear model contains a set of reaction-drift-diffusion equations for the point defects and pairs, reaction equations for the immobile dopants and clusters as well as

Correspondence should be addressed to Salah Badraoui, sabadraoui@hotmail.com Received 11 July 2009; Accepted 5 January 2010.. Academic Editor:

If D ( ρ ) ≥ 0, the existence of solutions to the initial-value problem for (1.1) is more or less classical [24]; however, the fine structure of traveling waves reveals a variety