• 検索結果がありません。

Controllability for the Impulsive Semilinear Nonlocal Fuzzy Integrodifferential Equations in n-Dimensional Fuzzy Vector Space

N/A
N/A
Protected

Academic year: 2022

シェア "Controllability for the Impulsive Semilinear Nonlocal Fuzzy Integrodifferential Equations in n-Dimensional Fuzzy Vector Space"

Copied!
22
0
0

読み込み中.... (全文を見る)

全文

(1)

Advances in Dierence Equations Volume 2010, Article ID 983483,22pages doi:10.1155/2010/983483

Research Article

Controllability for the Impulsive Semilinear Nonlocal Fuzzy Integrodifferential Equations in n-Dimensional Fuzzy Vector Space

Young Chel Kwun,

1

Jeong Soon Kim,

1

Min Ji Park,

1

and Jin Han Park

2

1Department of Mathematics, Dong-A University, Busan 604-714, Republic of Korea

2Department of Applied Mathematics, Pukyong National University, Busan 608-737, Republic of Korea

Correspondence should be addressed to Jin Han Park,jihpark@pknu.ac.kr Received 14 March 2010; Accepted 21 June 2010

Academic Editor: T. Bhaskar

Copyrightq2010 Young Chel Kwun et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

We study the existence and uniqueness of solutions and nonlocal controllability for the impulsive semilinear nonlocal fuzzy integrodifferential equations inn-dimensional fuzzy vector spaceENn by using short-term perturbations techniques and Banach fixed point theorem. This is an extension of the result of Kwun et al.Kwun et al., 2009to impulsive system.

1. Introduction

The theory of differential equations with discontinuous trajectories during the last twenty years has been to a great extent stimulated by their numerous applications to problem arising in mechanics, electrical engineering, the theory of automatic control, medicine and biology.

For the monographs of the theory of impulsive differential equations, see the papers of Bainov and Simenov 1, Lakshmikantham et al. 2 and Samoileuko and Perestyuk 3, where numerous properties of their solutions are studied and detailed bibliographies are given.

Rogovchenko4followed the ideas of the theory of impulsive differential equations which treats the changes of the state of the evolution process due to a short-term perturbations whose duration can be negligible in comparison with the duration of the process as an instant impulses. In 2001, Lakshmikantham and McRae5studied basic results for fuzzy impulsive differential equations. Park et al.6studied the existence and uniqueness of fuzzy solutions and controllability for the impulsive semilinear fuzzy integrodifferential equations in one- dimensional fuzzy vector spaceE1N. Rodr´ıguez-L ´opez7studied periodic boundary value

(2)

problems for impulsive fuzzy differential equations. Fuzzy integrodifferential equations are a field of interest, due to their applicability to the analysis of phenomena with memory where imprecision is inherent. Balasubramaniam and Muralisankar8proved the existence and uniqueness of fuzzy solutions for the semilinear fuzzy integrodifferential equation with nonlocal initial condition. They considered the semilinear one-dimensional heat equation on a connected domain0,1for material with memory. In one-dimensional fuzzy vector space E1N, Park et al. 9 proved the existence and uniqueness of fuzzy solutions and presented the sufficient condition of nonlocal controllability for the following semilinear fuzzy integrodifferential equation with nonlocal initial condition.

In 10, Kwun et al. proved the existence and uniqueness of fuzzy solutions for the semilinear fuzzy integrodifferential equations by using successive iteration. In 11, Kwun et al. investigated the continuously initial observability for the semilinear fuzzy integrodifferential equations. Bede and Gal 12 studied almost periodic fuzzy-number- valued functions. Gal and N’Guerekata 13 studied almost automorphic fuzzy-number- valued functions. More recently, Kwun et al. 14studied the existence and uniqueness of solutions and nonlocal controllability for the semilinear fuzzy integrodifferential equations inn-dimensional fuzzy vector space.

In this paper, we study the existence and uniqueness of solutions and nonlocal controllability for the following impulsive semilinear nonlocal fuzzy integrodifferential equations inn-dimensional fuzzy vector space by using short-term perturbations techniques and Banach fixed point theorem:

dxit dt Ai

xit

t

0

Gtsxisds

fi

t, xit, t

0

qit, s, xisds

uit onENi ,

xi0 gixi x0iEiN,

Δxitk Ikxitk, t /tk, k1,2, . . . , m, i1,2, . . . , n,

1.1

where Ai : 0, T → EiN is fuzzy coefficient, EiN is the set of all upper semicontinuously convex fuzzy numbers onRwithEiN/EjN i /j,fi:0, T×EiN×EiNEiNandqi:0, T× 0, T×EiN are nonlinear regular fuzzy functions,gi : EiNENi is a nonlinear continuous function,Gtis ann×ncontinuous matrix such thatdGtxi/dtis continuous forxiEiN andt∈ 0, TwithGt ≤ k,k > 0,ui :0, T → EiNis a control function,x0iEiNis an initial value andIkCEiN, EiNare bounded functions,Δxitk xitkxitk, wherexitk andxitkrepresent the left and right limits ofxitatttk, respectively.

2. Preliminaries

A fuzzy setuofRn is a functionu :Rn → 0,1. For each fuzzy setu, we denote byuα {x∈Rn:uxα}for anyα∈0,1itsα-level set.

Letu, vbe fuzzy sets ofRn. It is well known thatuα vαfor eachα∈0,1implies uv.

(3)

Let En denote the collection of all fuzzy sets of Rn that satisfies the following conditions:

1uis normal, that is, there exists anx0Rnsuch thatuxo 1;

2uis fuzzy convex, that is, uλx 1−λy ≥ min{ux, uy}for anyx, yRn, 0≤λ≤1;

3uxis upper semicontinuous, that is,ux0 ≥ limk→ ∞uxkfor anyxkRnk 0,1,2, . . .,xkx0;

4 u0is compact.

We calluEnann-dimension fuzzy number.

Wang et al. 15 defined n-dimensional fuzzy vector space and investigated its properties.

For anyuiE,i1,2, . . . , n, we call the ordered one-dimension fuzzy number class u1, u2, . . . , uni.e., the Cartesian product of one-dimension fuzzy numberu1, u2, . . . , unann- dimension fuzzy vector, denote it asu1, u2, . . . , un, and call the collection of alln-dimension fuzzy vectorsi.e., the Cartesian product

E×E× · · · ×En-dimensional fuzzy vector space, and denote it asEn.

Definition 2.1see15. IfuEn, anduαis a hyperrectangle, that is,uαcan be represented byn

i1uαil, uαir, that is,uα1l, uα1r×uα2l, uα2r×· · ·×uαnl, uαnrfor everyα∈0,1, whereuαil, uαirR withuαiluαirwhenα∈0,1,i1,2, . . . , n, then we callua fuzzyn-cell number. We denote the collection of all fuzzyn-cell numbers byLEn.

Theorem 2.2see15. For anyuLEnwithuα n

i1uαil, uαirα∈0,1, there exists a uniqueu1, u2, . . . , un∈Ensuch thatuiα uαil, uαir(i1,2, . . . , nandα∈0,1). Conversely, for anyu1, u2, . . . , un ∈Enwithuiα uαil, uαir(i 1,2, . . . , nandα∈0,1), there exists a uniqueuLEnsuch thatuαn

i1uαil, uαirα∈0,1.

Note 1see15. Theorem2.2indicates that fuzzy n-cell numbers andn-dimension fuzzy vectors can represent each other, so LEn and En may be regarded as identity. If u1, u2, . . . , un ∈ En is the uniquen-dimension fuzzy vector determined by uLEn, then we denoteu u1, u2, . . . , un.

LetENi nE1N×E2N× · · · ×EnN, whereEiN i1,2, . . . , nis a fuzzy subset ofR. Then EiNn⊆En.

Definition 2.3see15. The complete metricDLonEiNnis defined by DLu, v sup

0<α≤1

dL

uα,vα sup

0<α≤1

max1≤i≤nuαilvαil,uαirvirα 2.1

for anyu, v∈EiNn, which satisfiesdLu w, v w dLu, v.

Definition 2.4. Letu, vC0, T:EiNn, H1u, v sup

0≤t≤TDLut, vt. 2.2

(4)

Definition 2.5see15. The derivativextof a fuzzy processx∈ENi nis defined by xtαn

i1

xαil t,

xαir t

2.3

provided that equation defines a fuzzyxt∈EiNn. Definition 2.6see15. The fuzzy integrala

bxtdt,a, b∈0, Tis defined by a

b

xtdt α

n

i1

a

b

xαiltdt, a

b

xαirtdt

2.4

provided that the Lebesgue integrals on the right-hand side exist.

3. Existence and Uniqueness

In this section we consider the existence and uniqueness of the fuzzy solution for1.1 u≡0.

We define

A A1, A2, . . . , An, x x1, x2, . . . , xn,

f

f1, f2, . . . , fn

,

q

q1, q2, . . . , qn , u u1, u2, . . . , un,

g

g1, g2, . . . , gn

,

3.1

x0 x01, x02, . . . , x0n. 3.2 Then

A, x, f, q, x0, u, gEiNn

. 3.3

Instead of1.1, we consider the following fuzzy integrodifferential equations inEiNn dxt

dt A

xt

t

0

Gtsxsds

f

t, xt, t

0

qt, s, xsds

ut on

EiNn , 3.4 x0 gx x0

ENi n

, 3.5

Δxtk Ikxtk, t /tk, k1,2, . . . , m, i1,2, . . . , n, 3.6

(5)

with fuzzy coefficientA:0, T → EiNn, initial valuex0 ∈ENi n, andu:0, T → EiNn being a control function. Given nonlinear regular fuzzy functionsf :0, T×ENi n×EiNn → EiNnandq:0, T×0, T×EiNn → EiNnsatisfy global Lipschitz conditions, that is, there exist finite constantsk1, k2, M >0 such that

dL

f

s, ξ1s, η1sα ,

f

s, ξ2s, η2sα

k1dL

ξ1sα,ξ2sα k2dL

η1sα ,

η2sα

, 3.7

dL q

t, s, ϕ1sα

, q

t, s, ϕ2sα

MdL ϕ1sα

,

ϕ2sα

3.8

for all ξjs, ηjs, ϕjs ∈ EiNnj 1,2, the nonlinear functiong : EiNn → ENi n is continuous and satisfies the Lipschitz condition

dL

gx·α ,

g

α

hdL

α, α

3.9

for allx·, y·∈ENi n,his a finite positive constant.

Definition 3.1. The fuzzy processx:I 0, T → EiNnwithα-level setxtα Πni1xiα Πni1xαil, xαiris a fuzzy solution of3.4and3.5without nonhomogeneous term if and only if

xαil

t min

Aαijt

xαikt t

0

Gtsxαiksds

:j, kl, r

, xαir

t max

Aαijt

xαikt t

0

Gtsxαiksds

:j, kl, r

,

xαil0 gilα xαil

xα0

il, xαir0 gαir xirα

xα0

ir, i1,2, . . . , n.

3.10

For the sequel, we need the following assumption:

H1St is a fuzzy number satisfying, for y ∈ ENi n, d/dtSty ∈ C1I : EiNn

CI:EiNn, the equation

d

dtStyA

Sty t

0

GtsSsy ds

, tI, 3.11

where

Stαn

i1

Sitαn

i1

Sαilt, Sαirt

, S0 I 3.12

andSαijtjl, ris continuous with|Sαijt| ≤c,c >0, for alltI 0, T.

(6)

In order to define the solution of3.4–3.6, we will consider the spaceΩi{xi:JEiN:xikCJk, EiN, Jk tk, tk 1, k0,1, . . . , m,and there existxitkandxitk k 1,2, . . . , m,withxitk xitk}, i1,2, . . . , n.

LetΩ Πni1Ωi, Ωi Ωi

C0, T:EiN, i1,2, . . . , n.

Lemma 3.2. Ifxis an integral solution of 3.4–3.6 u≡0, thenxis given by

xt St

x0gx t

0

Stsf

s, xs, s

0

qs, τ, xτdτ

ds

0<tk<t

SttkIk

x tk

, fortJ.

3.13

Proof. Letxbe a solution of3.4–3.6. Defineωs Stsxs. Then we have that

dωs

dsdSts

ds xs Stsdxs ds −A

Stsxs t

0

GtsSsxsds

Stsdxs ds Stsf

s, xs,

s

0

qs, τ, xτdτ

.

3.14

Considertk< t, k1,2, . . . , m. Then integrating the previous equation, we have t

0

dωs ds ds

t

0

Stsf

s, xs, s

0

qs, τ, xτdτ

ds. 3.15

Fork1,

ωtω0

t

0

Stsf

s, xs, s

0

qs, τ, xτdτ

ds 3.16

or

xt St

x0gx t

0

Stsf

s, xs, s

0

qs, τ, xτdτ

ds. 3.17

(7)

Now fork2, . . . , m,we have that t1

0

dωs ds ds

t2

t1

dωs ds ds · · ·

t

tk

dωs ds ds

t

0

Stsf

s, xs, s

0

qs, τ, xτ

ds.

3.18

Then

ω t1

ω0 ω t2

ω t1

· · · −ω tk

ωt

t

0

Stsf

s, xs, s

0

qs, τ, xτdτ

ds

3.19

if and only if

ωt ω0

t

0

Stsf

s, xs, s

0

qs, τ, xτdτ

ds

0<tk<t

ω tk

ω tk

. 3.20

Hence

xt St

x0gx t

0

Stsf

s, xs, s

0

qs, τ, xτdτ

ds

0<tk<t

SttkIk

x tk

, 3.21

which proves the lemma.

Assume the following:

H2there existsd >0 such that

dL

Ik

x tkα

, Ik

y tkα

ddL

xtα, ytα

, 3.22

wherext, yt∈Ω; H3

c

T

!

h1 c cd k1

1 cT 2

k2MT

12 cT 3

"

h d

<1. 3.23

(8)

Theorem 3.3. LetT >0. If hypotheses (H1)–(H3) are hold, then, for everyx0 ∈EiNn,3.13has a unique fuzzy solutionx∈Ω.

Proof. For eachxt∈Ω andt∈0, T, defineG0xt∈Ω by

G0xt St

x0gx t

0

Stsf

s, xs, s

0

qs, τ, xτ

ds

0<tk<t

SttkIk

x tk

.

3.24

Thus,G0x:0, T → Ω is continuous, soG0is a mapping fromΩ into itself. By Definitions 2.3and2.4, some properties ofdLand inequalities3.7,3.8, and3.9, we have the following inequalities. Forx, y∈Ω,

dL

G0xtα, G0y

tα

dL

St

x0gx t

0

Stsf

s, xs, s

0

qs, τ, xτ

ds α

,

St

x0g

y t

0

Stsf

s, ys, s

0

q

s, τ, yτ

ds

α

dL

0<tk<t

SttkIk

x tkα

,

0<tk<t

SttkIk

y

tkα

dL

Stgxα ,

Stg yα t

0

dL

Stsf

s, xs, s

0

qs, τ, xτα

,

Stsf

s, ys, s

0

q

s, τ, yτ

α ds

dL

0<tk<t

SttkIk

x tkα

,

0<tk<t

SttkIk

y

tkα

chdL

α, α

c t

0

k1dL

xsα, ysα

k2M s

0

dL

α,

α

ds

cddL

xtα, ytα

.

3.25

(9)

Therefore

DL

G0xt, G0y

t sup

0<α≤1dL

G0xtα, G0y

tα

chsup

0<α≤1dL

α, α

c t

0

k1sup

0<α≤1dL

xsα, ysα

k2M s

0

sup

0<α≤1dL

α, α

ds

cdsup

0<α≤1dL

xtα, ytα

chDL

x·, y·

c t

0

k1DL

xs, ys k2M

s

0

DL

, yτ

ds cdDL

xt, yt .

3.26

Hence

H1

G0x, G0y sup

0≤t≤TDL

G0xt, G0y

t

chsup

0≤t≤TDL

x·, y·

csup

0≤t≤T

t

0

k1DL

xs, ys k2M

s

0

DL

xτ, yτ

ds

cdsup

0≤t≤TDL

xt, yt

c

h d

k1 k2MT 2

T

H1

x, y .

3.27

By hypothesis H3, G0 is a contraction mapping. Using the Banach fixed point theorem, 3.13has a unique fixed pointx∈Ω.

4. Nonlocal Controllability

In this section, we show the nonlocal controllability for the control system1.1.

(10)

The control system1.1is related to the following fuzzy integral system:

xt St

x0gx t

0

Stsf

s, xs, s

0

qs, τ, xτdτ

ds t

0

Stsusds

0<tk<t

SttkIk

x tk

.

4.1

Definition 4.1. Equations1.1–3are nonlocal controllable. Then there existsutsuch that the fuzzy solutionxtfor4.1asxT x1gxi.e.,xTα x1gxα, wherex1 ∈ EiNn, is target set.

Define the fuzzy mappingβ#:PR# n → ENi nby

β#αv

⎧⎪

⎪⎩ T

0

SαT−svsds, v⊂Γu,

0, otherwise,

4.2

whereΓuis closed support ofu. Then there exists

β#i:PR# −→EiN i1,2, . . . , n 4.3

such that

β#iαvi

⎧⎪

⎪⎩ T

0

SαiT−svisds, vis⊂Γui

0, otherwise.

4.4

Then there existsβ#αijj l, rsuch that

β#ilαvil

T

0

SαilT−svilsds, vils∈

uαils, u1i ,

β#αirvir

T

0

SαirT−svirsds, virs∈

u1i, uαirs .

4.5

We assume thatβ#ilα#αirare bijective mappings.

(11)

We can introduceα-level set ofusof4.1:

usαn

i1

uisαn

i1

uαils, uαirs

n

i1

β#ilα−1 x1α

ilgilα xαil

SαilT xα0

ilgilα xilα

T

0

SαilT−sfilα

s, xilαs, s

0

qαil

s, τ, xαilτ

ds

0<tk<T

SαilT−tkIkαil xilα

tk , β#αir−1

x1α

irgirα xαir

SαirT xα0

irgirα xαir

T

0

SαirT−sfirα

s, xαirs, s

0

qαir

s, τ, xαirτ

ds

0<tk<T

SαirT−tkIkαir xirα

tk .

4.6

Then substituting this expression into4.1yieldsα-level ofxT. For eachi1,2, . . . , n,

xiTα

SαilT

xα0ilgilα

xαil T

0

SαilT−s

×filα

s, xαils, s

0

qαil

s, τ, xαilτ

ds

0<tk<T

SαilT−tkIkαil xαil

tk T

0

SαilT−s

β#αil−1 x1α

ilgilα xilα

SαilT

xα0ilgilα xαil

T

0

SαilT−sfilα

s, xαils, s

0

qαil

s, τ, xilατ

ds

0<tk<T

SαilT−tkIkαil xαil

tk ds,

(12)

SαirT

xα0irgirα

xαir T

0

SαirT−s×firα

s, xαirs, s

0

qαil

s, τ, xαirτ

ds

0<tk<T

SαirT−tkIkαir xαir

tk T

0

SαirT−s β#αir−1

×

x1α irgirα

xαir

SαirT xα0

irgirα xαir

T

0

SαirT−sfirα

s, xαirs, s

0

qαil

s, τ, xαirτ

ds

0<tk<T

SαirT−tkIkαir xirα

tk ds

x1gxα

il,

x1gxα

ir

x1gx

i

α .

4.7 Therefore

xTαn

i1

xiTαn

i1

x1gx

i

α

x1gxα

. 4.8

We now set

Φxt St

x0gx t

0

Stsf

s, xs, t

0

qs, τ, xτdτ

ds

0<tk<t

SttkIk

x tk t

0

St#−1

x1gxST

x0gx

T

0

STsf

s, xs, s

0

qs, τ, xτdτ

ds

0<tk<T

STtkIk

x tk

ds,

4.9

where the fuzzy mappingβ#−1satisfies the previous statements.

Notice thatΦxT x1gx, which means that the controlutsteers4.9from the origin tox1gxin timeTprovided we can obtain a fixed point of the operatorΦ.

H4Assume that the linear system of4.9 f≡0is controllable.

(13)

Theorem 4.2. Suppose that hypotheses (H1)–(H4) are satisfied. Then4.9is nonlocal controllable.

Proof. We can easily check thatΦis continuous function fromΩ to itself. By Definitions2.3 and 2.4, some properties ofdL, and inequalities 3.7,3.8, and 3.9, we have following inequalities. For anyx, y∈Ω,

dL

Φxtα,

Φytα dL

St

x0gx t

0

Stsf

s, xs, s

0

qs, τ, xτ

ds

0<tk<t

SttkIk

x tk t

0

St#−1

x1gxST

x0gx

T

0

STsf

s, xs, s

0

qs, τ, xτdτ

ds

0<tk<T

STtkIk

x tk

ds α

,

St

x0g

y t

0

Stsf

s, ys, s

0

q

s, τ, yτ

ds

0<tk<t

SttkIk

y tk t

0

St#−1

x1g y

ST x0g

y

T

0

STsf

s, ys, s

0

q

s, τ, yτ

ds

0<tk<T

STtkIk

y tk

ds α

chdL

α, α

c t

0

k1dL

xsα, ysα

k2M s

0

dL

α,

α

ds cddL

xtα, ytα

c t

0

hdL

α, α

chdL

α, α

c T

0

k1dL

xsα, ysα

k2M s

0

dL

α, α

ds cddL

xtα,

ytα ds.

4.10

(14)

Therefore

DL

Φxt,Φyt sup

0<α≤1dL

Φxtα,

Φytα

chsup

0<α≤1dL

α, α

cdsup

0<α≤1dL

xtα, ytα

c t

0

k1sup

0<α≤1dL

xsα, ysα

k2M s

0

sup

0<α≤1dL

α, α

ds

c t

0

h1 csup

0<α≤1dL

α, α

c T

0

k1sup

0<α≤1dL

xsα, ysα

k2M s

0

sup

0<α≤1dL

α, α

ds

cdsup

0<α≤1dL

xsα,

ysα ds

chDL

x·, y·

cdDL

xt, yt

c t

0

k1DL

xs, ys k2M

s

0

DL

, yτ

ds

c t

0

h1 cDL

x·, y·

c T

0

k1DL

xs, ys k2M

s

0

DL

xτ, yτ

ds cdDL

xs, ys

ds. 4.11

Hence

H1

Φx,Φy sup

0≤t≤TDL

Φxt,Φyt

chsup

0≤t≤TDL

x·, y·

cdsup

0≤t≤TDL

xt, yt

csup

0≤t≤T

t

0

k1DL

x·, y·

k2M s

0

DL

, yτ

ds

(15)

csup

0≤t≤T

t

0

h1 cDL

x·, y·

c T

0

k1DL

xs, ys k2M

s

0

DL

xτ, yτ

ds

cdDL

xs, ys ds

chH1

x, y

cdH1

x, y c

T

0

k1H1

x, y k2M

s

0

H1

x, y

ds

c T

0

h1 cH1

x, y

c T

0

k1H1

x, y k2M

s

0

H1 x, y

ds cdH1 x, y

ds c

T

!

h1 c cd k1

1 cT

2

k2MT 1

2 cT

3

"

h d

H1

x, y . 4.12 By hypothesisH3,Φis a contraction mapping. Using the Banach fixed point theorem,4.9 has a unique fixed pointx∈Ω.

5. Example

Consider the two semilinear one-dimensional heat equations on a connected domain0,1 for material with memory onENi , i1,2,boundary condition

xit,0 xit,1 0, i1,2 5.1

and with initial conditions

xi0, zi

p

k1

ckixitk, zi x0izi, 5.2

wherex0iziENi ,

p

k1

ckixitk, zi gixi, i1,2. 5.3

Letxit, zi, i1,2 be the internal energy and

fit, xit, zi, t

0

qit,s, xis, zids#2txit, zi2 t

0

t−sxis, zids, i1,2 5.4

参照

関連したドキュメント

In addition, it is claimed that fuzzy Edelstein’s contraction theorem is true whenever we consider the fuzzy metric space in the Kramosil and Mich´alek’s sense.. Finally, the

Ruan; Existence and stability of traveling wave fronts in reaction advection diffusion equations with nonlocal delay, J. Ruan; Entire solutions in bistable reaction-diffusion

In this paper we prove the existence and uniqueness of local and global solutions of a nonlocal Cauchy problem for a class of integrodifferential equation1. The method of semigroups

Using the fact that there is no degeneracy on (α, 1) and using the classical result known for linear nondegenerate parabolic equations in bounded domain (see for example [16, 18]),

The development of these ideas has followed two complementary ways, namely (i) the dimensional reduction of a higher-dimensional gauge theory over fuzzy internal spaces [19] and

36 investigated the problem of delay-dependent robust stability and H∞ filtering design for a class of uncertain continuous-time nonlinear systems with time-varying state

Then (v, p), where p is the corresponding pressure, is the axisymmetric strong solution to problem (1.1) which is unique in the class of all weak solutions satisfying the

In recent work [23], authors proved local-in-time existence and uniqueness of strong solutions in H s for real s &gt; n/2 + 1 for the ideal Boussinesq equations in R n , n = 2, 3