• 検索結果がありません。

JJ II

N/A
N/A
Protected

Academic year: 2022

シェア "JJ II"

Copied!
20
0
0

読み込み中.... (全文を見る)

全文

(1)

volume 7, issue 4, article 152, 2006.

Received 27 March, 2006;

accepted 19 September, 2006.

Communicated by:N.K. Govil

Abstract Contents

JJ II

J I

Home Page Go Back

Close Quit

Journal of Inequalities in Pure and Applied Mathematics

DIFFERENTIAL SUBORDINATIONS AND SUPERORDINATIONS FOR ANALYTIC FUNCTIONS DEFINED BY THE DZIOK-SRIVASTAVA LINEAR OPERATOR

G. MURUGUSUNDARAMOORTHY AND N. MAGESH

School of Science and Humanities Vellore Institute of Technology

Deemed University, Vellore - 632014, India.

EMail:gmsmoorthy@yahoo.com Department of Mathematics Adhiyamaan College of Engineering Hosur - 635109, India.

EMail:nmagi_2000@yahoo.co.in

2000c Victoria University ISSN (electronic): 1443-5756 092-06

(2)

Differential Subordinations and Superordinations for Analytic

Functions Defined by the Dziok-Srivastava Linear

Operator

G. Murugusundaramoorthy and N. Magesh

Title Page Contents

JJ II

J I

Go Back Close

Quit Page2of20

Abstract

In the present investigation, we obtain some subordination and superordination results involving Dziok-Srivastava linear operatorHml1]for certain normalized analytic functions in the open unit disk. Our results extend corresponding pre- viously known results.

2000 Mathematics Subject Classification:Primary 30C45; Secondary 30C80.

Key words: Univalent functions, Starlike functions, Convex functions, Differential subordination, Convolution, Dziok-Srivastava linear operator.

Contents

1 Introduction. . . 3 2 Preliminaries . . . 5 3 Main Results . . . 9

References

(3)

Differential Subordinations and Superordinations for Analytic

Functions Defined by the Dziok-Srivastava Linear

Operator

G. Murugusundaramoorthy and N. Magesh

Title Page Contents

JJ II

J I

Go Back Close

Quit Page3of20

1. Introduction

Let H be the class of functions analytic in ∆ := {z : |z| < 1} and H(a, n) be the subclass of H consisting of functions of the form f(z) = a+anzn + an+1zn+1+· · ·. LetAbe the subclass ofHconsisting of functions of the form f(z) = z+a2z2+· · ·. Letp, h∈ H and letφ(r, s, t;z) : C3×∆→ C. Ifp and φ(p(z), zp0(z), z2p00(z);z)are univalent and ifpsatisfies the second order superordination

(1.1) h(z)≺φ(p(z), zp0(z), z2p00(z);z),

thenpis a solution of the differential superordination (1.1). (Iff is subordinate toF, thenF is superordinate tof.) An analytic functionqis called a subordi- nant if q ≺ pfor allpsatisfying (1.1). A univalent subordinantqethat satisfies q ≺ eq for all subordinants q of (1.1) is said to be the best subordinant. Re- cently Miller and Mocanu [14] obtained conditions onh,qandφfor which the following implication holds:

h(z)≺φ(p(z), zp0(z), z2p00(z);z)⇒q(z)≺p(z).

Using the results of Miller and Mocanu [14], Bulboac˘a [5] considered certain classes of first order differential superordinations as well as superordination- preserving integral operators [4]. Ali et al. [1] have used the results of Bulboac˘a [5] and obtained sufficient conditions for certain normalized analytic functions f(z)to satisfy

q1(z)≺ zf0(z)

f(z) ≺q2(z),

(4)

Differential Subordinations and Superordinations for Analytic

Functions Defined by the Dziok-Srivastava Linear

Operator

G. Murugusundaramoorthy and N. Magesh

Title Page Contents

JJ II

J I

Go Back Close

Quit Page4of20

whereq1andq2 are given univalent functions in∆withq1(0) = 1andq2(0) = 1.Shanmugam et al. [19] obtained sufficient conditions for a normalized ana- lytic functionf(z)to satisfy

q1(z)≺ f(z)

zf0(z) ≺q2(z) and q1(z)≺ z2f0(z)

{f(z)}2 ≺q2(z)

whereq1andq2 are given univalent functions in∆withq1(0) = 1andq2(0) = 1.

In [2], for functionsf ∈ Asuch thatδ >0,

<

(zf0(z) f(z)

f(z) z

δ)

>0, z ∈∆,

a class of Bazilevic type functions was considered and certain properties were studied. In this paper motivated by Liu [11], we define a class

B(λ, δ, A, B) :=

(

f ∈ A: (1−λ)

f(z) z

δ

+λzf0(z) f(z)

f(z) z

δ

≺ 1 +Az 1 +Bz

) ,

where δ > 0, λ ≥ 0, −1 ≤ B < A ≤ 1 and studied certain interesting properties based on subordination. Further we obtained a sandwich result for functions in the classB(λ, δ, A, B).

(5)

Differential Subordinations and Superordinations for Analytic

Functions Defined by the Dziok-Srivastava Linear

Operator

G. Murugusundaramoorthy and N. Magesh

Title Page Contents

JJ II

J I

Go Back Close

Quit Page5of20

2. Preliminaries

For our present investigation, we shall need the following definition and results.

Definition 2.1 ([14, Definition 2, p. 817]). Denote byQ, the set of all functions f(z)that are analytic and injective on∆−E(f), where

E(f) =

ζ ∈∂∆ : lim

z→ζf(z) = ∞

and are such thatf0(ζ)6= 0forζ ∈∂∆−E(f).

Lemma 2.1 ([13, Theorem 3.4h, p. 132]). Let q(z) be univalent in the unit diskandθandφbe analytic in a domainDcontainingq(∆)withφ(w)6= 0 whenw ∈ q(∆). SetQ(z) = zq0(z)φ(q(z)), h(z) = θ(q(z)) +Q(z). Suppose that

1. Q(z)is starlike univalent in∆, and 2. <n

zh0(z) Q(z)

o

>0forz∈∆.

If

θ(p(z)) +zp0(z)φ(p(z))≺θ(q(z)) +zq0(z)φ(q(z)), thenp(z)≺q(z)andq(z)is the best dominant.

Lemma 2.2 ([19]). Letqbe a convex univalent function inandψ, γ ∈Cwith

<

1 + zq00(z) q0(z) + ψ

γ

>0.

(6)

Differential Subordinations and Superordinations for Analytic

Functions Defined by the Dziok-Srivastava Linear

Operator

G. Murugusundaramoorthy and N. Magesh

Title Page Contents

JJ II

J I

Go Back Close

Quit Page6of20

Ifp(z)is analytic inand

ψp(z) +γzp0(z)≺ψq(z) +γzq0(z) thenp(z)≺q(z)andq(z)is the best dominant.

Lemma 2.3 ([5]). Letq(z)be convex univalent in the unit diskandϑandϕ be analytic in a domainDcontainingq(∆). Suppose that

1. <[ϑ0(q(z))/ϕ(q(z))]>0forz ∈∆, 2. zq0(z)ϕ(q(z))is starlike univalent in∆.

Ifp(z) ∈ H[q(0),1]∩Q, withp(∆) ⊆ D, and ϑ(p(z)) +zp0(z)ϕ(p(z))is univalent in∆, and

(2.1) ϑ(q(z)) +zq0(z)ϕ(q(z))≺ϑ(p(z)) +zp0(z)ϕ(p(z)), thenq(z)≺p(z)andq(z)is the best subordinant.

Lemma 2.4 ([14, Theorem 8, p. 822]). Let q be convex univalent inand γ ∈C. Further assume that<[γ]>0.Ifp(z)∈ H[q(0),1]∩Q,p(z) +γzp0(z) is univalent in∆, then

q(z) +γzq0(z)≺p(z) +γzp0(z) impliesq(z)≺p(z)andq(z)is the best subordinant.

(7)

Differential Subordinations and Superordinations for Analytic

Functions Defined by the Dziok-Srivastava Linear

Operator

G. Murugusundaramoorthy and N. Magesh

Title Page Contents

JJ II

J I

Go Back Close

Quit Page7of20

For two functionsf(z) = z +P

n=2anzn andg(z) = z+P

n=2bnzn, the Hadamard product (or convolution) off andg is defined by

(f∗g)(z) :=z+

X

n=2

anbnzn =: (g∗f)(z).

Forαj ∈C (j = 1,2, . . . , l)andβj ∈C\ {0,−1,−2, . . .}(j = 1,2, . . . , m), the generalized hypergeometric function lFm1, . . . , αl1, . . . , βm;z) is de- fined by the infinite series

lFm1, . . . , αl1, . . . , βm;z) :=

X

n=0

1)n· · ·(αl)n1)n· · ·(βm)n

zn n!

(l ≤m+ 1;l, m∈N0 :={0,1,2, . . .}) where(a)nis the Pochhammer symbol defined by

(a)n:= Γ(a+n) Γ(a)

=

( 1, (n= 0);

a(a+ 1)(a+ 2)· · ·(a+n−1), (n∈N:={1,2,3. . .}).

Corresponding to the function

h(α1, . . . , αl1, . . . , βm;z) :=zlFm1, . . . , αl1, . . . , βm;z),

(8)

Differential Subordinations and Superordinations for Analytic

Functions Defined by the Dziok-Srivastava Linear

Operator

G. Murugusundaramoorthy and N. Magesh

Title Page Contents

JJ II

J I

Go Back Close

Quit Page8of20

the Dziok-Srivastava operator [7] (see also [8,20])Hml1, . . . , αl1, . . . , βm) is defined by the Hadamard product

Hml1, . . . , αl1, . . . , βm)f(z) (2.2)

:=h(α1, . . . , αl1, . . . , βm;z)∗f(z)

=z+

X

n=2

1)n−1· · ·(αl)n−1

1)n−1· · ·(βm)n−1

anzn (n−1)!. For brevity, we write

Hml1]f(z) :=Hml1, . . . , αl1, . . . , βm)f(z).

It is easy to verify from (2.2) that

(2.3) z(Hml1]f(z))01Hml1+ 1]f(z)−(α1−1)Hml1]f(z).

Special cases of the Dziok-Srivastava linear operator include the Hohlov lin- ear operator [9], the Carlson-Shaffer linear operatorL(a, c)[6], the Ruscheweyh derivative operatorDn [18], the generalized Bernardi-Libera-Livingston linear integral operator (cf. [3], [10], [12]) and the Srivastava-Owa fractional deriva- tive operators (cf. [16], [17]).

The main object of the present paper is to find sufficient conditions for cer- tain normalized analytic functionsf(z)to satisfy

q1(z)≺

Hml1]f(z) z

δ

≺q2(z)

whereq1 andq2are given univalent functions in∆.Also, we obtain the number of known results as special cases.

(9)

Differential Subordinations and Superordinations for Analytic

Functions Defined by the Dziok-Srivastava Linear

Operator

G. Murugusundaramoorthy and N. Magesh

Title Page Contents

JJ II

J I

Go Back Close

Quit Page9of20

3. Main Results

We begin with the following:

Theorem 3.1. Letq(z)be univalent in∆, λ ∈C andα1 >0, δ >0.Suppose q(z)satisfies

(3.1) <

1 + zq00(z) q0(z) + λ

δ

>0.

Iff ∈ Asatisfies the subordination,

(3.2) (1−λα1)

Hml1]f(z) z

δ

+λα1

Hml1]f(z) z

δ

Hml1 + 1]f(z) Hml1]f(z)

≺q(z) + λ

δzq0(z), then

Hml1]f(z) z

δ

≺q(z)

andq(z)is the best dominant.

Proof. Define the functionp(z)by

(3.3) p(z) :=

Hml1]f(z) z

δ

.

(10)

Differential Subordinations and Superordinations for Analytic

Functions Defined by the Dziok-Srivastava Linear

Operator

G. Murugusundaramoorthy and N. Magesh

Title Page Contents

JJ II

J I

Go Back Close

Quit Page10of20

Then

zp0(z) δ :=α1

Hml1]f(z) z

δ

Hml1+ 1]f(z) Hml1]f(z) −1

,

hence the hypothesis (3.2) of Theorem3.1yields the subordination:

p(z) + λzp0(z)

δ ≺q(z) + λzq0(z) δ .

Now Theorem3.1follows by applying Lemma2.2withψ = 1andγ = λδ. Whenl = 2, m = 1, α1 =a, α2 = 1,andβ1 = cin Theorem3.1, we have the following corollary.

Corollary 3.2. Let q(z)be univalent in∆, λ ∈Candα1 >0, δ >0.Suppose q(z)satisfies (3.1). Iff ∈ Aand satisfies the subordination,

(3.4) (1−λa)

L(a, c)f(z) z

δ

+λa

L(a, c)f(z) z

δ

L(a+ 1, c)f(z) L(a, c)f(z)

≺q(z) + λ

δzq0(z), then

L(a, c)f(z) z

δ

≺q(z)

andq(z)is the best dominant.

By takingl = 1, m = 0andα1 = 1in Theorem3.1, we get the following corollary.

(11)

Differential Subordinations and Superordinations for Analytic

Functions Defined by the Dziok-Srivastava Linear

Operator

G. Murugusundaramoorthy and N. Magesh

Title Page Contents

JJ II

J I

Go Back Close

Quit Page11of20

Corollary 3.3. Let q(z)be univalent in∆, λ ∈Candα1 >0, δ >0.Suppose q(z)satisfies (3.1). Iff ∈ Aand satisfies the subordination,

(3.5) (1−λ)

f(z) z

δ

f(z) z

δ zf0(z)

f(z)

≺q(z) + λ

δzq0(z), then

f(z) z

δ

≺q(z)

andq(z)is the best dominant.

Corollary 3.4. Let−1≤B < A≤1and (3.1) hold. Iff ∈ Aand

(1−λα1)

Hml1]f(z) z

δ

+λα1

Hml1]f(z) z

δ

Hml1+ 1]f(z) Hml1]f(z)

≺ λ(A−B)z

δ(1 +Bz)2 + 1 +Az 1 +Bz, then

Hml1]f(z) z

δ

≺ 1 +Az 1 +Bz and 1+Az1+Bz is the best dominant.

Theorem 3.5. Letq(z)be univalent in∆,λ, δ ∈C.Supposeq(z)satisfies

(3.6) <

1 + zq00(z)

q0(z) − zq0(z) q(z)

>0.

(12)

Differential Subordinations and Superordinations for Analytic

Functions Defined by the Dziok-Srivastava Linear

Operator

G. Murugusundaramoorthy and N. Magesh

Title Page Contents

JJ II

J I

Go Back Close

Quit Page12of20

Iff ∈ Asatisfies the subordination:

(3.7) 1 +γδα1

Hml1+ 1]f(z) Hml1]f(z) −1

≺1 +γzq0(z) q(z) , then

Hml1]f(z) z

δ

≺q(z)

andq(z)is the best dominant.

Proof. Define the functionp(z)by p(z) =

Hml1]f(z) z

δ

.

It is clear that p(0) = 1andp(z)is analytic in∆. By using the identity (2.3), from (3.3) we get,

(3.8) zp0(z)

p(z) =α1δ

Hml1+ 1]f(z) Hml1]f(z) −1

.

Using (3.8) in (3.7), we see that the subordination becomes 1 +γzp0(z)

p(z) ≺1 +γzq0(z) q(z) . By setting

θ(w) = 1 and ϕ(w) = γ w,

(13)

Differential Subordinations and Superordinations for Analytic

Functions Defined by the Dziok-Srivastava Linear

Operator

G. Murugusundaramoorthy and N. Magesh

Title Page Contents

JJ II

J I

Go Back Close

Quit Page13of20

we observe thatϕandθare analytic inC\ {0}. Also we see that Q(z) :=zq0(z)ϕ(q(z)) = γzq0(z)

q(z) , and

h(z) := ϑ(q(z)) +Q(z) = 1 +γzq0(z) q(z) . It is clear thatQ(z)is starlike univalent in∆and

<zh0(z) Q(z) =<

1 + zq00(z)

q0(z) − zq0(z) q(z)

≥0.

By the hypothesis of Theorem 3.5, the result now follows by an application of Lemma2.1.

Specializing the values ofl = 1, m = 0, α1 = 1 and q(z) = (1−z)1 2b (b ∈ C − {0}), γ = 1b and δ = 1 in Theorem 3.5 above, we have the following corollary as stated in [21].

Corollary 3.6. Letbbe a non zero complex number. Iff ∈ Aand 1 + 1

b

zf0(z) f(z) −1

≺ 1 +z 1−z,

then f(z)

z ≺ 1

(1−z)2b and (1−z)1 2b is the best dominant.

(14)

Differential Subordinations and Superordinations for Analytic

Functions Defined by the Dziok-Srivastava Linear

Operator

G. Murugusundaramoorthy and N. Magesh

Title Page Contents

JJ II

J I

Go Back Close

Quit Page14of20

Choosing the values of l = 1, m = 0, α1 = 1 and q(z) = (1−z)12ab (b ∈ C− {0}), γ = 1b andδ =a 6= 0in Theorem3.5above, we have the following corollary as stated in [15].

Corollary 3.7. Letbbe a non zero complex number. Iff ∈ Aand 1 + 1

b

zf0(z) f(z) −1

≺ 1 +z 1−z,

then

f(z) z

a

≺ 1

(1−z)2ab

wherea6= 0is a complex number and (1−z)12ab is the best dominant.

Similarly for l = 2, m = 1, α1 = 1, α2 = 1, β1 = 1and q(z) = (1−z)1 2b

(b ∈ C− {0}), γ = 1b andδ = 1in Theorem3.5 above, we get the following result as stated in [21].

Corollary 3.8. Letbbe a non zero complex number. Iff ∈ Aand 1 + 1

b

zf00(z) f0(z) −1

≺ 1 +z 1−z, then

f0(z)≺ 1 (1−z)2b and (1−z)1 2b is the best dominant.

(15)

Differential Subordinations and Superordinations for Analytic

Functions Defined by the Dziok-Srivastava Linear

Operator

G. Murugusundaramoorthy and N. Magesh

Title Page Contents

JJ II

J I

Go Back Close

Quit Page15of20

Next, applying Lemma2.3, we have the following theorem.

Theorem 3.9. Let q(z) be convex univalent in ∆, λ ∈ C and 0 < δ < 1.

Supposef ∈ Asatisfies

(3.9) Re

δ λ

>0

and

Hml1]f(z) z

δ

∈H[q(0),1]∩Q.Let

(1−λα1)

Hml1]f(z) z

δ +λα1

Hml1]f(z) z

δ

Hml1+ 1]f(z) Hml1]f(z)

be univalent in∆.Iff ∈ Asatisfies the superordination,

(3.10) q(z) + λ

δzq0(z)≺(1−λα1)

Hml1]f(z) z

δ

+λα1

Hml1]f(z) z

δ

Hml1+ 1]f(z) Hml1]f(z)

then

q(z)≺

Hml1]f(z) z

δ

andq(z)is the best subordinant.

(16)

Differential Subordinations and Superordinations for Analytic

Functions Defined by the Dziok-Srivastava Linear

Operator

G. Murugusundaramoorthy and N. Magesh

Title Page Contents

JJ II

J I

Go Back Close

Quit Page16of20

Proof. Define the functionp(z)by

(3.11) p(z) :=

Hml1]f(z) z

δ .

Using (3.11), simple computation produces zp0(z)

δ :=α1

Hml1]f(z) z

δ

Hml1+ 1]f(z) Hml1]f(z) −1

, then

q(z) + λ

δzq0(z)≺p(z) + λ

δzp0(z).

By setting ϑ(w) = w and φ(w) = λδ, it is easily observed that ϑ(w) is analytic inC.Also,φ(w)is analytic inC\{0}andφ(w)6= 0,(w∈C\{0}).

Sinceq(z)is a convex univalent function, it follows that

<

ϑ0(q(z)) φ(q(z))

=<

δ λ

>0, z ∈∆, δ, λ∈C, δ, λ6= 0.

Now Theorem3.9follows by applying Lemma2.3.

Concluding the results of differential subordination and superordination, we state the following sandwich result.

Theorem 3.10. Let q1 andq2 be convex univalent in∆, λ∈ Cand0< δ < 1.

Supposeq2satisfies (3.1) andq1 satisfies (3.9). If

Hml 1]f(z) z

δ

∈ H[q(0),1]∩

(17)

Differential Subordinations and Superordinations for Analytic

Functions Defined by the Dziok-Srivastava Linear

Operator

G. Murugusundaramoorthy and N. Magesh

Title Page Contents

JJ II

J I

Go Back Close

Quit Page17of20

Q,

(1−λα1)

Hml1]f(z) z

δ +λα1

Hml1]f(z) z

δ

Hml1+ 1]f(z) Hml1]f(z)

is univalent in∆.Iff ∈ Asatisfies

q1(z) + λ

δzq10(z)≺(1−λα1)

Hml1]f(z) z

δ

(3.12)

+λα1

Hml1]f(z) z

δ

Hml1+ 1]f(z) Hml1]f(z)

≺q2(z) + λ

δzq02(z), then

q1(z)≺

Hml1]f(z) z

δ

≺q2(z)

andq1, q2are respectively the best subordinant and best dominant.

(18)

Differential Subordinations and Superordinations for Analytic

Functions Defined by the Dziok-Srivastava Linear

Operator

G. Murugusundaramoorthy and N. Magesh

Title Page Contents

JJ II

J I

Go Back Close

Quit Page18of20

References

[1] R.M. ALI, V. RAVICHANDRAN, M. HUSSAIN KHANANDK.G. SUB- RAMANIAN, Differential sandwich theorems for certain analytic func- tions, Far East J. Math. Sci., 15(1) (2005), 87–94.

[2] I.E. BAZILEVIC, On a case of integrability in quadratures of the Loewner- kuarev equation, Mat. Sb., 37 (1955), 471–476.

[3] S.D. BERNARDI, Convex and starlike univalent functions, Trans. Amer.

Math. Soc., 135 (1969), 429–446.

[4] T. BULBOAC ˘A, A class of superordination-preserving integral operators, Indag. Math., New Ser., 13(3) (2002), 301–311.

[5] T. BULBOAC ˘A, Classes of first order differential superordinations, Demonstr. Math., 35(2) (2002), 287–292.

[6] B.C. CARLSON AND D.B. SHAFFER, Starlike and prestarlike hyperge- ometric functions, SIAM J. Math. Anal., 15(4) (1984), 737–745.

[7] J. DZIOKANDH.M. SRIVASTAVA, Classes of analytic functions associ- ated with the generalized hypergeometric function, Appl. Math. Comput., 103(1) (1999), 1–13.

[8] J. DZIOKAND H.M. SRIVASTAVA, Certain subclasses of analytic func- tions associated with the generalized hypergeometric function, Integral Transforms Spec. Funct., 14(1) (2003), 7–18.

[9] JU. E. HOHLOV, Operators and operations on the class of univalent func- tions, Izv. Vyssh. Uchebn. Zaved. Mat., 10 (197) (1978) 83–89.

(19)

Differential Subordinations and Superordinations for Analytic

Functions Defined by the Dziok-Srivastava Linear

Operator

G. Murugusundaramoorthy and N. Magesh

Title Page Contents

JJ II

J I

Go Back Close

Quit Page19of20

[10] R.J. LIBERA, Some classes of regular univalent functions, Proc. Amer.

Math. Soc., 16 (1965), 755–758.

[11] M.S. LIU, Properties for some subclasses of analytic functions, Bull. Insti.

Math. Acad. Sinica., 30(1) (2002), 9–26.

[12] A.E. LIVINGSTON, On the radius of univalence of certain analytic func- tions, Proc. Amer. Math. Soc., 17 (1966), 352–357.

[13] S.S. MILLER AND P.T. MOCANU, Differential Subordinations: Theory and Applications, Marcel Dekker Inc., New York, (2000).

[14] S.S. MILLER AND P.T. MOCANU, Subordinants of differential superor- dinations, Complex Variables, 48(10) (2003), 815–826.

[15] M. OBRADOVIC, M.K. AOUFANDS. OWA, On some results for starlike functions of complex order, Pub. De. L’ Inst. Math., 46 (60) (1989), 79–

85.

[16] S. OWA, On the distortion theorems I, Kyungpook Math. J., 18(1) (1978), 53–59.

[17] S. OWA ANDH.M. SRIVASTAVA, Univalent and starlike generalized hy- pergeometric functions, Canad. J. Math., 39(5) (1987), 1057–1077.

[18] S. RUSCHEWEYH, New criteria for univalent functions, Proc. Amer.

Math. Soc., 49 (1975), 109–115.

[19] T.N. SHANMUGAM, V. RAVICHANDRAN AND S. SIVASUBRAMA- NIAN, Differential sandwich theorems for some subclasses of analytic functions, Aust. J. Math. Anal. Appl., 3(1) (2006), Art. 8.

(20)

Differential Subordinations and Superordinations for Analytic

Functions Defined by the Dziok-Srivastava Linear

Operator

G. Murugusundaramoorthy and N. Magesh

Title Page Contents

JJ II

J I

Go Back Close

Quit Page20of20

[20] H.M. SRIVASTAVA, Some families of fractional derivative and other lin- ear operators associated with analytic, univalent and multivalent functions, Proc. International Conf. Analysis and its Applications, Allied Publishers Ltd, New Delhi (2001), 209–243.

[21] H.M. SRIVASTAVAANDA.Y. LASHIN, Some applications of the Briot- Bouquet differential subordination, J. Inequal. Pure Appl. Math., 6(2) (2005), Art. 41. [ONLINE:http://jipam.vu.edu.au/article.

php?sid=510].

参照

関連したドキュメント

Key words: Multivalently analytic functions, Hadamard product (or convolution), Differential subordination, Hypergeometric functions, Fractional Differintegral operator,

Aouf, On fractional derivative and fractional integrals of certain sub- classes of starlike and convex functions, Math.. Srivastava, Some families of starlike functions with

Furthermore, the following analogue of Theorem 1.13 shows that though the constants in Theorem 1.19 are sharp, Simpson’s rule is asymptotically better than the trapezoidal

Key words: Analytic function; Multivalent function; Linear operator; Convex univalent func- tion; Hadamard product (or convolution); Subordination; Integral operator.... Analytic

We use these to show that a segmentation approach to the EIT inverse problem has a unique solution in a suitable space using a fixed point

In order to prove these theorems, we need rather technical results on local uniqueness and nonuniqueness (and existence, as well) of solutions to the initial value problem for

The main purpose of this paper is to establish new inequalities like those given in Theorems A, B and C, but now for the classes of m-convex functions (Section 2) and (α,

inter-universal Teichm¨ uller theory, punctured elliptic curve, number field, mono-complex, ´ etale theta function, 6-torsion points, height, explicit esti- mate, effective