• 検索結果がありません。

HADAMARD TYPE INEQUALITIES FOR m-CONVEX AND (α, m)-CONVEX FUNCTIONS

N/A
N/A
Protected

Academic year: 2022

シェア "HADAMARD TYPE INEQUALITIES FOR m-CONVEX AND (α, m)-CONVEX FUNCTIONS"

Copied!
25
0
0

読み込み中.... (全文を見る)

全文

(1)

Inequalities form-Convex and (α, m)-Convex Functions M. Klariˇci´c Bakula, M. E. Özdemir

and J. Peˇcari´c vol. 9, iss. 4, art. 96, 2008

Title Page

Contents

JJ II

J I

Page1of 25 Go Back Full Screen

Close

HADAMARD TYPE INEQUALITIES FOR m-CONVEX AND (α, m)-CONVEX FUNCTIONS

M. KLARI ˇCI ´C BAKULA M. E. ÖZDEMIR

Department of Mathematics Atatürk University

Faculty of Science K. K. Education Faculty

University of Split Department of Mathematics

Teslina 12, 21000 Split, Croatia 25240 Kampüs, Erzurum, Turkey

EMail:milica@pmfst.hr EMail:emos@atauni.edu.tr

J. PE ˇCARI ´C

Faculty of Textile Technology University of Zagreb

Pierottijeva 6, 10000 Zagreb, Croatia EMail:pecaric@hazu.hr

Received: 03 March, 2008

Accepted: 31 July, 2008

Communicated by: E. Neuman 2000 AMS Sub. Class.: 26D15, 26A51.

Key words: m-convex functions,(α, m)-convex functions, Hadamard’s inequalities

(2)

Inequalities form-Convex and (α, m)-Convex Functions M. Klariˇci´c Bakula, M. E. Özdemir

and J. Peˇcari´c vol. 9, iss. 4, art. 96, 2008

Title Page Contents

JJ II

J I

Page2of 25 Go Back Full Screen

Close Abstract: In this paper we establish several Hadamard type inequalities for dif-

ferentiable m-convex and (α, m)-convex functions. We also establish Hadamard type inequalities for products of two m-convex or (α, m)- convex functions. Our results generalize some results of B.G. Pachpatte as well as some results of C.E.M. Pearce and J. Peˇcari´c.

(3)

Inequalities form-Convex and (α, m)-Convex Functions M. Klariˇci´c Bakula, M. E. Özdemir

and J. Peˇcari´c vol. 9, iss. 4, art. 96, 2008

Title Page Contents

JJ II

J I

Page3of 25 Go Back Full Screen

Close

Contents

1 Introduction 4

2 Inequalities form-Convex Functions 9

3 Inequalities for(α, m)-Convex Functions 18

(4)

Inequalities form-Convex and (α, m)-Convex Functions M. Klariˇci´c Bakula, M. E. Özdemir

and J. Peˇcari´c vol. 9, iss. 4, art. 96, 2008

Title Page Contents

JJ II

J I

Page4of 25 Go Back Full Screen

Close

1. Introduction

The following definitions are well known in literature.

Let[0, b],wherebis greater than0,be an interval of the real lineR,and letK(b) denote the class of all functionsf : [0, b]→Rwhich are continuous and nonnegative on[0, b]and such thatf(0) = 0.

We say that the functionf is convex on[0, b]if

f(tx+ (1−t)y)≤tf(x) + (1−t)f(y)

holds for allx, y ∈[0, b]andt ∈[0,1].LetKC(b)denote the class of all functions f ∈ K(b) convex on[0, b],and let KF (b)be the class of all functionsf ∈ K(b) convex in mean on [0, b], that is, the class of all functions f ∈ K(b) for which F ∈KC(b),where the mean functionF of the functionf ∈K(b)is defined by

F (x) = ( 1

x

Rx

0 f(t) dt, x∈(0, b] ;

0, x= 0.

LetKS(b)denote the class of all functionsf ∈K(b)which are starshaped with respect to the origin on[0, b],that is, the class of all functions f with the property that

f(tx)≤tf(x)

holds for all x ∈ [0, b] and t ∈ [0,1]. In [1] Bruckner and Ostrow, among others, proved that

KC(b)⊂KF (b)⊂KS(b).

In [9] G. Toader defined m-convexity: another intermediate between the usual convexity and starshaped convexity.

(5)

Inequalities form-Convex and (α, m)-Convex Functions M. Klariˇci´c Bakula, M. E. Özdemir

and J. Peˇcari´c vol. 9, iss. 4, art. 96, 2008

Title Page Contents

JJ II

J I

Page5of 25 Go Back Full Screen

Close

Definition 1.1. The functionf : [0, b] → R, b > 0,is said to bem-convex, where m∈[0,1],if we have

f(tx+m(1−t)y)≤tf(x) +m(1−t)f(y)

for allx, y ∈[0, b]andt∈[0,1].We say thatf ism-concave if−f ism-convex.

Denote byKm(b)the class of allm-convex functions on[0, b]for whichf(0) ≤0.

Obviously, for m = 1 Definition 1.1recaptures the concept of standard convex functions on[0, b],and form = 0the concept of starshaped functions.

The following lemmas hold (see [10]).

Lemma A. Iff is in the classKm(b),then it is starshaped.

Lemma B. If f is in the classKm(b)and0 < n < m ≤ 1,thenf is in the class Kn(b).

From LemmaAand LemmaBit follows that

K1(b)⊂Km(b)⊂K0(b),

whenever m ∈ (0,1). Note that in the classK1(b)are only convex functions f : [0, b] → R for which f(0) ≤ 0, that is,K1(b)is a proper subclass of the class of convex functions on[0, b].

It is interesting to point out that for anym ∈(0,1)there are continuous and dif- ferentiable functions which arem-convex, but which are not convex in the standard sense (see [11]).

In [3] S.S. Dragomir and G. Toader proved the following Hadamard type inequal- ity form-convex functions.

(6)

Inequalities form-Convex and (α, m)-Convex Functions M. Klariˇci´c Bakula, M. E. Özdemir

and J. Peˇcari´c vol. 9, iss. 4, art. 96, 2008

Title Page Contents

JJ II

J I

Page6of 25 Go Back Full Screen

Close

Theorem A. Let f : [0,∞) → R be an m-convex function with m ∈ (0,1]. If 0≤a < b <∞andf ∈L1([a, b])then

(1.1) 1

b−a Z b

a

f(x)dx≤min

(f(a) +mf mb

2 ,f(b) +mf ma 2

) . Some generalizations of this result can be found in [4].

The notion ofm-convexity has been further generalized in [5] as it is stated in the following definition:

Definition 1.2. The function f : [0, b] → R, b > 0, is said to be (α, m)-convex, where(α, m)∈[0,1]2,if we have

f(tx+m(1−t)y)≤tαf(x) +m(1−tα)f(y) for allx, y ∈[0, b]andt∈[0,1].

Denote by Kmα(b) the class of all (α, m)-convex functions on [0, b] for which f(0) ≤0.

It can be easily seen that for(α, m)∈ {(0,0),(α,0),(1,0),(1, m),(1,1),(α,1)}

one obtains the following classes of functions: increasing,α-starshaped, starshaped, m-convex, convex andα-convex functions respectively. Note that in the classK11(b) are only convex functionsf : [0, b] → R for which f(0) ≤ 0, that is K11(b) is a proper subclass of the class of all convex functions on[0, b].The interested reader can find more about partial ordering of convexity in [8, p. 8, 280].

In [2] in order to prove some inequalities related to Hadamard’s inequality S. S.

Dragomir and R. P. Agarwal used the following lemma.

(7)

Inequalities form-Convex and (α, m)-Convex Functions M. Klariˇci´c Bakula, M. E. Özdemir

and J. Peˇcari´c vol. 9, iss. 4, art. 96, 2008

Title Page Contents

JJ II

J I

Page7of 25 Go Back Full Screen

Close

Lemma C. Letf : I → R, I ⊂ R,be a differentiable mapping on ˚I, anda, b ∈ I, wherea < b.Iff0 ∈L1([a, b]),then

(1.2) f(a) +f(b)

2 − 1

b−a Z b

a

f(x)dx= b−a 2

Z 1 0

(1−2t)f0(ta+ (1−t)b)dt.

Here ˚I denotes the interior of I.

In [7], using the same LemmaC, C.E.M. Pearce and J. Peˇcari´c proved the follow- ing theorem.

Theorem B. Letf :I →R, I ⊂R,be a differentiable mapping onI0,anda, b∈I, wherea < b.If|f0|q is convex on[a, b]for someq ≥1,then

f(a) +f(b)

2 − 1

b−a Z b

a

f(x)dx

≤ b−a 4

|f0(a)|q+|f0(b)|q 2

1q

and f

a+b 2

− 1 b−a

Z b a

f(x)dx

≤ b−a 4

|f0(a)|q+|f0(b)|q 2

1q .

In [6] B. G. Pachpatte established two new Hadamard type inequalities for prod- ucts of convex functions. They are given in the next theorem.

Theorem C. Let f, g : [a, b] → [0,∞) be convex functions on [a, b] ⊂ R, where a < b.Then

(1.3) 1

b−a Z b

a

f(x)g(x) dx≤ 1

3M(a, b) + 1

6N(a, b),

whereM(a, b) =f(a)g(a) +f(b)g(b)andN(a, b) = f(a)g(b) +f(b)g(a).

(8)

Inequalities form-Convex and (α, m)-Convex Functions M. Klariˇci´c Bakula, M. E. Özdemir

and J. Peˇcari´c vol. 9, iss. 4, art. 96, 2008

Title Page Contents

JJ II

J I

Page8of 25 Go Back Full Screen

Close

The main purpose of this paper is to establish new inequalities like those given in TheoremsA,BandC, but now for the classes ofm-convex functions (Section2) and(α, m)-convex functions (Section3).

(9)

Inequalities form-Convex and (α, m)-Convex Functions M. Klariˇci´c Bakula, M. E. Özdemir

and J. Peˇcari´c vol. 9, iss. 4, art. 96, 2008

Title Page Contents

JJ II

J I

Page9of 25 Go Back Full Screen

Close

2. Inequalities for m-Convex Functions

Theorem 2.1. LetI be an open real interval such that[0,∞) ⊂ I.Letf : I → R be a differentiable function onI such thatf0 ∈L1([a, b]),where0 ≤ a < b < ∞.

If|f0|qism-convex on[a, b]for some fixedm∈(0,1]andq∈[1,∞),then

f(a) +f(b)

2 − 1

b−a Z b

a

f(x)dx

≤ b−a 4 min

|f0(a)|q+m

f0 mb

q

2

!1q

, m

f0 ma

q+|f0(b)|q 2

!1q

 .

Proof. Suppose thatq = 1.From LemmaCwe have (2.1)

f(a) +f(b)

2 − 1

b−a Z b

a

f(x)dx

≤ b−a 2

Z 1 0

|1−2t| |f0(ta+ (1−t)b)|dt.

Since|f0|ism-convex on[a, b]we know that for anyt ∈[0,1]

|f0(ta+ (1−t)b)|=

f0

ta+m(1−t) b m

≤t|f0(a)|+m(1−t)

f0 b

m

,

(10)

Inequalities form-Convex and (α, m)-Convex Functions M. Klariˇci´c Bakula, M. E. Özdemir

and J. Peˇcari´c vol. 9, iss. 4, art. 96, 2008

Title Page Contents

JJ II

J I

Page10of 25 Go Back Full Screen

Close

hence

f(a) +f(b)

2 − 1

b−a Z b

a

f(x)dx

≤ b−a 2

Z 1 0

|1−2t|

t|f0(a)|+m(1−t)

f0 b

m

dt

= b−a 2

Z 1 0

t|1−2t| |f0(a)|+m(1−t)|1−2t|

f0 b

m

dt

= b−a 2

(Z 12

0

t(1−2t)|f0(a)|+m(1−t) (1−2t)

f0 b

m

dt

+ Z 1

1 2

t(2t−1)|f0(a)|+m(1−t) (2t−1)

f0 b

m

dt )

= b−a 8

|f0(a)|+m

f0 b

m

. Analogously we obtain

f(a) +f(b)

2 − 1

b−a Z b

a

f(x)dx

≤ b−a 8

m

f0a

m

+|f0(b)|

, which completes the proof for this case.

Suppose now that q > 1. Using the well known Hölder inequality for q and p=q/(q−1)we obtain

Z 1 0

|1−2t| |f0(ta+ (1−t)b)|dt

= Z 1

0

|1−2t|1−1q |1−2t|1q |f0(ta+ (1−t)b)|dt

(11)

Inequalities form-Convex and (α, m)-Convex Functions M. Klariˇci´c Bakula, M. E. Özdemir

and J. Peˇcari´c vol. 9, iss. 4, art. 96, 2008

Title Page Contents

JJ II

J I

Page11of 25 Go Back Full Screen

Close

≤ Z 1

0

|1−2t|dt

q−1

q Z 1

0

|1−2t| |f0(ta+ (1−t)b)|qdt 1q (2.2) .

Since|f0|qism-convex on[a, b]we know that for everyt∈[0,1]

(2.3) |f0(ta+ (1−t)b)|q≤t|f0(a)|q+m(1−t)

f0 b

m

q

, hence from(2.1),(2.2)and(2.3)we have

f(a) +f(b)

2 − 1

b−a Z b

a

f(x)dx

≤ b−a 2

Z 1 0

|1−2t|dt

q−1

q Z 1

0

|1−2t|

f0

ta+m(1−t) b m

q

dt 1q

≤ b−a 2

Z 1 0

|1−2t|dt

q−1

q

1 4

|f0(a)|q+m

f0 b

m

q1q

= b−a 4

m|f0(a)|q+m

f0 mb

q

2

!1q

and analogously

f(a) +f(b)

2 − 1

b−a Z b

a

f(x)dx

≤ b−a 4

m

f0 ma

q+|f0(b)|q 2

!1q , which completes the proof.

(12)

Inequalities form-Convex and (α, m)-Convex Functions M. Klariˇci´c Bakula, M. E. Özdemir

and J. Peˇcari´c vol. 9, iss. 4, art. 96, 2008

Title Page Contents

JJ II

J I

Page12of 25 Go Back Full Screen

Close

Theorem 2.2. Suppose that all the assumptions of Theorem2.1are satisfied. Then

f

a+b 2

− 1 b−a

Z b a

f(x)dx

≤ b−a 4 min

|f0(a)|q+m

f0 mb

q

2

!1q

, m

f0 ma

q+|f0(b)|q 2

!1q

 . Proof. Our starting point here is the identity (see [7, Theorem 2])

f

a+b 2

− 1 b−a

Z b a

f(x)dx= 1 b−a

Z b a

S(x)f0(x)dx, where

S(x) =

x−a, x∈

a,a+b2

; x−b, x∈a+b

2 , b . We have

f

a+b 2

− 1 b−a

Z b a

f(x)dx

≤ 1 b−a

"

Z a+b2

a

(x−a)|f0(x)|dx+ Z b

a+b 2

(b−x)|f0(x)|dx

#

= (b−a)

"

Z 12

0

t|f0(ta+ (1−t)b)|dt+ Z 1

1 2

(1−t)|f0(ta+ (1−t)b)|dt

#

(13)

Inequalities form-Convex and (α, m)-Convex Functions M. Klariˇci´c Bakula, M. E. Özdemir

and J. Peˇcari´c vol. 9, iss. 4, art. 96, 2008

Title Page Contents

JJ II

J I

Page13of 25 Go Back Full Screen

Close

≤(b−a)

"

Z 12

0

t

t|f0(a)|+m(1−t)

f0 b

m

dt

+ Z 1

1 2

(1−t)

t|f0(a)|+m(1−t)

f0 b

m

dt

#

= b−a 8

|f0(a)|+m

f0 b

m

, and analogously

f

a+b 2

− 1 b−a

Z b a

f(x)dx

≤ b−a 8

m

f0a

m

+|f0(b)|

. This completes the proof for the caseq = 1.

An argument similar to the one used in the proof of Theorem2.1gives the proof for the caseq∈(1,∞).

As a special case of Theorem2.1form = 1,that is for|f0|q convex on[a, b],we obtain the first inequality in TheoremB. Similarly, as a special case of Theorem2.2 we obtain the second inequality in TheoremB.

Theorem 2.3. LetI be an open real interval such that[0,∞) ⊂ I.Letf : I → R be a differentiable function onI such thatf0 ∈L1([a, b]),where0 ≤ a < b < ∞.

If|f0|qism-convex on[a, b]for some fixedm∈(0,1]andq∈(1,∞),then

f(a) +f(b)

2 − 1

b−a Z b

a

f(x)dx

≤ b−a 4

q−1 2q−1

q−1q µ

1 q

1

1 q

2

≤ b−a 4

µ

1 q

1

1 q

2

, (2.4)

(14)

Inequalities form-Convex and (α, m)-Convex Functions M. Klariˇci´c Bakula, M. E. Özdemir

and J. Peˇcari´c vol. 9, iss. 4, art. 96, 2008

Title Page Contents

JJ II

J I

Page14of 25 Go Back Full Screen

Close

where

µ1 = min

(|f0(a)|q+m

f0 a+b2m

q

2 ,

f0 a+b2

q+m

f0 ma

q

2

) ,

µ2 = min

(|f0(b)|q+m

f0 a+b2m

q

2 ,

f0 a+b2

q+m

f0 mb

q

2

) . Proof. If|f0|qism-convex from TheoremAwe have

2 Z 1

1 2

|f0(ta+ (1−t)b)|qdt ≤µ1, 2

Z 12

0

|f0(ta+ (1−t)b)|qdt ≤µ2, hence

f(a) +f(b)

2 − 1

b−a Z b

a

f(x)dx

≤ b−a 2

Z 1 0

|1−2t| |f0(ta+ (1−t))|dt

= b−a 2

"

Z 12

0

(1−2t)|f0(ta+ (1−t)b)|dt+ Z 1

1 2

(2t−1)|f0(ta+ (1−t)b)|dt

# . Using Hölder’s inequality forq∈(1,∞)andp=q/(q−1)we obtain

f(a) +f(b)

2 − 1

b−a Z b

a

f(x)dx

(15)

Inequalities form-Convex and (α, m)-Convex Functions M. Klariˇci´c Bakula, M. E. Özdemir

and J. Peˇcari´c vol. 9, iss. 4, art. 96, 2008

Title Page Contents

JJ II

J I

Page15of 25 Go Back Full Screen

Close

≤ b−a 2

 Z 12

0

(1−2t)q−1q dt

!q−1q Z 12

0

|f0(ta+ (1−t)b)|qdt

!1q

+ Z 1

1 2

(2t−1)q−1q dt

!q−1q Z 1

1 2

|f0(ta+ (1−t)b)|qdt

!1q

≤ b−a 4

q−1 2q−1

q−1q µ

1 q

1

1 q

2

, since

Z 12

0

(1−2t)q−1q dt= Z 1

1 2

(2t−1)q−1q dt= q−1 2 (2q−1).

This completes the proof of the first inequality in(2.4).The second inequality in (2.4)follows from the fact

1 2 <

q−1 2q−1

q−1q

<1, q ∈(1,∞).

Theorem 2.4. Let f, g : [0,∞) → [0,∞) be such that f g is in L1([a, b]), where 0 ≤ a < b < ∞. If f is m1-convex and g is m2-convex on [a, b] for some fixed m1, m2 ∈(0,1],then

1 b−a

Z b a

f(x)g(x) dx≤min{M1, M2},

(16)

Inequalities form-Convex and (α, m)-Convex Functions M. Klariˇci´c Bakula, M. E. Özdemir

and J. Peˇcari´c vol. 9, iss. 4, art. 96, 2008

Title Page Contents

JJ II

J I

Page16of 25 Go Back Full Screen

Close

where

M1 = 1 3

f(a)g(a) +m1m2f b

m1

g b

m2

+1 6

m2f(a)g b

m2

+m1f b

m1

g(a)

,

M2 = 1 3

f(b)g(b) +m1m2f a

m1

g a

m2

+ 1 6

m2f(b)g a

m2

+m1f a

m1

g(b)

. Proof. We have

f

ta+m1(1−t) b m1

≤tf(a) +m1(1−t)f b

m1

, g

ta+m2(1−t) b m2

≤tg(a) +m2(1−t)g b

m2

, for allt∈[0,1]. f andgare nonnegative, hence

f

ta+m1(1−t) b m1

g

ta+m2(1−t) b m2

≤t2f(a)g(a) +m2t(1−t)f(a)g b

m2

+m1t(1−t)f b

m1

g(a) +m1m2(1−t)2f

b m1

g

b m2

.

(17)

Inequalities form-Convex and (α, m)-Convex Functions M. Klariˇci´c Bakula, M. E. Özdemir

and J. Peˇcari´c vol. 9, iss. 4, art. 96, 2008

Title Page Contents

JJ II

J I

Page17of 25 Go Back Full Screen

Close

Integrating both sides of the above inequality over[0,1]we obtain Z 1

0

f(ta+ (1−t)b)g(ta+ (1−t)b) dt

= 1

b−a Z b

a

f(x)g(x) dx

≤ 1 3

f(a)g(a) +m1m2f b

m1

g

b m2

+1 6

m2f(a)g b

m2

+m1f b

m1

g(a)

. Analogously we obtain

1 b−a

Z b a

f(x)g(x) dx≤ 1 3

f(b)g(b) +m1m2f a

m1

g a

m2

+1 6

m2f(b)g a

m2

+m1f a

m1

g(b)

, hence

1 b−a

Z b a

f(x)g(x) dx≤min{M1, M2}.

Remark 1. If in Theorem2.4we choose a1-convex (convex) functiong : [0,∞)→ [0,∞)defined byg(x) = 1for allx∈[0,∞), we obtain

1 b−a

Z b a

f(x) dx≤min

(f(a) +mf mb

2 ,f(b) +mf ma 2

) , which is(1.1).If the functionsf andg are1-convex we obtain(1.3).

(18)

Inequalities form-Convex and (α, m)-Convex Functions M. Klariˇci´c Bakula, M. E. Özdemir

and J. Peˇcari´c vol. 9, iss. 4, art. 96, 2008

Title Page Contents

JJ II

J I

Page18of 25 Go Back Full Screen

Close

3. Inequalities for (α, m)-Convex Functions

In this section on two examples we ilustrate how the same inequalities as in Section 2 can be obtained for the class of(α, m)-convex functions.

Theorem 3.1. LetI be an open real interval such that[0,∞) ⊂ I.Letf : I → R be a differentiable function onI such thatf0 ∈L1([a, b]),where0 ≤ a < b < ∞.

If|f0|qis(α, m)-convex on[a, b]for some fixedα, m∈(0,1]andq∈[1,∞),then

f(a) +f(b)

2 − 1

b−a Z b

a

f(x)dx

≤ b−a 2

1 2

q−1q

·min (

ν1|f0(a)|q2m

f0 b

m

q1q ,

ν1|f0(b)|q2m f0a

m

q1q , where

ν1 = 1

(α+ 1) (α+ 2)

α+ 1

2 α

,

ν2 = 1

(α+ 1) (α+ 2)

α2+α+ 2

2 −

1 2

α . Proof. Suppose thatq = 1.From LemmaAwe have

(3.1)

f(a) +f(b)

2 − 1

b−a Z b

a

f(x)dx

≤ b−a 2

Z 1 0

|1−2t| |f0(ta+ (1−t)b)|dt.

(19)

Inequalities form-Convex and (α, m)-Convex Functions M. Klariˇci´c Bakula, M. E. Özdemir

and J. Peˇcari´c vol. 9, iss. 4, art. 96, 2008

Title Page Contents

JJ II

J I

Page19of 25 Go Back Full Screen

Close

Since|f0|is(α, m)-convex on[a, b]we know that for anyt ∈[0,1]

f0

ta+m(1−t) b m

≤tα|f0(a)|+m(1−tα)

f0 b

m

, thus we have

f(a) +f(b)

2 − 1

b−a Z b

a

f(x)dx

≤ b−a 2

Z 1 0

|1−2t|

tα|f0(a)|+m(1−tα)

f0 b

m

dt

= b−a 2

Z 1 0

tα|1−2t| |f0(a)|+m(1−tα)|1−2t|

f0 b

m

dt.

We have

Z 1 0

tα|1−2t|dt= 1

(α+ 1) (α+ 2)

α+ 1

2 α

1, Z 1

0

(1−tα)|1−2t|dt= 1

(α+ 1) (α+ 2)

α2 +α+ 2

2 −

1 2

α

2, hence

f(a) +f(b)

2 − 1

b−a Z b

a

f(x)dx

≤ b−a 2

ν1|f0(a)|+ν2m

f0 b

m

. Analogously we obtain

f(a) +f(b)

2 − 1

b−a Z b

a

f(x)dx

≤ b−a 2

ν1|f0(b)|+ν2m f0a

m

,

(20)

Inequalities form-Convex and (α, m)-Convex Functions M. Klariˇci´c Bakula, M. E. Özdemir

and J. Peˇcari´c vol. 9, iss. 4, art. 96, 2008

Title Page Contents

JJ II

J I

Page20of 25 Go Back Full Screen

Close

which completes the proof for this case.

Suppose now thatq∈(1,∞).Similarly to Theorem2.1we have (3.2)

Z 1 0

|1−2t| |f0(ta+ (1−t)b)|dt

≤ Z 1

0

|1−2t|dt

q−1

q Z 1

0

|1−2t| |f0(ta+ (1−t)b)|qdt 1q

. Since|f0|qis(α, m)-convex on[a, b]we know that for everyt∈[0,1]

(3.3)

f0

ta+m(1−t) b m

q

≤tα|f0(a)|q+m(1−tα)

f0 b

m

q

, hence from(3.1),(3.2)and(3.3)we obtain

f(a) +f(b)

2 − 1

b−a Z b

a

f(x)dx

≤ b−a 2

Z 1 0

|1−2t|dt

q−1

q Z 1

0

|1−2t|

f0

ta+m(1−t) b m

q

dt 1q

≤ b−a 2

1 2

q−1q

ν1|f0(a)|q2m

f0 b

m

q1q

and analogously

f(a) +f(b)

2 − 1

b−a Z b

a

f(x)dx

≤ b−a 2

1 2

q−1q

ν1|f0(b)|q2m f0a

m

q1q , which completes the proof.

(21)

Inequalities form-Convex and (α, m)-Convex Functions M. Klariˇci´c Bakula, M. E. Özdemir

and J. Peˇcari´c vol. 9, iss. 4, art. 96, 2008

Title Page Contents

JJ II

J I

Page21of 25 Go Back Full Screen

Close

Observe that if in Theorem 3.1 we have α = 1 the statement of Theorem 3.1 becomes the statement of Theorem2.1.

Theorem 3.2. Let f, g : [0,∞) → [0,∞) be such that f g is in L1([a, b]), where 0≤a < b <∞.Iff is1, m1)-convex andg is2, m2)-convex on[a, b]for some fixedα1, m1, α2, m2 ∈(0,1],then

1 b−a

Z b a

f(x)g(x) dx≤min{N1, N2}, where

N1 = f(a)g(a)

α12+ 1 +m2 1

α1+ 1 − 1 α12+ 1

f(a)g

b m2

+m1 1

α2+ 1 − 1 α12+ 1

f

b m1

g(a) +m1m2

1− 1

α1+ 1 − 1

α2+ 1 + 1 α12+ 1

f

b m1

g

b m2

, and

N2 = f(b)g(b)

α12+ 1 +m2 1

α1+ 1 − 1 α12+ 1

f(b)g

a m2

+m1 1

α2 + 1 − 1 α12+ 1

f

a m1

g(b) +m1m2

1− 1

α1+ 1 − 1

α2+ 1 + 1 α12+ 1

f

a m1

g

a m2

.

(22)

Inequalities form-Convex and (α, m)-Convex Functions M. Klariˇci´c Bakula, M. E. Özdemir

and J. Peˇcari´c vol. 9, iss. 4, art. 96, 2008

Title Page Contents

JJ II

J I

Page22of 25 Go Back Full Screen

Close

Proof. Sincef is(α1, m1)-convex andg is(α2, m2)-convex on[a, b]we have f

ta+m1(1−t) b m1

≤tα1f(a) +m1(1−tα1)f b

m1

, g

ta+m2(1−t) b m2

≤tα2g(a) +m2(1−tα2)g b

m2

, for allt∈[0,1].The functionsf andg are nonnegative, hence

f(ta+ (1−t)b)g(ta+ (1−t)b)≤tα12f(a)g(a) +m2tα1(1−tα2)f(a)g

b m2

+m1tα2(1−tα1)f b

m1

g(a) +m1m2(1−tα1) (1−tα2)f

b m1

g

b m2

. Integrating both sides of the above inequality over[0,1]we obtain

Z 1 0

f(ta+ (1−t)b)g(ta+ (1−t)b) dt

= 1

b−a Z b

a

f(x)g(x) dx

≤ f(a)g(a)

α12+ 1 +m2

1

α1+ 1 − 1 α12+ 1

f(a)g b

m2

+m1

1

α2+ 1 − 1 α12+ 1

f

b m1

g(a) +m1m2

1− 1

α1+ 1 − 1

α2+ 1 + 1 α12+ 1

f

b m1

g

b m2

.

(23)

Inequalities form-Convex and (α, m)-Convex Functions M. Klariˇci´c Bakula, M. E. Özdemir

and J. Peˇcari´c vol. 9, iss. 4, art. 96, 2008

Title Page Contents

JJ II

J I

Page23of 25 Go Back Full Screen

Close

Analogously we have 1

b−a Z b

a

f(x)g(x) dx

≤ f(b)g(b)

α12+ 1 +m2 1

α1+ 1 − 1 α12+ 1

f(b)g

a m2

+m1 1

α2+ 1 − 1 α12+ 1

f

a m1

g(b) +m1m2

1− 1

α1+ 1 − 1

α2+ 1 + 1 α12+ 1

f

a m1

g

a m2

, which completes the proof.

If in Theorem3.2we haveα12 = 1,the statement of Theorem3.2becomes the statement of Theorem2.4.

(24)

Inequalities form-Convex and (α, m)-Convex Functions M. Klariˇci´c Bakula, M. E. Özdemir

and J. Peˇcari´c vol. 9, iss. 4, art. 96, 2008

Title Page Contents

JJ II

J I

Page24of 25 Go Back Full Screen

Close

References

[1] A.M. BRUCKNER AND E. OSTROW, Some function classes related to the class of convex functions, Pacific J. Math., 12 (1962), 1203–1215.

[2] S.S. DRAGOMIR AND R.P. AGARWAL, Two inequalities for differentiable mappings and applications to special means of real numbers and trapezoidal formula, Appl. Math. Lett., 11(5) (1998), 91–95.

[3] S.S. DRAGOMIR AND G. TOADER, Some inequalities for m-convex func- tions, Studia Univ. Babe¸s-Bolyai Math., 38(1) (1993), 21–28.

[4] M. KLARI ˇCI ´C BAKULA, J. PE ˇCARI ´C AND M. RIBI ˇCI ´C, Companion in- equalities to Jensen’s inequality for m-convex and (α, m)-convex functions, J. Inequal. Pure & Appl. Math., 7(5) (2006), Art. 194. [ONLINE: http:

//jipam.vu.edu.au/article.php?sid=811].

[5] V.G. MIHE ¸SAN, A generalization of the convexity, Seminar on Functional Equations, Approx. and Convex., Cluj-Napoca (Romania) (1993).

[6] B.G. PACHPATTE, On some inequalities for convex functions, RGMIA Res.

Rep.Coll., 6(E) (2003), [ONLINE: http://rgmia.vu.edu.au/v6(E) .html].

[7] C.E.M. PEARCE AND J. PE ˇCARI ´C, Inequalities for differentiable mappings with application to special means and quadrature formulae, Appl. Math. Lett., 13(2) (2000), 51–55.

[8] J.E. PE ˇCARI ´C, F. PROSCHAN AND Y.L. TONG, Convex Functions, Partial Orderings, and Statistical Applications, Academic Press, Inc. (1992).

(25)

Inequalities form-Convex and (α, m)-Convex Functions M. Klariˇci´c Bakula, M. E. Özdemir

and J. Peˇcari´c vol. 9, iss. 4, art. 96, 2008

Title Page Contents

JJ II

J I

Page25of 25 Go Back Full Screen

Close

[9] G. TOADER, Some generalizations of the convexity, Proceedings of the Collo- quium on Approximation and Optimization, Univ. Cluj-Napoca, Cluj-Napoca, 1985, 329-338.

[10] G. TOADER, On a generalization of the convexity, Mathematica, 30 (53) (1988), 83-87.

[11] S. TOADER, The order of a star-convex function, Bull. Applied & Comp.

Math., 85-B (1998), BAM-1473, 347–350.

参照

関連したドキュメント

In this paper, we derive generalized forms of the Ky Fan minimax inequality, the von Neumann-Sion minimax theorem, the von Neumann-Fan intersection theorem, the Fan-type

KÜSTNER, Mapping properties of hypergeometric functions and con- volutions of starlike or convex functions of Order α, Comput. Methods

RIMS Summer School (COSS 2018), Kyoto, July 2018.. Discrete Convex

In this paper, we …rst present a new de…nition of convex interval–valued functions which is called as interval–valued harmonically h–convex functions. Then, we establish some

We shall see below how such Lyapunov functions are related to certain convex cones and how to exploit this relationship to derive results on common diagonal Lyapunov function (CDLF)

&amp;BSCT. Let C, S and K be the classes of convex, starlike and close-to-convex functions respectively. Its basic properties, its relationship with other subclasses of S,

this result is re-derived in novel fashion, starting from a method proposed by F´ edou and Garcia, in [17], for some algebraic succession rules, and extending it to the present case

Specializing the members of Chebyshev systems, several applications and ex- amples are presented for concrete Hermite–Hadamard-type inequalities in both the cases of