• 検索結果がありません。

Uniform convexity, uniform non-squareness and von Neumann-Jordan constant for Banach spaces(Nonlinear Analysis and Convex Analysis)

N/A
N/A
Protected

Academic year: 2021

シェア "Uniform convexity, uniform non-squareness and von Neumann-Jordan constant for Banach spaces(Nonlinear Analysis and Convex Analysis)"

Copied!
10
0
0

読み込み中.... (全文を見る)

全文

(1)

Uniform

convexity,

unifom

$\mathrm{n}\mathrm{o}\mathrm{n}-\mathrm{s}\mathrm{q}\mathrm{u}\mathrm{a}\mathrm{r}e\mathrm{n}\mathrm{e}\mathrm{s}\mathrm{s}$

and

von

Neumann-Jordan

constant

for

Banach spaces

Mikio KATO

(加藤幹雄)

Kyushu

Institute

of

Technology

and

Okayama

Prefectural

University

Int

roduction

In

connection

with the famous work

[7]

of Jordan and

von

Neumann

.conceming

inner

products

Clarkson

[2]

introduced

$\mathrm{t}‘ \mathrm{h}\mathrm{e}$

von

$\mathrm{N}\mathrm{e}..\mathrm{u}\mathrm{m}\mathrm{a}\mathrm{m}^{-}$

Jordan

$(\mathrm{N}\mathrm{J}-)$

constant

for Banach spaces

X.

Despite

its fundamental

nature

very

little is

known

on

the

$\mathrm{N}\mathrm{J}$

-constant

by

now.

This

note

is

a

r\’esum\’e

of

some

recent

results

of the

authors

[12,

151

on

the

NJ-constant

especially concerning

some

geometrical properties of Banach

spaces

such

as

uniform

convexity,

uniform non-squareness, and also

supe

r-reflexivity.

1.

Definitions and

prelimainary

results

The

von

Neumann-Jordan

constant

for

a

Banach

spaceX([2]),

we

denote it

by

$\mathrm{C}_{\mathrm{N}\mathrm{J}}(\mathrm{X})$

,

is defined

to

be the

smallest

constant

$\mathrm{C}$

for which

(1. 1)

$\frac{1}{\mathrm{C}}\leqq$

$\frac{||\mathrm{x}+\mathrm{y}||22+||\mathrm{x}-\mathrm{y}||}{22}\leqq$

$\mathrm{C}$

2

$(||\mathrm{x}|| +||\mathrm{y}|| )$

hold for

all

$\mathrm{x}$

,

$\mathrm{y}$

$\in$

X

with

(

$\mathrm{x}$

,

y)

$\neq$

$(0, 0)$

.

(Note

that

the left and

right-hand

side

inequalities

in

(1. 1)

are

equivalent;

indeed,

put

$\mathrm{x}+\mathrm{y}$ $=\mathrm{u}$

,

$\mathrm{x}-\mathrm{y}=\mathrm{v})$

.

The

following

facts

are

easily

seen:

(2)

A

Proposition.

$( \mathrm{i} )$

$\mathrm{C}$

(X)

$=$

2

$2/\mathrm{t}-]$

1

$\leqq$ $\mathrm{t}$ $\leqq$

2,

if

and

only

NJ

if

$||$

A

:

$|_{2}^{2}(\mathrm{X})$

$arrow$

$|_{2}^{2}(\mathrm{X})||=$

$21/\mathrm{t}$

,

where

A

$=$

(ii)

$\mathrm{C}_{\mathrm{N}\mathrm{J}}(\mathrm{X}^{\mathrm{t}})$

$=$

$\mathrm{C}_{\mathrm{N}\mathrm{J}}(\mathrm{X})$

,

where

$\mathrm{X}^{\mathrm{t}}$

is

the dual space of

X.

(This

was

observed

for

$\mathrm{L}\mathrm{p}$

in Clarkson

[21.

)

Let

us

recall

some

classical and

recent

results in

[7],

[2],

and

$[101, [9]$

(see

also

[111),

where

the

$\mathrm{N}\mathrm{J}$

-constant

is calculated

for

some concrete

Banach

spaces:

B.

Theorem

$( \mathrm{i} )$

1

$\leqq$

$\mathrm{C}_{\mathrm{N}\mathrm{J}}(\mathrm{X})$

$\leqq$

2

for any Banach space

X;

and

$\mathrm{C}$

(X)

$=$

1

if and

only

if

X

is

a

Hilbert

space

(Jordan

and

von

Neu-NJ

mam

[7]

$)$

.

$2/\mathrm{t}-\rceil$

(ii)

Let

$\rceil$ $\leqq$

$\mathrm{P}$ $\leqq$ $\infty$

.

Then,

$\mathrm{C}_{\mathrm{N}\mathrm{J}}$

$=$

2

where

$\mathrm{t}$

$=$

$\min\{\mathrm{p}, \mathrm{p}^{\uparrow}\}$

,

$1/\mathrm{p}$

$+$

$1/\mathrm{P}^{1}$

$=$

1

(Clarkson [2]

;

see

also

[10]).

(\"ui )

Let

$\rceil$ $\leqq$

$\mathrm{p}$

,

$\mathrm{q}\leqq$ $\infty$

.

Then,

for

$\mathrm{L}\mathrm{p}$

(

$\mathrm{L}\mathrm{q}$

-valued

$\mathrm{L}\mathrm{p}$

-space

on

arbitrary

measure

$\mathrm{S}\mathrm{P}^{\mathrm{a}\mathrm{c}\mathrm{e}}\mathrm{S}\rangle$

,

$\mathrm{C}_{\mathrm{N}\mathrm{J}}$

$(\mathrm{L}\mathrm{p})$

$=$

$22/\mathrm{t}-\rceil$

where

$\mathrm{t}$

$=$

$\min\{\mathrm{p}, \mathrm{q}, \mathrm{p}^{\uparrow} , \mathrm{q}^{\dagger} \}$

,

$1/\mathrm{p}$

$+$

$1/\mathrm{P}^{\mathrm{t}}$

$=$

$1/\mathrm{q}$

$+$

$\rceil/\mathrm{q}^{1}$

$=$

1

:

and for the

Sobolev space

$\mathrm{w}_{\mathrm{P}}^{\mathrm{k}}\mathrm{t}\Omega$

),

$\mathrm{C}_{\mathrm{N}\mathrm{J}}\mathrm{t}\mathrm{w}_{\mathrm{P}}^{\mathrm{k}}\mathrm{t}\Omega$

))

$=$

$2^{2/\mathrm{t}-\rceil}$

where

$\mathrm{t}$

$=$

$\min\{\mathrm{p}, \mathrm{p}^{\mathrm{t}}\}$

(Kato

and

Miyaz

ak

$\mathrm{i}$

[10]).

(iv)

For

$\mathrm{E}=$

$\mathrm{c}_{\mathrm{c}}(\mathrm{K})$

resp.

$\mathrm{C}_{\mathrm{b}}(\mathrm{K})$

(the

spaces of

continuous

func-tions

on a

locally

$\mathrm{C}\mathrm{o}\mathrm{m}_{\mathrm{P}^{\mathrm{a}\mathrm{c}}}\mathrm{t}$

Hausdorff

space

$\mathrm{K}$

which have

compact support

(3)

The

above results

(iii)

(in

particular,

$(\mathrm{i}\mathrm{i})$

)

can

be

obtained in

a more

simple

way than

[101

by

using

arguments in

Hashimoto,

Kato and

Takahashi

[8;

Corollary

3.

6;

see

also

Theorem

3.

21.

Let

us

recall

some

definitions.

A

Banach space

X

is called:

,.

$(\mathrm{i} )$

stri

ctly

convex

if

$||(\mathrm{x}+ \mathrm{y})/2||<$

1

whenever

$||\mathrm{x}||=||\mathrm{y}||$

$=$

1,

$\mathrm{x}\neq$

$\mathrm{y}$

,

(ii)

$u\mathrm{n}i$

formly

convex

provided for

each

$\epsilon$

$(0<\epsilon< 2)$

there

exists

a

$\delta>$

$0$

such that

$||$

$(\mathrm{x} + \mathrm{y})/2||<$

1

– $\delta$

whenever

$||\mathrm{x}$ – $\mathrm{y}||$

$\geqq\epsilon$

.

$||\mathrm{x}||=||\mathrm{y}||=$

1,

(iii)

$(2, \epsilon)-coDVeX$

,

$\epsilon>$

$0$

,

(cf.

$[\rceil 31$

)

provided

$\min\{||\mathrm{x}+$

$\mathrm{y}||$

,

$||\mathrm{x}$ – $\mathrm{y}||$

}

$\leqq$

2

$($

1

– $\epsilon$ $)$

whenever

$||\mathrm{x}||=||\mathrm{y}||=$

1,

(iv)

$uni\dot{f}_{OIm}\mathit{1}y$

non-squa

$re$

(

$[5]$

;

cf.

[11,

[3])

if

there is

a

$\delta>$

$0$

such

that there

do

not

exist

$\mathrm{x}$

and

$\mathrm{y}$

in the

closed unit ball

of

X

for which

$||$

$(\mathrm{x} + \mathrm{y})/2||>$

1

– $\delta$

and

$||(\mathrm{x} -- \mathrm{y})/2||>$

1

– $\delta$

.

(Note

that uniform

non-squareness is

equivalent

to

$(2, \epsilon)-\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{v}\mathrm{e}\mathrm{x}\mathrm{i}\mathrm{t}\mathrm{y}$

.

)

A

Banach space

$\mathrm{Y}$

is said

to

be

fini

$\mathfrak{t}el\mathrm{y}$

represen

$\epsilon$

able

in

X

if for

any

$\lambda>$

1

and for

each finite-dimensional

subspace

$\mathrm{F}$

of

$\mathrm{Y}$

,

there

is

an

isomorphism

$\mathrm{T}$

of

$\mathrm{F}$

into

X

for which

$-]$

$\lambda$

$||\mathrm{x}||\leqq||$

Tx

$||\leqq\lambda$

$||\mathrm{x}||$

for all

$\mathrm{x}$ $\in$

F.

X

is said

to

be

$\mathrm{s}$

uper-reflexive

([61

;

cf.

[1],

[3],

[13] ,

[1

$l\downarrow]$

)

if

no

non-reflexive

Banach

space is

finitely

representable

in

X.

Super-reflexive

spaces

are

characterized

as

those uniformly

(4)

C.

Theor

$e\mathrm{m}$

(Enflo [4]

:

cf.

[1],

[3] ,

$[\rceil 4]$

).

A

Banach space

X

is

super-reflexive

if and

only

if

X

admits

an

equivalent uniformly

convex

$\mathrm{n}\mathrm{o}\mathrm{n}\mathrm{I}\iota$

2. Uniform

convexity,

$s\mathrm{u}\mathrm{p}e\mathrm{r}-\mathrm{r}e\mathrm{f}\mathrm{l}e\mathrm{x}\mathrm{i}\mathrm{V}\mathrm{i}\mathrm{t}\mathrm{y}$

and

von

$\mathrm{N}e\mathrm{u}\mathrm{m}\mathrm{a}\mathrm{m}^{-}\mathrm{J}\mathrm{o}\mathrm{r}\mathrm{d}\mathrm{a}\mathrm{n}$

con

$\mathrm{s}$

tant

We

bigin

with the

following

proposition

which will give effective

examples

later.

2.

1 Proposition.

Let

$\lambda>$

1.

Let

$\mathrm{x}_{2},$

$\lambda$

be the space

12

equipped

with

the

norm

$||\mathrm{x}||2,$

$\lambda$

$:=$

$\max$

{

$||\mathrm{x}||2$ ’

A

$||\mathrm{x}||\infty$

}.

Then:

$( \mathrm{i} )$

X

is

isomorphic

to a

Hilbert

space and

2,

$\lambda$

$\mathrm{C}$

(X

)

$=$

$\min\{\lambda 2, 2\}$

.

NJ

2,

$\lambda$

(ii)

X

is

not

strictly

convex

for any

$\lambda>$

1.

2,

$\lambda$

Proof

(sketch).

$( \mathrm{i} )$

Since

$||\mathrm{x}||2\leqq$

$||\mathrm{x}||2,$

$\lambda$

$\leqq$ $\lambda$

$||\mathrm{x}||2$

for all

$\mathrm{x}$ $\in$

$\mathrm{x}_{2},$ $\lambda$

,

we

have

$||\mathrm{x}+\mathrm{y}||22,$

$\lambda+||\mathrm{x}-\mathrm{y}||22,$

$\lambda$

$\leqq$

$\lambda 2(||\mathrm{x}+\mathrm{y}||22 +||\mathrm{x}-\mathrm{y}||22)$

$=$

$\lambda 22(||\mathrm{x}||22 +||\mathrm{y}||22)$

$\leqq$

$\lambda 22$

$(||\mathrm{x}||2 +||\mathrm{y}||2 )$

,

2,

$\lambda$

2,

$\lambda$

or

$\mathrm{C}$

(X

)

$\leqq\lambda 2$

.

By

considering

$\mathrm{x}$

$=$

$(\rceil/\lambda , \rceil/\lambda , 0, . . .

)$

and

$\mathrm{y}$

NJ

2,

$\lambda$

$=$

$(\rceil/\lambda , -1/\lambda , 0, .

. . )$

$\in$

X

we

have

$\mathrm{C}$

(X

)

$=$

$\min\{\lambda 2 2\}$

.

(5)

(ii)

To

see

that

X

is

not

strictly convex,

take

an

$\alpha$

satis-2,

$\lambda$

fying

$(1/\lambda )$

2

$+\alpha 2\leqq$

1

and

$0<\alpha\leqq$

$\rceil/\lambda$

:

then

put

$\mathrm{x}=$

$(1/\lambda,$

$0$

,

$0$

,

.

. .

)

and

$\mathrm{y}=$

$(1/\lambda.

\alpha.

0, .

.

.

)$

.

Now,

in

the

following

two

theorems

we see

that uniform

convexity

is

nearly

characterized

by

the

condition

$\mathrm{C}_{\mathrm{N}\mathrm{J}}(\mathrm{X})$

$<$

2.

2. 2 Theorem

$( \mathrm{i} )$

If

X

is

uniformly convex,

then

$\mathrm{C}_{\mathrm{N}\mathrm{J}}(\mathrm{X})$

$<$

2;

the

converse

is

not

true;

indeed,

(ii)

For

any

$\epsilon>$

$0$

there

exists a

Banach space

X

(isomorphic

to

a

Hilbert

space)

with

$\mathrm{C}_{\mathrm{N}\mathrm{J}}(\mathrm{X})$

$<$

1

$+\epsilon$

which is

not

even

strictly

con-vex.

Proof

(sketch).

$( \mathrm{i} )$

Let

X

be

uniformly

convex.

Let

$\epsilon$

be any

positive

number with

$0$

$<\epsilon<$

21/2.

Then,

there

exists

a

$\delta>$

$0$

such

that

$||\mathrm{x}||\leqq$

1

,

$||\mathrm{y}||\leqq$

1

and

$||\mathrm{x}$ –

$\mathrm{y}||\geqq\epsilon$

imply

$($

2.

$\rceil)$

$||(\mathrm{x}+ \mathrm{y})/2||2\leqq$

$(1 -\delta)\{(||\mathrm{x}||2 +||\mathrm{y}||2)/2\}$

(cf.

[11,

p.

190).

Now,

let

$\mathrm{x}$

and

$\mathrm{y}$

be any

elements in

X

with

$||\mathrm{x}||2$

$+||\mathrm{y}||2$

$–$

$\rceil$

.

We

first

assume

that

$||\mathrm{x}$

$\mathrm{y}||\geqq\epsilon$

.

Then,

using

$($

2.

$\rceil)$

,

we

have

(2. 2)

$||\mathrm{x}+$

$\mathrm{y}||2$

$+||\mathrm{x}-$

$\mathrm{y}||2\leqq$

2

$(2 -\delta)$

.

Next,

$\mathrm{i}\mathrm{f}$ $||\mathrm{x}$ –

$\mathrm{y}||\leqq\epsilon$

.

we

have

(2. 3)

$||\mathrm{x}$

$+$

$\mathrm{y}||2$

$+||\mathrm{x}$

$-$

$\mathrm{y}||2$

$\leqq$

2

$(||\mathrm{x}||2 +||\mathrm{y}||2)$

$+\epsilon 2$

$\leqq$

2

$(1 +\epsilon 2/2)$

.

(6)

$\frac{||\mathrm{x}+\mathrm{y}||22+||\mathrm{x}-\mathrm{y}||}{22}\leqq$

1

$+$

$\max\{1-\delta.

\epsilon 2/2\}$

,

2

$(||\mathrm{x}|| +||\mathrm{y}|| )$

or

$\mathrm{C}_{\mathrm{N}\mathrm{J}}(\mathrm{E})$

$<$

2.

(ii)

By Proposition

2.

1,

for

the spaces

$\mathrm{X}_{2}$

,

$\lambda$

$(\lambda> 1)$

we

have

$\mathrm{C}$

$(\mathrm{X} )$

$arrow$

$\rceil$

as

$\lambda$

$arrow$

1,

whereas

X

is

not

strictly

convex.

NJ

2,

$\lambda$

2,

$\lambda$

Although

the

condition

$\mathrm{C}_{\mathrm{N}\mathrm{J}}(\mathrm{X})$

$<$

2 does

not

even

imply

strict

convexity for

X,

it

assures

the

existence

of

an

equivalent

norm on

X

for

which

X

becomes

uniformly

convex

(cf.

Theorem

C)

:

2.

3

Theorem

Let

$\mathrm{C}$

(X)

$<$

2.

Then,

X

is

super-reflexive;

the

NJ

converse

is

not

true.

Proof.

Assume

$\mathrm{C}$

$:=$

$\mathrm{C}_{\mathrm{N}\mathrm{J}}(\mathrm{X})$

$<$

2.

Let

$\mathrm{x}$

and

$\mathrm{y}$

be

any

elements

in

X

with

$||\mathrm{x}||=||\mathrm{y}||=$

1.

Then,

$\min$

$||$

$\epsilon 1^{\mathrm{X}}$

$+\epsilon 2^{\mathrm{y}}||$

$\leqq$ $\mathrm{t}\frac{1}{2}$

$(||\mathrm{x} + \mathrm{y}||2 +||\mathrm{x} - \mathrm{y}||2)1^{1/2}$

$\epsilon_{\mathrm{i}}=\pm 1$

$\leqq$

$\mathrm{c}^{1/2}(||\mathrm{x}||2 +||\mathrm{y}||21/2)$

$=$

$(2\mathrm{C})1/2$

,

that

is, X

is

$(2, \epsilon)-\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{v}\mathrm{e}\mathrm{X}$

with

some

$\epsilon$

.

or

equivalently uniformly

non-square, which

imPlies

that

X

is

$\mathrm{s}\mathrm{u}\mathrm{P}\mathrm{e}\mathrm{r}$

-reflexive

(James

[61

;

see

also

[1],

[131).

For

the

latter

assertion,

consider the space

X

Indeed,

2,

[2

$\mathrm{X}_{2},$

[

$2$

is

isomorphic

to

a

Hilbert

space and hence

super-reflexive,

whereas

$\mathrm{C}_{\mathrm{N}\mathrm{J}}(\mathrm{X}_{2}, [2)$

$=$

2

by Proposition

2.

$\rceil$

.

(

(7)

such

examples.

)

2.

4

Definition

Let

$\sim \mathrm{C}_{\mathrm{N}\mathrm{J}}(\mathrm{X})$

be the infimum of

all NJ-constants

for equivalent

norms

of

X.

Theorems

2.

2 and

2.

3

assert

that super-reflexivity

is

character-ized

by

the

condition

$\sim \mathrm{C}_{\mathrm{N}\mathrm{J}}(\mathrm{X})$

$<$

2.

2.

5

Theorem

The

following

are

equivalent:

$(\mathrm{i})\sim \mathrm{C}_{\mathrm{N}\mathrm{J}}(\mathrm{X})$

$<$

2.

(ii)

X

is

super-reflexive.

(iii)

X

admi

$\mathrm{t}\mathrm{s}$

an

equivalent

$\mathrm{u}\mathrm{n}\mathrm{i}\mathrm{f}\mathrm{o}$

rmly

convex

$\mathrm{n}\mathrm{o}\mathrm{r}\mathbb{I}\mathrm{t}$

(iv)

X

admi

$\mathrm{t}\mathrm{s}$

an

equivalent

$\mathrm{u}\mathrm{n}\mathrm{i}$

formly

non-square

norm

(v)

X

admits

an

equivalent

unifomly

smooth

norm

(cf.

[11).

(vi)

X

is

$\mathrm{J}$

-convex

(cf.

[1]).

For

some

further conditions

quivalent

to

super-reflexivity,

we

refe

$\mathrm{r}$

the

read

er to

[1],

[31

and

[141.

2.

6

Corollary.

$\sim \mathrm{C}$

(X)

$=$

2 if

and

only

if

X

is

not

super-reflexive.

NJ

3.

Uniform

$\mathrm{n}\mathrm{o}\mathrm{n}^{-}\mathrm{S}\mathrm{q}\mathrm{u}\mathrm{a}\mathrm{r}e\mathrm{n}e\mathrm{S}S$

and

von

$\mathrm{N}e\mathrm{u}\mathrm{m}\mathrm{a}\mathrm{m}-\mathrm{J}\mathrm{o}\mathrm{r}\mathrm{d}\mathrm{a}\mathrm{n}$

constant

Very

recently

the

authors

[151

proved

some

homogeneous

character-izations

of

uniformly

non-square spaces,

one

of which

is similar

to

a

well-known

characterization

of

uniformly

convex

spaces

(we

have

used

(8)

3.

1

Theorem

Let

1

$<$

$\mathrm{p}<$

$\infty$

.

For

a

Banach space

X

the

follow-ing

are

equivalent:

$( \mathrm{i} )$

X

is

uniformly

non-square.

(ii)

There

exist

some

$\epsilon$

and

$\delta$

$(0<\epsilon.

\delta< 1)$

such that

$||\mathrm{x}-$

$\mathrm{y}||\geqq$

2

$($

1

– $\epsilon$ $)$

,

$||\mathrm{x}||\leqq$

$\rceil$

,

$||\mathrm{y}||\leqq$

$\rceil$

implies

$|| \frac{\mathrm{x}+\mathrm{y}}{2}||\mathrm{p}\leqq$

$(1 - \delta)\frac{||\mathrm{x}||+|\mathrm{p}|\mathrm{y}||\mathrm{P}}{2}$

.

(iii)

There

exists

some

$\delta$

$(0<\delta< 2)$

such that for any

$\mathrm{x}$

,

$\mathrm{y}$

in

X,

$|| \frac{\mathrm{x}+\mathrm{y}}{2}||\frac{\mathrm{x}-\mathrm{y}}{2}||\mathrm{p}\leqq$

$(2 - \delta)\frac{||\mathrm{x}||+|\mathrm{p}|\mathrm{y}||\mathrm{P}}{2}$

.

(iv)

$||$

A

:

$|^{2}(\mathrm{X})\mathrm{p}$

$arrow$

$l^{2}(\mathrm{X})\mathrm{P}||<$

2.

We

omit the

proof,

which will appear

elsewhere.

Owing

to

Theorem

3.

1

a

precise

characterization

of

Banach spaces

with

NJ-constant

less

than

two

is

obtained

(cf.

Theorems

2. 2

and

2.

3)

:

3.

2 Theorem

The

following

are

equivalent:

$(\mathrm{i})$

$\mathrm{c}_{\mathrm{N}\mathrm{J}}(\mathrm{x})$

$<$

2.

(ii)

X

is

uniformly

non-square.

(iii )

X

is

$(2, \epsilon)-\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{v}\mathrm{e}\mathrm{X}$

for

some

$\epsilon>$

$0$

.

To

see

this,

merely

recall

Proposition A.

3.

3

Corollary.

$\mathrm{C}$

(X)

$=$

2

$\mathrm{i}\mathrm{f}$

and

only

$\mathrm{i}\mathrm{f}\mathrm{X}\mathrm{i}\mathrm{s}$

uni

formly

square.

NJ

3.

4

Note.

Further investigation

on

the

$\mathrm{N}\mathrm{J}$

-constant

is

made

in

[12]

especially

for

the

spaces

having

$\mathrm{N}\mathrm{J}$

-constant

2

$2/\mathrm{p}^{-1}$

(9)

(the

same

value of that of

$\mathrm{L}\mathrm{p}$

-spaces;

see

Proposition

B).

Our

results

stated

in

this

note are

summlarized

as

follows:

References

[1]

B.

Beauzamy,

Introduction

to

Banach

spaces

and thei

r

geometry,

2nd

Ed.

,

North

Holland,

1985.

[2]

J.

A.

Clarkson,

The

von

Neumann-Jordan

constant

for the

Lebesgue

space,

Ann.

of Math.

38

(1937),

114-115.

[3]

D.

van

Dulst,

Reflexive

and super-reflexive

Banach

spaces,

Math.

Cent

re

Tracts

102,

Math.

Cent

$\mathrm{r}\mathrm{u}\mathrm{I}\mathrm{I}\iota$

Amsterd

$\mathrm{a}\mathrm{n}\iota$

1978.

[41

P.

Enflo,

Banach

spaces which

can

be

given

an

equivalent

unifom-ly

convex

norIIl

Israel

J. Math.

13

(1972),

281-288.

[5]

H.

C.

James,

Uniformly

non-square

Banach

spaces,

Ann.

of Math.

80

(10)

[6]

H.

C.

James,

Super-reflexive

Banach

spaces,

Canad. J. Math.

24

(1972),

896-904.

[7]

P.

Jordan and

J.

von

Neumann,

On

inner

products

in linear

metric

spaces, Am. of Math.

36

(1935),

719-723.

[8]

$\mathrm{K}$

Hashimoto,

M.

Kato and

Y.

Takahashi,

Generalized Clarksont

$\mathrm{s}$

inequalities

for Lebesgue-Bochner

spaces,

to

appear

in Bull.

Kyushu

Inst.

$\mathrm{T}e\mathrm{c}\mathrm{h}$

.

.

Math.

Natur. Sci.

43

(1996).

[9]

$\mathrm{M}$

Kato and

$\mathrm{K}$

Miyazaki,

Remark

on

generalized

$\mathrm{C}\mathrm{l}\mathrm{a}\mathrm{r}\mathrm{k}\mathrm{s}\mathrm{o}\mathrm{n}^{1}\mathrm{s}$

ine-qualities

for

extreme

cases,

Bull.

Kyushu

Inst. Tech.

.

Math.

Natur.

Sci.

41

(1994).

$27-3\rceil$

.

[10]

$\mathrm{K}$

Kato and

$\mathrm{K}$

Miyazaki,

On

generalized

$\mathrm{C}\mathrm{l}\mathrm{a}\mathrm{r}\mathrm{k}\mathrm{s}\mathrm{o}\mathrm{n}^{\uparrow}\mathrm{s}$

inequalities

for

$\mathrm{L}\mathrm{p}(\mathrm{L}\mathrm{q})$

and Sobolev

spaces,

to

appear

in

Math.

Japon.

[11]

$\mathrm{M}$

Kato and

Y.

Takahashi,

On

$\mathrm{C}\mathrm{l}\mathrm{a}\mathrm{r}\mathrm{k}\mathrm{s}\mathrm{o}\mathrm{n}^{-}\mathrm{B}\mathrm{o}\mathrm{a}\mathrm{s}^{-}\mathrm{t}\mathrm{y}\mathrm{P}^{\mathrm{e}}$

inequalities,

RIMS

Kokyuroku

(Kyoto

Univ.

)

897

(1995),

46-58.

$\cdot$

[12]

$\mathrm{M}$

Kato and

Y.

Takahashi,

On

the

von

Neumann-Jord

an cons

$\mathrm{t}$

ant

for

Banach

spaces,

to

appear

in

Proc. Amer.

Math.

Soc.

$[]3]$

J.

Kuelbs,

Probability

on

Banach

spaces,

Marcel

Dekker,

New

York-Basel,

1978.

[14]

L.

Schwartz,

Geometry

and

probability

in Banach

spaces,

Lecture

Notes in

Math.

No.

852,

Springer,

1981.

[15]

Y.

Takahashi and

M.

Kato,

Von

Neumann-Jord

an

cons

$\mathrm{t}$

ant

and

参照

関連したドキュメント

In this paper, we derive generalized forms of the Ky Fan minimax inequality, the von Neumann-Sion minimax theorem, the von Neumann-Fan intersection theorem, the Fan-type

Our approach follows essentially the pattern introduced by Filippov [4] and developed by Frankowska [5], Tolstonogov [16], and Papageorgiou [13], however with the basic difference

In the non-Archimedean case, the spectral theory differs from the classical results of Gelfand-Mazur, because quotients of commutative Banach algebras over a field K by maximal ideals

In the non-Archimedean case, the spectral theory differs from the classical results of Gelfand-Mazur, because quotients of commutative Banach algebras over a field K by maximal ideals

We show that for a uniform co-Lipschitz mapping of the plane, the cardinality of the preimage of a point may be estimated in terms of the characteristic constants of the mapping,

We have presented in this article (i) existence and uniqueness of the viscous-inviscid coupled problem with interfacial data, when suitable con- ditions are imposed on the

Applying the conditions to the general differential solutions for the flow fields, we perform many tedious and long calculations in order to evaluate the unknown constant coefficients

The Main Theorem is proved with the help of Siu’s lemma in Section 7, in a more general form using plurisubharmonic functions (which also appear in Siu’s work).. In Section 8, we