• 検索結果がありません。

Elasto-Plastic Dynamic Responses of Reinforced Concrete Slabs under Rockfall Impact

N/A
N/A
Protected

Academic year: 2021

シェア "Elasto-Plastic Dynamic Responses of Reinforced Concrete Slabs under Rockfall Impact"

Copied!
7
0
0

読み込み中.... (全文を見る)

全文

(1)

1 书 书 书 ! 51 "  ! 6 # 2016 $ 12 %       &  '  (  )  *  +  +  , JOURNAL OF SOUTHWEST JIAOTONG UNIVERSITY        Vol. 51  No. 6 Dec. 2016 !"#$

20151012 %&'(

-./+0 STS 123456

KFJEWSTS094

);

.789/+:;3456

41502297

41472325

)*+,

<=>

1984

),

?

@A

BC

DEFGHIJKLMNOPQRDESTUVW

Email

wangdongpo2014@ cdut. edu. cn -./0

<=>

XY

ZG[

\. ]^_`abcdefghijklmnDE

. &'()*++,

2016

51

):

1147 1153.     .123

02582724

2016

06114707    DOI

10. 3969 / j. issn. 02582724. 2016. 06. 014

456789:;<=>?@ABCDEFG

!"#

  $  %

  &'(

  )  *

NoRp*+JqKLVWrJqstuv.7wxyz{

|} No 610059

H  I

]^_`abcdef~€‚ƒg„…†P

:‡ˆz‰ Hertz Š‹RŒgŽabcdef _`1ry‘’“”•*–—. H˜™š›œžŸ ¡g]^_`mn1¢F£

¤— Olsson ¥¦§(¨ G©j‚ªf«–g_`kl¬­F

®ªhijŠ‹RŒ¯°]^_`abcdefklmnST

±r Hertz ²Ukl”³´²µ¶¦·

®¸¹º

»¼½¾¿

Hertz RŒ²À‡ÁÂÃfghjÄM

ÅÆÇ_` l•hijRŒ²Èkl”³´²SÉÊ* 31. 8% È 77. 1%

ÅË*ÌÍÎϕÐÑÒSÉÊ* 17. 3% È 61. 8%

Ó:‡hijŠ‹ Ôg_`klmnœŠÕ‡kl”³´²

և×y

ØÙÚۂƒÜÝ~

žŸÞ¶. JKL

]^

_`

abcdef

hijRΠMNOP3

TU313    .QRST

ElastoPlastic Dynamic Responses of

Reinforced Concrete Slabs under Rockfall Impact

WANG Dongpo

  LIU Yang

  PEI Xiangjun

  SHI Si

State Key Laboratory of Geohazard Prevention and Geoenvironment Protection

Chengdu University of Technology

Chengdu 610059

China

Abstract

The process of rockfall impact on reinforced concrete slabs is accompanied by complex energy transformation. The traditional engineering design

which was based on experience or the Hertz contact law

has great deviation with actuality. In order to develop an efficient and accurate calculation method of rockfall impact response

we adopted dynamic equations proposed by Olsson for orthotropic composite plates under impact loads

meanwhile compared the dynamic responses calculated according to the elastoplastic contact law

the Hertz contact law and the dynamic finite element method. The results show that

in the same conditions

as the plastic deformations of slabs were considered in the Hertz solution

its peak contact force was larger than the elastoplastic solution and dynamic finite element solution by 31. 8% and 77. 1% respectively. Moreover

the maximum indentation derived from Hertz solution was increased by 17. 3% and 61. 8% than the elastoplastic solution and dynamic finite element solution

respectively. The elastoplastic dynamic responses were closer to the dynamic finite element solutions than Hertz dynamic responses

demonstrating that the proposed elastoplastic method is efficient and accurate without complicated modeling process. Key words

rockfall

impact

reinforced concrete slab

elasticplastic theory     ]^KLßàáâãäžIåæJ皛è égJqKL. ÅêëÞìíîïðíï

ñòó

(2)

2 !   "   #   $   %   &   &   ' ( 51 ) íï

”g]^w…žôíõö

÷”øèù*g _`úû„l. Õ$ü

ý.&þJç()ܐÿ °!"

#$%ÿgIç]^KL¦&'

()g ܐU*¶+N,*-.Èw*/0

12

2007 $ 11 % 20 #

34&)ž567'ÿ89:

; *g]^<š=ì>?@ABCD}gEFGH

+N 31 IJKgL*MN

2009 $ 7 %25 #oO ()PQR*SSTU]^VW

X 6 IJK±+ NoO()-W

2012 $ 9 % 7 #

YZJ[\ÿ *…]^KL

]^(_g 81 `abÒ-

U]^ V-gabÒc 80% . Ó:d]^KLœßO} J[

efJ[gghi8IJKLjš

+NI k8lmn/0o1Åp. ]^KL÷”øèù*g_`úû„l

¦Å qLâãägrst

())u

Sv

7'µ– w

ºx

yx\

+Nzwg-.

12

{|rs t}pÀabcde®r~N

Å-abcdef ß]^_`g€s

‚ƒ

f]^_`®r 1„HR…. 9Ó

À‡]^rabcdefg kl†‡ˆU‚ƒghijÄM

W‰r/Š

„ …g‹Œ†P\

Ž»RDEN¸•H”³

‘.ä’+Ò¦“”•g–ŽDE—˜‡™š Ž

›œRŒržgŸú. €‚ª ¡¢£g!¤¥¦

¨G©j‚ª fg_`DE§¨©ª

H]^_`abcdef g1¢««Ûš¬g­). Sun

*‡®§g Hertz RŒ

™šDEÛ_`¯°¿¨G©jfgklm n”•

Chattopadhyay È Saxena

‡ 1991 ±²³ µg Hertz Š‹RŒ<´µÄMU¶·Ìͤ— ð¨G©jfgDE-

Olsson

59

]š–¸DE p†-

«–<fg_`”•SH¹á¬­Uºk ¬­Ñ›»¼

±½¾–¨G©jfg_`kl¬ ­F. >¿gDE*}:‡ Hertz Š‹RŒ

À‡Å *¢ÀÁ

]®rp1-UÂÃć. ¦‡] ^_`abcdef

2Å 1

ÓÆ

Hertz Š‹R ŒÇ à i j Ä M

1012

] _ ` Š ‹ ™ È Ž 

Hertz  Ô*Xɪy‘Ê“. 9Ó

]_`¯°Ë ̆‡¿

fhˆÍš¬gijÄM

_`¯°Î ÏgÐþS†PHfgijÄM„

Þé

Hertz Š ‹RŒ]]^_`abcdefg1¢-ÑÒª Rj. Johnson

13

] Hertz Š ‹ R Œ g : Ó > ¤ — von Mises ÔÕ Ô

™š˜™Û‚ªf ¡]£ GŠ‹†‡¿gÔՔ•. <=>

1415

\)~Ö lÌÍyz¤—×yglrÌÍ×Ø

ÙðÛ]^ _`abcdefgklmn

Ú1¢F£Û¤— yz~

N]pn‡-ć•HÜÝ. Å 1  ]^_`yxabcdef Fig. 1  Damaged reinforced concrete slab of rockshed by rockfall Þ>ο

ßà:‡hijŠ‹ Ô

1618

® ª Olsson

19

§(¨G©j‚ªfg_`kl¬­ F

¯°]^_`abcdefghijklm nDE

ËáH]^}ÿçabcdefgâ¤_ `1¢««RŒã².

1  89:;<=>67BCUVWX

    Olsson

‡ 1992 $<fg_`”•SH¹á ¬­Èºk¬­Ñ›»¼

2Å 2

. Å-

äH¹ ᬭ»¼

]_`~-

åæfçn8š¬Ä M

äHºk¬­»¼

ÔfÁ]èéxêÕç£ n8ÄM.

¹á¬­

ºk¬­ Å 2  _`»¼çS Fig. 2  Impact classification     )èʓ¿

fg¹á¬­‰ºk¬­_`S Ér*q…ë¤_`‰ìq…ž¤_`g»¼» R. Olsson ‡ 2000 $

¦¹á¬­Uºk¬­g q…·µ¶Û÷í¹¿

_`tq…*‡¨îk ïmË*âãq…g|SjšŒ

¬ðH*q…_ `. ‚ƒ

]^_`abcdefUñ®H¨¹á 8 4 1 1

(3)

3 ( 6 * +,-

.

/0123456789:;<=>?@AB ¬­g*q…ë¤_`”•. :‡ Olsson _`k lRŒgabcdef¬­Fò¿2¿

2Å 3 Îó

¬q…H mi

ôëH R gõM ]^ö¤Ï v0 _`÷øuùq…H mp

úÏH h gabcdef

Ôfg_`ÌÍH α = wi - wp

û-

α H]^_`†‡¿¦abcdef+Ng ¶·ÌÍ

wi H]^Š‹fÐG¿gøü

wp Hf -ýx˜gþÏ. Å 3  _`ÌÍóÿÅ Fig. 3  Schematic of impact indentations f-ý˜gþϬ­F¹óH wp

= 1 8 m

pD 

t 0 F

τ

dτ

û-

t H]^_`fgŒ!ą

τ H_`l¦Ì Ígą

D Hfg”Ÿ"Ï

Þ#‡§(¨G© jfhjRŒ$²

18

¹óH D = D

11D22

A + 1

/2

A =

D12+ 2D66

/ D

11D22

û-

DijHf]o¼FGg%×"Ï

Þ)~fg ùPRŒ$–. &']^8(îk¦fn8gïm

]^Š‹ fÐG¿øü wiU™È½¾¹óH wi

= v0t - 1 mi

t 0

τ 0 F

ξ

dξdτ

wi

= 0

  wi

= v0.

}

)—û

),

±<û

¦Œ !µ¶Ñi*S

Ùð]^_`abcdefg_ `kl¬­FH d2 α dt2 + 1 8 m

pD  dF dt + F mi = 0

α

= 0

  α

= v0.

}

2  YZ[\

    ÀF

Þ+

H$²abcdefgkl mn

,Û¤—_`lrÌÍR–û

20

. ]^_` Hë¤_`

ÞÀ-Ölµ¶ÀP

.¤—ÖlŠ ‹ Ô. 2. 1  Hertz YZ[\     Hertz ‡ 1881 $)~/0õr12»3Š‹ yz«– Hertz Š‹RŒ

±Ï2¿4

Š‹ç HìÄM

Š‹í5†Hhjô6!í

Š‹u7 †‡S_g89Ìl. Hertz Š‹RŒÁÂÃfg hjÄM

Ó&'ijÄMïm

±² Hertz Š‹ RŒ

Š‹lrÌÍgR–ûH F

α

= Khα 3 / 2

û-

Kh HŠ‹"Ï

¹óH Kh = 3 4Qα

1 Qα = 1 Qzi + 1 Qzp

Qzk = Ezk 1 - νrzkνzrk

  k = i

10

û-

R H]^ôë

EzkHhj݅

νrzkU νzrkSÉ Habcdefo¼FG>g:;·. 2. 2  ?@AYZ[\     py<¹º

]^_`¯°¿abcdef <ÿ8š¬gijÄM

2123

. Hƒ

ÂÃijÄM ŸnghijŠ‹RŒ$²lrÌÍgR–û• Hertz Š‹RŒœÖG‡×y. ]^rabcdefèé~SH 3 掏

ŽⅠHèé™#

=>hjŠ‹RŒ

#‡ Hertz Š‹(û

ŽⅡHfgùÏôð,³ÔÕе—

ijÄMŽ

¤—hijŠ‹(û

ŽⅢHA

hŽ 

? i Ä ‡ h j Hertz R Œ ò ¿ A h ~ 

. ÷í¹ó2¿

ŽⅠ

hj°Ž F

α

= Khα 3 / 2

  0≤α≤αcr

11

ŽⅡ

hij°Ž F

α

= Ky

α - αcr

+ Khα 3 / 2 cr

Ky = 1. 5Kh

αcr

  αcr≤α≤αm

}

12

ŽⅢ

hj@°Ž F

α

= Kh

α 3 / 2 - α3 / 2 m + α 3 / 2 cr

+   Ky

αm - αcr

),

13

û-

αcrHfÔՌgAáÌÍÇ

αm H@°Bf gË*ÌÍÇ.

3  89:;<=>67BCDE

    <û

)—û

),

Ùð:‡ Hertz Š‹RŒ 9 4 1 1

(4)

4 !   "   #   $   %   &   &   ' ( 51 ) ]^_`abcdefg_`kl¬­FH d2α dt2 + 3Khα 1 / 2 16 m

pD  dα dt + Kh mi α3 / 2 = 0

α

= 0

  α

= v0.

}

14

11

13

)—û

),

Ùð:‡hij Š‹RŒ]^_`abcdefg_`kl¬­ F

ŽⅠ

hj°Ž d2α dt2 + 1 8 m

pD  × 3 2Khα 1 / 2dα dt + Kh mi α3 / 2 = 0

α

= 0

  α

= v0

  0≤α≤αcr       

15

ŽⅡ

hij°Ž d2 α dt2 + 1 8 m

pD Ky dα dt + Ky mi

α - αcr

+   Kh mi α3 / 2cr = 0

α

tcr

= αcr

  α

tcr

= vcr

  α

tm

= 0

  αcr≤α≤αm         

16

ŽⅢ

hj@°U?°Ž d2α dt2 + 1 8 m

pD Kh × 3 2α 1 / 2dα dt +   Kh mi

α3 / 2 - α3 / 2 m + α 3 / 2 cr

+   Ky mi

αm - αcr

= 0

α

tm

= αm

  α

tm

= 0

  αf≤α≤αm             

17

û-

tcrU tm SÉHôðAáÌÍUË*ÌÍg Œ!

αcr

αmU αf SÉHAáÌÍÇ

Ë*ÌÍÇ U¶·ÌÍÇ

CÒR–¹¿H αf = αm - αcr.

18

4  ]^O_

4. 1  ]^`a     4ÀDE9rNg]^ôëH 0. 25 m

ö 20 m / s ¤Ï89_`abcdef-ýøF

a bcdefG 3 m

H 3 m

ú 0. 3 m. À‡)èÊ “¿abcdeyx1HÀI®r

Nßà<f g¹á½¾H|¹ÀI. cde,³ÌùÏH 30 MPa

nlnÄR–×Ø]¨Ì#‡J؏ ݼ

]¨K#‡´Wݼ

cdeßrR–é Å 4

),

Å-

fc HcdeÌùÏ,³

ft0Hc deKLÏ,³. fäö§(89Fû>¿M ÑNab

ab¼OH HPB345 P

9ë 12 mm

a b!Q 20 cm

ab#‡ØjùPhijݼ

ÔÕ ùÏRS von Mises nl Ô

ßrݼ2Å 4

Îó

Å-

σyÈ σ′y SÉHabKÔÕùÏÈ ÌùÏ

εx È ε′x S É H σy È σ′y ¦ n g n Ä Ç. >NuvNúÏH 10 cm

¿NuvNúÏH 5 cm. _`ݼéÅ 5

1¢Tpé¹ 1.

cde

ab Å 4   ¡ßrR– Fig. 4  Constitutive relation of materials Å 5  DE9]^_`ab cdefݼÅ

÷ø

Fig. 5  Model of a granite rock impact on the reinforced concrete slab

unit

b 1  456789:;<=>cdef Tab. 1  Material parameters of rockfall impacts on the reinforced concrete slab  ¡

UÏ / g

·

cm- 3

hj ݅ / GPa : ; · äV WX /

°

Ì ùÏ / MPa K ùÏ / MPa ]^ 2. 50 82 0. 24

— — —

ab 7. 85 206 0. 3

— —

345 cde 2. 40 28 0. 2 50. 2 30 3. 33 0 5 1 1

(5)

5 ( 6 * +,-

.

/0123456789:;<=>?@AB     HzYßàF£ÞZj

¤—kl”³´1 ¢. À‡ßàÎ#‡g”³´U ¡ßrݼÿ° •HN[

Å®¸Þ\Hrpy‘®¸»¦] ª. kl”³´)~ ABAQUS øØj”³´^¾ µ¶

]^8_¬žÏ*k¿`_`abcdef -ý˜

Üa 1 / 4 ¦bkl”³´pÇݼ2Å 6 Îó.

cdefݼ

abcdݼ Å 6  1 / 4 ¦bpÇݼŠFig. 6  Quarter symmetric model of numerical simulation 4. 2  ghiO_     SÉ1¢:‡ Hertz Š‹RŒ

hijŠ‹R ŒUkl”³´g]^_`abcdefgkl m n

Å - e Ž * S F  p + * ¢ # ‡ Mathematica ^¾˜R. Å 7 H]^_`†‡¿f-ýx˜_`lr Œ!gR–×Ø

ÀÅ 7 Þé

À‡ Hertz ²Á Ã_`~-hjÄM

Å®¸¹H¦bS_

ÆÇ º f • h i j ² È k l ” ³ ´ ² *

H 8. 50 MN. ÓÂÃhijklmnUkl”³´g _`l繍Hø¦bM’

_`lÆÇSÉH 6. 45 È 4. 80 MN. hij²Ukl”³´²ôð _`lÆnj!ç'g‡ Hertz ²

_`Œ!”Î hG

1¢®¸œÖ‡×y. :‡hijRŒga bcdef]]^_`¿klmni‡ Hertz ² Ukl”³´²j!

]fg®r1-÷”š¬ gTÂÿð. Å 7  ]^rabcdef_`lŒ!R–×Ø Fig. 7  Relationship curve of impact force versus time Å 8 Habcdef-ýxÌÍÇrŒ!g R–×Ø. ÀÅ 8 Þé

_`~-ÌÍÇjk Ê*ÐlìgÖm

Hertz ²À‡ÇÂÃfgij ÄMӕhij²Ukl”³´²nÙۜ*g ÌÍÇ

H 8. 61 mm

kl”³´²ÎÙË*ÌÍ ÇH 5. 32 mm

ƒ›½¾¿hijRŒ²gAáÌ ÍÇ H 5. 59 mm

Î n Ù @ ° B Ë * Ì Í Ç H 6. 45 mm. _`mnŒ!Fu

Hertz ²Ë*Ì͖ gŒ!Uo~_`Œ!ç'p‡hij²U kl ” ³ ´ ². _ ` ~  ® q Ð

h i j ² M N 1. 75 mm g¶·ÌÍ

kl”³´²Ùð 1. 13 mm g¶·ÌÍ

Ó Hertz RŒÝ¼r¶·Ì͖

÷í1¢®¸é¹ 2. Å 8  ]^rabcdefÌÍŒ!R–×Ø Fig. 8  Relationship curve of indentation depth versus time b 2  3 jWk>67DEl]ghmn Tab. 2  Numerical comparison of dynamic impact responses 1¢ F£ _`l ÆÇ / MN Ë* ÌÍ / mm ôðË* ÌÍÇ Œ! / ms _`s ̌! / ms ¶· ÌÍÇ / mm Hertz RŒ 8. 50 8. 61 0. 68 1. 38 0. 00 hijRŒ 6. 45 7. 34 0. 64 1. 26 1. 75 kl”³´² 4. 80 5. 32 0. 60 1. 67 1. 13 4. 3  op67qrs456789:;<=>? @A[\t     >¿®¸¹º

:‡hijRŒg]^_`a bcdef_`mn• Hertz RŒ²œÖG‡ ×y

]ƒ:Ó>

µšš1¢]o¼_`¤Ï¿ ]^_`abcdefghijRŒ². ¦o¼_`¤Ï½¾¿fgklmnSɵ ¶1¢

Å-

_`¤Ït 10

20

30 È 40 m / s. 1 ¢®¸¹º

€_`¤ÏgoWÊ*

_`lÆÇ fuÊ*

SÉH 2. 83

6. 46

13. 17 È 23. 64 MN

ô ðÆÇΦng_`Œ!»nvë

wN_`~ gŒ!jx‹

éÅ 9. fgË*ÌÍǁ_` 1 5 1 1

(6)

6 !   "   #   $   %   &   &   ' ( 51 ) ¤ÏgÊ*jyšÊ*gÖm

@°ŽwN Œ

abcdef-ý˜g¶·ÌÍÇzj« ž

éÅ 10

¹º_`¤Ï¦abcdefgkl mn÷”fuïm. ÷í1¢®¸é¹ 3. Å 9  o¼_`¤Ï¿_`lŒ!R– Fig. 9  Relationship curve of impact force versus time at different impact velocities Å 10  o¼_`¤Ï¿ÌÍÇŒ!R– Fig. 10  Relationship curve of indentation depth versus time at different impact velocities b 3  op4567qrs89:;<= >?@A67DEl]gh Tab. 3  Numerical results of the dynamic responses based on elastoplastic contact law at different impact velocities _`¤Ï /

·

s- 1

Ë* _`l / MN Ë* ÌÍ / mm ôðË* ÌÍÇ Œ! / ms _`s ̌! / ms ¶· ÌÍÇ / mm 10 2. 83 4. 39 0. 77 1. 46 1. 44 20 6. 46 7. 34 0. 64 1. 26 1. 75 30 13. 17 11. 12 0. 58 1. 14 1. 85 40 23. 64 16. 22 0. 57 1. 10 2. 99

5  g  \

    ßப Olsson _`kl¬­F

«–š ›]^_`abcdefghijklmn1¢ F£

±r Hertz ²Ukl”³´²µ¶¦·

Ù ð®Œ2¿

r Hertz RŒ²»·

:‡hijŠ‹R Œg_`klmn{SÂÃÛ_`†‡™#Ž ghjÄMUÐ#ÿ°gij/ŠÈ@°AhŸ n

1¢®¸œou. rkl”³´»·

hij RŒ²¼kl”³´²»Õ

À‡kl”³´U» R ¡ßrÿ°•HN[

Øßàkl”³´®¸ H| ÜÝÎÙ

Å®¸Þ\Hry‘_`®¸• H]ª

NÞ\HßàÎ#‡ghijRŒ²®¸ •HªR.

:‡hijRŒg]^_`abcde f1¢®¸¹º

€]^_`¤Ïg«ž

ab cdefgË*ÌÍÇUÆÇ_`lºfÊ*. ‚ ƒ

]]^}ÿç1abcde}f‰abcd e)u\®rŒ

n{SÂÃ]<üބÿ8g: d]^KL-

]^_`¤Ï¦fklmng¬… ïm.

ßà)~hijRŒµ¶]^_`ab cdefg1¢

ٯەH‚ƒgkl_`~z UpÇÝ-$²~

ìÓއ‡â¤1¢]^_ `abcdefkl_`mn”•

Ø$²~Þ P

Á‡]py<-½Ân‡. eu.Q

  €‚

ùC-

ƒ„…. a†cde‡ªˆžTg ‰Š[„lݼ

. &'()*++,

2015

50

):

852857. HUANG Zhitang

QIANG Shizhong

CUI Shengai. Probabilistic seismic capacity model for high pier of CFST composite column

. Journal of Southwest Jiaotong University

2015

50

):

852857.

  XN‹

Œe

ŒŽ

\. jayx®r]`^K LVW-gn‡DE

. &'()*++,

2015

50

):

110117. LIU Chengqing

CHEN Linya

CHEN Chi

et al. Application of flexible shedtunnel structure to rockfall hazard prevention

. Journal of Southwest Jiaotong University

2015

50

):

110117.

  SUN C T. An analytical method for evaluation impact damage energy of laminated composites

∥ ASTM Special Technical Publication.

S. l.

]:

American Society for Testing

1977

427440.

  CHATTOPADHYAY S

SAXENA R. Combined effects of shear deformation and permanent indentation on the impact response of elastic plates

. International Journal of Solids and Structures

1991

27

13

):

1739 1745.

  OLSSON R. Impact response of orthotropic composite plates predicted from a oneparameter differential 2 5 1 1

(7)

7 ( 6 * +,-

.

/0123456789:;<=>?@AB equation

. AIAA Journal

1992

30

):

1587 1596.

  OLSSON R. Mass criterion for wave controlled impact response of composite plates

. Applied Science and Manufacturing

2000

31

):

879887.

  OLSSON R. Analytical prediction of large mass impact damage in composite laminates

. Applied Science and Manufacturing

2001

32

):

12071215.

  OLSSON R. Closed form prediction of peak load and delamination onset under small mass impact

. Composite Structures

2003

59

):

341349.

  OLSSON R

DONADON M V

FALZON B G. Delamination threshold load for dynamic impact on plates

. International Journal of Solids and Structures

2006

43

10

):

31243141.

10

  ZHENG D

BINIENDA W K. Effect of permanent indentation on the delamination threshold for small mass impact on plates

. International Journal of Solids and Structures

2007

44

81438158.

11

  CAIRNS D S. A simple elastoplastic contact law for composites

. Reinforced Plastics and Composites

1991

10

):

423433.

12

  CHOI H Y

CHANG F K. A Model for predicting damage in graphite / epoxy laminated composites resulting from lowvelocity point impact

. Composite Materials

1992

26

14

):

21342169.

13

  JOHNSON K L. Contact mechanics

. Cambridge

Cambridge University Press

1985

125132.

14

  <=>

­º

‘5’[

\. ]^_`¯°¿y xab c d e f k l m n D E

. 9 e l +

2013

34

):

881886. WANG Dongpo

HE Siming

OUYANG Chaojun

et al. Study of dynamic response of shed reinforced concrete slab to impact load of rockfall

. Rock and Soil Mechanics

2013

34

):

881886.

15

  ­º. ]^¦Vv®rg_`Ìl1¢

. p l+

2010

27

):

175180. HE Siming. Calculation of compact pressure of rock fall on shield structures

. Engineering Mechanics

2010

27

):

175180.

16

  YIGIT A S

CHRISTOFOROU A P. On the impact of a spherical indenter and an elasticplastic transversely isotropic halfspace

. Composites Engineering

1994

11

):

11431152.

17

  CHRISTOFOROU A P

YIGIT A S. Characterization of impact in composite plates

. Composite Structures

1998

43

):

1524.

18

  CHRISTOFOROU A P. Impact dynamics and damage in composite structures

. Composite Structures

2001

52

):

181188.

19

  OLSSON R. Analytical model for delamination growth during small mass impact on plates

. International Journal of Solids and Structures

2010

47

21

):

28842892.

20

  <“

”G•

<–—. ˜Ì™bcde)uk¯m nST

. pl+

2001

18

):

119126. WANG Hu

HU Changshun

WANG Binggang. Responses of continuously reinforced concrete pavement under transient load

. Engineering Mechanics

2001

18

):

119126.

21

  ZG[

€š›

œà. ù[:d9í_`STk lm n D E

. 9 ^ l + r p  + ,

2011

30

ʞ 2

):

39954001. PEI Xiangjun

HUANG Runqiu

LI Shigui. Study of dynamic response of brige pier shocked by falling rock induced by itensive earthquake

. Chinese Journal of Rock Mechanics and Engineering

2011

30

Sup. 2

):

39954001.

22

  <Ÿ

 ¡¢. šæ£g9^l+¤¬F£

. 9 el+

2008

29

ʞ

):

538544. WANG Wei

XU Weiya. A new method of testing rock properties

. Rock and Soil Mechanics

2008

29

Sup.

):

538 - 544.

23

  ­º

¥ç

¦¶. ]^_`¯°¿yx®rkl mn

. 9el+

2011

32

):

781788. HE Siming

SHEN Jun

WU Yong. Rock shed dynamic response to impact of rockfall

. Rock and Soil Mechanics

2011

32

):

781788.

CDEF

G  H    IDEF

J  K

3 5 1 1

参照

関連したドキュメント

Apart from the financial application, which is our first motivation, such a problem is interesting from a probabilistic point of view as well. We have observed above that the

The use of the non- conventional combinatorial baffles not only remarkably reduces the sloshing amplitude and dynamic impact pressures acting on the tank wall but also shifts the

To complete the “concrete” proof of the “al- gebraic implies automatic” direction of Theorem 4.1.3, we must explain why the field of p-quasi-automatic series is closed

In this paper we develop a general decomposition theory (Section 5) for submonoids and subgroups of rings under ◦, in terms of semidirect, reverse semidirect and general

Figures 10 and 11 show the mean and the coefficient of variation of the waiting time as a function of g2 for the NPNV model, where we assume that Pl P2 P3- P4 0.1, that the batch

On the other hand, when M is complete and π with totally geodesic fibres, we can also obtain from the fact that (M,N,π) is a fibre bundle with the Lie group of isometries of the fibre

According to expert experience, characteristic data of driver’s propensity includes headway, relative speed, deceleration frequency, acceleration frequency, performance reaction

Global Stability of Polytopic Linear Time-Varying Dynamic Systems under Time-Varying Point Delays and Impulsive Controls.. de