• 検索結果がありません。

有限変形場におけるポテンシャル流体と回転シェル容器の相互作用問題の解析

N/A
N/A
Protected

Academic year: 2021

シェア "有限変形場におけるポテンシャル流体と回転シェル容器の相互作用問題の解析"

Copied!
17
0
0

読み込み中.... (全文を見る)

全文

(1)

Architectural Institute of Japan

NII-Electronic Library Service

Arohiteotural エnstitute  of  Japan

、【論 文】    日本.建築 学 会 構 造 系 論 文 報 告 集 第 435 号・19925月

Joumal of Struct, Constr. Epgng, AIJ, No.435, May,1992 1

rNONLINEAR  

OSCILLATION

 

ANALYSES

 

OF

 

INTER

ACTIVE

 

BEHAVIORS

 

BETWEEN

. 

THE

 

POTENTIAL

FLUID

 

AND

TANKS

 

OF

 

SHELL

 

OF

 

REVOLUTIQN

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

IN

 

FINITE

 

DEFORMATIONS

 有限変形場にお けるポ.テン シャ ル流体と回転シェ ル容器の 相互作用 問題の解析

Youichi

 

MI

rAKAWA

皆 川 洋一 1

 ALagrangian function which  governs  illteractive beh4Viors between the potential fluid and  elas −

tic tanks under  ground e’xcitatio 皿s is shown . Then , the variation  of the Lagrangian function is』de−

rived . Applying combination  of the finite element  method  and  the Galerkin’s method  to the varia ,

tion yields to ordinary  differential equations  of motion  with  arbitrary degrees of fFeedom. Adopt.

ing t}1e 

Galerkin

’s prqcedre enab 且es to obtain  sta恒onary  solutions  of a.cylindric l sheU  tank con −

taining water  under  periodic force

, which  simu 且aしe nonlinear  vibratien  responses  of a tank on

shaking  table.               ....

 Key 盟ortlS :のylindn’cal ∫hell

, tank, nonlinear  m

bration

, Potential 

fluid

, subharmonic , higher−ham onic

         円筒シェ ル,タン ク,非線形 振 動,ポテンシャ ル流 体,分数 調 波振 動,高 調 波振動

lntroduction

 There .were  many  reports  to investigate responses  of cylindrical  shell tanks contaiping  fluid 

in

vibration  tests. 

Clough

 et als}showed

 that responses  of vibrations  on  a shaking  table included vibration modes  where .the sections  of cylindrical  shells  took out −of−round  shapes  which .were  to be related . to

initial imperfections of 出e. tank geometry .          

 Assuming  an inviscid and  incompressible 

fluid

 in infinitesimal 

deformations

、yields to a 

linear

 theory

of the 

interactive

 

behavior

 

between

 the potential 

fluid

 and elastic tanks which  enablesus  to obtainuseful

engineering  knowledges5)・8  But, this theory offers  no  e弄planations to response

’ s

observed  in vibration

tests which  are sure to nOnlinear  vibrations5 〕

       ト  Luke ’,

 showed  that the pressure .expression  of the potential 

fluid

 gave a.precise.Lagrahgian fμnction .

for

.the classical  water  wave  problems in 

finite

 wave  

height

. The Lagrangian is 

defined

 in the region  of deformed configurations , Applying la step ・

by

・step  integration method  to the 

function

 

derived

 from the

functional

, 

Nakayama

 and , 

Washizulgl

 analyzed  transient sloshing  responses  

Applying

 the Maclaurin ’s series to. the functional, We can  get a Lagrangian 

defihed

 in the region  of undefor 焼ed configurations . Adoptirig the procε

dure

, Kimura et a13)・and  

Ohmori

 et alio  analyzed  the nonlinear  periodic sloshing .

responses  and  showed  some  

higher

harmonic

 sloshing  vibrations .  The main  sloshing  response corresponding  to the lowest natural  frequency is few affected  with  thb elastic ・deformations of

containers7 ,

 But , vibration  tests show  that 

breathi

ロg vibrations  of elastiq  containers  under  some

external  

frequency

 regions  stimulate  sloshing  vibratlons  wi ヒ

h

 

large

 amplitUdeslsJ .

 Minakawa [o )・i2 ] showed

 a Lagrangian 

function

 of interactive 

behaviors

 

between

 the potential 

fluid

 and elastic tanks

in finite 

deformations

, where  the iptegral 6f pressure expression  of the fluid was  

dealt

 as

本 論 文の一部は文 献 11 〕,13 },16 }に報告し た。

* Prof.. Faculty of Engineering Kagoshima  Univ、,Dr.Eng. 鹿児島 大学 教 授・工博

91

(2)

Architectural Institute of Japan

ArchitecturalInstitute of Japan

negative external work.

Herewe

derive

basic

differential

equations of theinteractiyebehaviorsbetween thepotentialfluidand elastic tanks in

finite

deformations

when subjected base rnotions and establish ordinary differential

equations of motion of the problems. Inorder toobtain

differential

equations that allow us to study

every nonlinear vibration phenomenon taking placeinthe interactivesystem, we consider nonlinear effects with respect tothe

free

surface and theinteractivesurface

between

thepotential

fluid

and elastic

containers. Then, numerical analyses of theequations

let

us understand some of nonlinear responses observed invibration testsisLiG).

1.

A Pressure Expression of the PotentialFluidinMotion

Inorder todescribeatank containing the potential

fluid

inrnotion, we take a Cartesiancoordinates in

inertiaspace,say origin O and

OX,

OY,

OZ.

Local

Cartesian

coordinates

fixed

toatankinmotion are

set ox, oy, oz, where unit vector corresponding to ox, oy, oz and

denoted

i,

j

and k.

The

unit

vector k ismeasured positive along the outward directednormal tothe undisturbed freesurface of the

fluid

(Fig.1),

Considering shells of revolution, we employ a cylindrical coordinates

(o-r,

e,

z)

instead

of the

local

coordinates

(o-x,

y, 2).

Suppose

thattanks move with velocity v,observed

by

an ebserver ina inertiaspace, and an obseryer

fixed

tothe tank observes fluidvelocity v at a point,an observer inthe inertiaspace observes fluidvelecity q at the same point.

q=vo+v・・・・・・・・'・・--・-・・・・-'-・・----・-・-・---・・-・・-・・-・・-・・・・・・・・-・・-・---・・・・・・・・---・-・・-・・---・-・-・・(1) Introducinga velocity potential¢ intothe velocity v observed

by

an obseryer

fixed

tothe tank yieldsto

v=grad

ip

-・--・・・・・--・---・--・・・--・・-・・---・・・-・-・・・・・-・・・・-・・・-・・・・--・---・・--・・・・・・・・・・・・・・・-

(

2

)

Setting2 coordinate ttndisturbed free surface 2,, the acceteration of gravityg, we obtain a pressure expression of the potential

fluid

at a

position

r

pL[Sgrad

ip

grad

ip+

di+

bor+g(x-zo)i

== p( t)-・・・-・・・・・・・・・・・・・・・・-・-・・・・・・-・-・・・・・・・・-・・・・・-

(

3

)

where dotsdenote

derivatives

with respect to time and p, is mass

density

of the

ftuid,

Setting

wave heightn on the

free

surface

Sf

of the

fluid,

elastic

deformations

vector u on an

inter'activesurface

between

the

fluid

and theshell

S,,

The

strain energy

density

function

of the elastic

tank A ancl mass

density

of the tank pE, we

have

a

Lagrangian

functien

k(ip,

n, u) thatgoverns the interactive

behavior

of elastic tanks containing the potentialfluidin finitedeformationsiO'・i!'

1}t(

ip,

v, u)= .]:t'

[fflC,.,.,

pL

(i;

grad

op

grad

ip+

di+

ber+g(z'zo)]dV

-fflLl

Ik

(S

bab

+avo)-A<u)jdv]dt ・--・・--・---・・・・-・・・・・・-・--・・・・・・・・・・・-・・-・-

(

4

)

where 14iand VL are volumes of theelastic tank and thepotential

fluid,

respectively,

The

fluid

volume

is

a

function

with respect tothe wave

height

o, and elastic detormationsu. Applying a step-by-$tep

integration

rnethod to the

function,

we may gettimetransient response ef a contalner with potential

z k fluid,But,itisnotasuitable way tounderstand globalperiodic

response

features

of the container under periodicexcitation.

..--lt ""'Ks S L --- --..sS ,n1;i z t..-' o e x,r i Y x Cylindrical

92

-' Nst)x ltx2yj

Fig.1 Tank inMotion

Then,

adepting themethod of

Maclaurin's

series tothe

function,

we tryto

derive

a nonlinear

differential

equation with respect to

each component of

deformations

defined

in the regien Qf

undefermed configurations,

Then, a variation of a functiondefined in the volume is evaluated

by

sfflC,...,Fdv=fllllC,.,.,aFdv+flCFaoknL

...,..ds'

(3)

Architectural Institute of Japan

NII-Electronic Library Service

ArchitecturalInstitute ofJapan

(see

Appendix 1),where nL isan outward directednormal vector of the.fluid,and

S'

isthe area after

deformations,

Considering

Eq.

(

5

),

we can obtain the variation of Eq.

(

4

)

6zlh:=

J[`'

[fl)C,

[aL

(e

grad

ip

grad

ip

+

di

+

bor

+g(z L Zo)16

rpknL].; .,..

dS'

+flC

[pL

(Sgrad

gbgrad ge+ gb+

bbr+g(z

`L zo)]].

auntds'

'

+fflLl,.,.,pL

(g

rad grad 6ip+sdi)dV-fflC

[pEaab(u+

v,)- ou oA1ou]dv]dt-- ・・・-

(

6

)

The

3rd term of

Eq.

(

6

)

is

partially

integrated

with the aid of

Appendix

1

the Third Term=L'i

[fk...,pLgrad

ipnLacaS'-fl4)pLijknL5todS'-fL

pLanL6vdS'

]

,

-ffl.,.,

bL

div

(grad

¢

)esipdv

dt

--・r・・・・・-・--・・・・・・--・・-・・・・・-・・----・・-L

(

7

)

where

S,

and

Sb

are the interactivesurface and undeformed surfaces of・the

fluid,

respectively. The a'rea elements on the

free

surface Sf and the interactivesurface S,are expressed as

follows:

nLdS'=(-n,.i-n,.j+k)dxdy on

S.・-・-・・---・・-・・・・・・・・・・-・-・・・・・:・・・・・-・---・・(8)

nLdS'I( zv,sti+t zv,et2-(1+u,s+-l)

b,e)n]

rdeds on'

Si--:・・・・・・・・r・--・・-・・・・・・-・---

(

g

)

'

where the expressions shown

in

Appefidix3are

used, . . '

Applying the methocl of Maclaurin'sseries with respect to,eachcomponen,t of

deformations

tothese・

'

functions we obtain '

'

[t

grad ¢ grad

ip

+

di

+

bor+g(2-2o)].iS

grad

ip

grad

ip+

di+

bor+g(2-zo)

tt

+ zvl

(}

grad

ip

grad

di),.+

di,.-

D.

cos a cos

e-

b,

cos aSin

e+(b2+g)

sin a+S w2

di,..

.H."".HH."-"HH-"""""".HH."""""."H-H.HHHH.H..-H""---(10)

where

be;b.i+b.j+bzk.

[{grad

ip-ti)a

¢

].#(grad

ip-b)0ip+wl(grad

ip),.crip+(grad

di-u>fith,.l

・・・・--・-t・・・・・・・・・-・・

(11)

where quadratic and cubic terihs with to respect each component of

deformations

are employed. Introdgcing combination of Eqs,(8

),

(9

),

(11),

and

<12)

intoEq,(6

),

we can finallyobtain the variation

alh=y:ti

[fL

p,

[S

grad

¢ grad

di

+

di

+

bor+

rp

I

(S

grad

di

grad ¢

),2+

th,z+

b-+gl

+Sth,..ep2]arprdedr

+fl41pL

[(

¢,z- rp,rip,r-l, o,eip,e-

ij)6ip+

rp

I(ip,2-nirip,r-",

rp,e¢ ,e-

ij)6ip),z

+S rp21(ip,.-

ij)6cbL..]

rdedr+fk pL

grad

di'nLcripdS

'

+flC pL

[

cru zv,s

(e

grad

ip

・grad

ip

+.

di

+ tv

di,.+

b.(ep-

w cos a cos e)

+D.{g-zvcosasine)+D.(z+tosina)+gCz-2o+wsin'a)'1

+tiv-;-zv,elS grad ¢ 'grad

ip+

di+

wdi,n+

Dx(x-

zvcos a cos e)

'

+

b.(y-wcos

asin e)+e.(z+wsin a)+ g(z-zo+ tvsin a)1

-fiw

(Sgrad

ipgrad

ip+b+w

(S

grad

di・grad

op,.+

wdi,.+S zv2di,nn

+

b.(x-

tvcos orcos

e)+

b,(y-

zvcos a sin e)+

b.(z+

wsin a)

(4)

Architectural Institute of Japan

ArchitecturalInstitute ofJapan

+g(z-zo+wsina)l]rdeds

+fl41 pL

[

sipIw,sdi,s+Lil7, zv,edi,e-

iptn+

ab+(dau,s-tv,sto+"

(ile)v,e-

zv,eb)]

+ tv

[(w,sip,s+"t

ZV,eip,e'e,n),.

a

¢ +(-

ip,n+

W,sdi,s+"t IV,eip,e+ th)6ip,n]

+li w2(-

di,n+

de)6w,..]

rdeds

-fflLl pL

div

(grad

sb)sipdv+fflC1

6v

{AE

(u+bo)+

oAlaaFdv]

dt

・・---・-・・・--・-・・・・-・

a2)

which governs the

interactive

behavior

between

the potential

fluid

ancl elastic tanks

in

finite

deformations.

Since

the variation isdefinedin the initialundeformed configurations, we can get fionlinear ordinary

differential

equations with constant coefficients when applying some discretizing proceduressuch as the Galerkin'smethod,

2.

Derivation

ot Nonlinear

Ordinary

'DifferentialEquations of Motion

There may

be

several ways to analyze

Eq,

(12}.

Here,

we appty combination of the

finite

element

method and theGalerkin'smethod totheequation, and obtain nonlinear ordinary

differential

eq.uations of motien.

Applying

the

finite

element method tethe

linear

homogeneous

termsof

Eq.

(12),

we

have

eigenvalue problems that enable us toobtain natural frequenciesand corresponding eigenvectors.

Then

substituting the eigenvectors to Eq.

(12),

and adopting the Galerkin'smethod, we obtain nonlinear

ordinary

differential

equations of motion with arbitrary

degrees

of

freedom.

2.1 Analysis of NaturalFrequencies and Eigenyectors

'

A functional

Ik(

di,

o,es

)

corresponding tothe linearhomogeneous terrnsof Eq.

(12)

isexpressed as

follows

Ik(gb,

o,u)==

J[t'

[fk

pL

(

gbo+S gn2)rdedr+fl4 pL

(-

di

w-e gzv2sin a) rdeds

+ffzai pL

grad

ipsrad

di

dV-ffL

(i

pEaa-AL<u)]dv]dt ・・・・-・・・・・--

"3)

where

integrals

are performed inregions of initialundefermed configurations and AL(u)

is

quadratic

term with respect to displacementcomponents of the strain energy densityfunction.

Adopting circular strip elements forthe wave heightn, triangular ring elements forthe velocity

potential

ip,

and conical

frusta

for

theshells of revolution, and expanding them inthe Fourierseries in

circumferential

direction,

we

have

the expressions

u=Z][en][N]1d.L o=Zcosne[N.]ln.l,

ip=Zcosne[IVw]1ge,l''"''-''''''・・・・(14-],2,3)

n=o n!o ntie

where

ld.L

lny.I

and

lgb+g

are generalizedcoordinates, nodal vectors corresponding to the shells of

revolution, the wave

height,

and the potential

fluid,

respectively.

The

expressions

lead

gradgb==EI][e"][L]lgehl,

w=Zcosne[N.]Id.l-・・・・・・`・----・-・・・・・・・・・・・・・・J・・i・・-・・・-(14-4,5)

n=O n=O .

Substituting

Eq.

(14)

into

Eq.

(13>,

we obtai,n the

following

variation

alk'::J:t][Olgehi'[lgh]lgbhl+01n,,l'[G.]ln.l'filgeAi'[S.]lh.l+cri,laI'[S.]'lsbll

- - tt

-Dlgbn'[R.]Id.lrOid.I'[R.]'lsbAl+crIdnl'([llf;2]Iddi+[Kn]Idnt)]dt'''''''''''''-"'''''''-''(15)

where

[lvh];p,ffXl[L]'[e"]'[e"][L]dv,

[G.]=pLfltg,g[N.]'costne[N.]rdedr,

[Sn]

r= sb.

flC

[Ne]

'cos2 nO

[Nn]

rded r,

[Rn]

== -pL

flC[Ne]T

cos2 ne

[N.]

rdeds,

(5)

-94-Architectural Institute of Japan

NII-Electronic Library Service

ArchitecturalInstitute of Japan

'[M.]-fflLliig[iy]'[e"]T[e"][N]dv,

ld.F[K.]ld.I-2ffllQAL(u)dv

.

' '

and the superscripts

f

and iof generalizedcoordinates mean thatthey are corresponding tothe surfaces

Sr

and

S,,

respectively.

t t ./

If

generalizedcoordinates corresponding to nodal velocity potentials

Ggbhl

ale resolved intoeach regipns

lgb(},

lcbAI

apd

lgb#l

corresponding to

S.,

S,

and

VL,

we

have

the

following

equations

zmt.vtfVv!PlriIP:tL

Vtt

ViL

VL, .!Pl,,

l31l

ip:gbAdik-[S,n

Re.]l?nldn1O・---・---・-・---

(16-1)

.

[

+[

2.

]l

d'7h.l

RO.

]

'

l

tz'il

=O

(16"2)

The

above yield to

'

[M

'] +[K']

l,drp".I

:=O

"""'""""'"H'HH'"v"H'-'-"'""L-"'・--・--・-・--・---(17-1)

[:i,i

[Son

RO.]i3・ll,

lipkl=-[W:LL]L'[VL.VLi]I:ll'''''''"'''''''

-'''(17-2,3)

'

where

[M']=([:

1[l.]'t'[So"

RO.]

'[ipff]-i[So"

RO.])・

[K*],=[Go"

£

.]

[Vel]-'=([

Y,;

:,l]-[

vWl,':][v.]-i[v,.v,,])

-i

' '

The expression Eq.

(17-1

)

allows us toobtain natural

frequencies

a).,and corresponding eigenvectors'

y.i

(.i=1,

2,・・・), where generalized coordinates with

different

Fourier

number cann'o,t coupled because of the orthogonality of the Fourier expansion, and natural f.requenciesare 'num'beredto satisfy

-t. t.

Wnl<Wn2<tuns<'''

2.2

Nonlinear・

Ordinary

Differential

Equations

of

Motion

Selecting suitable modes of vibrations

leads

toa moclal matrix

[Y].

The normal mode corresponding t6 the naturat

frequency

cv. and

the

eigenvector y.,isexpressecl aS

ein,..

,Asstirhing.thatall unknown

i

generalized coordinates'are expressed

by

a superpositi6n of the selected modes of vibrations, we

have

' '

idl=[Ya]leL

lnl=![Y"]le}・・・・・・・・・:・・・・・・・・・・-・・・・・・・・・・・・-:・--・--・・・・・--・-・・・・・・-・-・・・i・・・・・・・・(18-1,2)

'

where

l6I

isthe normal coordinate v.ector. '

SubstitutingEqs.

(18-1,

2)into

Eqs,

(17-2,

3), we obtain an expression

forgeneralized

coordinate

for

t t

'

the velocity ・potential

' ', '

1'

- . t

l

¢

I-[Y"]lel・・・・・・・・・-・・・・・----・・-・・--・--・・-・・・・-・-・-・・・・・・・・・・・・・・・・・・・・・---・・・-・・・・・・・・・・-・-・・・・・・・・(18-3・)

'

Substituting,Eqs.(I8)ipto

Eq,(14)

and usin.g the summation conventiori,,we obtain

'

- t t

ua = Y:k, o= Y7e,

¢ == Y."・

6j

(a=1,

2,3o'=1, ・-)-`・・・・--・-・・・・・・`・・・-・・"-・・--・・・i・・i

('19)

' where ui, u2, and u3 mean u, v, and w, respectiveli. ' '・

'

Substituting

Eq.

(19)

into

Eq.

(12)

and applVing the

Galeikin's

method, we obtain '

olh=y:t![cr&

(M.g,+lilr,ye,+lilr,,,ee,+Iilr..e&s+I2;,og,e,+I:;ke,4,

. ' ', ,

+I2S,ile,e,g,-.f}+Ii5,.e.+IP,,.eb.)+0e,(lllZe,e,+IISO,lee,&)]dt

fo==1,2・,3),

-.,...,.,."".,.,.,.,.HH...,h..."-."H".H".,.,,・-・-・・・・-・・・・・・・--・-・・・-(20)

'

where

b,,

b,

and

D3

mean

b.,

b.

and b., respectively. '

t t

The

expression

leads

thefbllewing equations of motiofi

tt t t ' -H rrm. - t.

M,,6,+K,,e+lil.,efi+K.,,Sene+(lr・,!-:-Il・j2)e,G+(I:Jk-IIJ-2)g,e,

・ "- - -.

-Il,OO,le,e,g,+(I:e・kl-Il,O,Ol)E,e,e,-ll,OO,IE,eL,e,+P,.D.+P..gb.=.fl・・・・:;・・・-・・--i・・:・・t・・・・-・・・(21) ' ' '

(6)

-95-Architectural Institute of Japan

ArchitecturalInstitute of Japan

This

nonlinear ordinary

differential

equations letus obtain bothtransient and stationary

dynamic

solutions of the

interactive

behavior

between

thepotentialfluid and elastic tanks

in

finite

deformations.

3.

VibrationTests and

Numerical

Analyses

Tanks

employed in vibration tests may

have

some geometricalimperfections.

Though

shaking tables areintendedtoexcite inadirectionwith sinuSoidal wave, periodicvibrations observed on thetablemay

have

noise components of vibrations such as

higher-

and sub- harmonic components.

On

theothe/r

hand,

the nonlinear ordinary

differential

equations of motion may show various complex

dynamic

behaviors

depending

upon some pararneters of the specimen and the external

force.

Here,

in

order tounderstand

global featuresof responses of a cylindrical shell tank observecl invibration tests,we analyze a model tank on a shaking tableexited with a periodic

harmonic

wave. Analyzed responses are examiiLed and compared with these obtained by the vibration test.

3.1

Cylindrical

Shell

Tank Model

An

analyzecl cylindrical shell

is

made with vinyl-chloride

film

of thicknessO,51mm, and

have

diameter

83.

68

mm, height200 mm, and a

lid

with acrylic resin ef thickness 8 mm at the top ofthe shell,

Adopted

material properties of the

film

and thelidare shown in

Table

1.Settingwater

height

of the tank

170mm, and acceleration of the shaking table3g

(

=2 940cmlsecZ :root-mean-square value), we made

a test model.

We

have

a mesh model

for

the

fin'ite

elernent idealizationof thesystem as shown inFig.2, where the

cylindrical shell and the

lid

are

divided

in

20elements, and the water volume and the

free

surface are

clivided

in48 and 4 elements, respectively.

3.2

Response

Curves

obtained

by

VibrationTests

a)

Typical

Responses of

Shell

Displacement

obtained

by

Vibration

Tests

Here, inorder toset up objectives of numerical analyses, we summarize typical responses obtained

by

vibration tests.Adopting amplitudes of responses of relative displacements

from

theshaking table, we measured shell

displacement

at threepoints.

Two

of themwere locatedon excitation axis

e=oe

at lgo

mm and 100mm above the tank

bottom,

another was locatedat angle

e==

900

from

theexcitation axis at

100

mm above thebottom, Amplitudes-frequency responses of thefundamentalharmonic oscillation at the three pointsare shown in

Figs.3-1,

3-2, and Fig.3-3.

Main

resonance regions of the normal

coordinate

e,

and

6,

are observed

in

neighborhood of the external

frequencies

124Hz and 4osHz, respectively. The amplitudes-frequency responses of 112-and lf3-subharmonic oscillations

for

the

three pointsare shown

in

Figs.4

and

Fig.5,

respectively.

It

was one of the most remarkable nonlinear responses that in

neighborhood of the resonance region of

62,

112- and

1!3-subharmonic oscillatiens branched out and showed significant vibrations.

The

response amplitude of the l12-subharmonic

oscillation

in

the region is

larger

than the response of the

fundamental oscillation.

And

the response of the

113-subharmonic oscillation

is

as much as that of

fundamental

oscillation.

However,

except the neighborheod of the reso-nance region of

e2,

we could harldyobserve responses of the

subharmonic oscillations. Itisnot

known

the reason why the Tablel MaterialProperties

MeterialYeung'skodiluGPaPoisso"'sRatio"assbensitykglm3

Viny]-chLoride

F[ln 3.3S o.ss 1.,37xlos

herv}ieplete3.34 o.se '1.22xlO`

k

coas

s

83,ee" Lid ,unit:"

wt51

Fig.2 Sectionef Model Cylindrical Tank and Mesh forAnalysis

(7)

-96-Architectural Institute of Japan

NII-Electronic Library Service

ArchrtecturalInstrtute ofJapan ( Fig 3-1 1( Fig.3-2 ( Fig.3-3 ( Fig.4-1 ( Fig.4-2 d( Fig.4-3 mm) ,6 ,5 ,4 3 ,2 ,1 o 30 60 90 !20 150 IBO 210 240 ?70 300 330 360 390 420 450 ' CHz)

ShellDisplacement-Frequency Curveof Fundamental Oscillationat e=Oe at 190mm above TankBottom rnm) ,6 ' . .s ,4 ,3 ,2 .1 e 0 (Hz)

ShellDisplacement-FrequencyCurve of Fundamental Oscillationat 0==e"at 100mm above Tank Bottorn

mm) .6 .5 ,4 ,3 / ,2 1 o O <Hz) ShellDisplacement-FrequencyCurveof Fundamental Oscillationat e 90eat 100mm above TankBottom

mm) .2 .15 .1 ,05 o 0 (Hz)

SheLI Displacement-Errequency Curveof 112-subharmonic Osci]latronat e=OO at 190mm above Tank

' Bettommm) .2 .15 ,1 ,05 o

OcH,)

Shell Displacement-Frequency Curveof 112-subharmonlc Oscillationat e=OO at 100mm above Tank

Bottommm) .2 15 .l ,05 o ' 0 (Hr)

Shell・Displacement-Frequency Curveof 112-subharmonic Oscrllattonat e=900 at 100mm above Tank

Bottom

--

97

(8)

Architectural Institute of Japan ArchitecturalInstitute ofJapan {mm} ,2 .15 .1 .05 o Fig.5-1 Shell i.. :- -:

1

I ; -/- ,/. t :, .i. i, -:. ./ tttt t t t ttt t t t / t t t t t t tttt cm 30 60 90 t20 Displacement-Frequency Bottomm) ,2'''':''・1・・・ tt tt tt tt lt tt tt '''''1' '' '1''' tt ,1 t/.05 ttttttttttttt tt tt tt tt o-tttttt ttttttttt tttttt tttttt tttttt tttttt tttttt ....I. .. ,..../ ., .1. .. .1 . ttttt ttttt tttttt ttttt/ i--・1-・--1---.・-1--・-1・ tttttt ttttt tttttttttttt t...,.t,..t.,..tttttt .,t, tttttt tttttt .ttttt ' 114 Curve of113-subharmonic ;. 1 1 tttt 330 Oscillation

i'

-I・ -,-360 3O 42 4O CH7i) at e=oO at 190mm above Tank

Fig.5-2 ( 30 9 120 ShellDisplacement-Frequency Bottommm) .2'・・・・1・・・/'・・1'・'1'-・/・・・:'・・/・・=・ tttttttt tttttttt tt tttttt .ts・・・・・I・・・!・・・1・・'1'ttt/ttl '''''''1'''''' tttttttt tttt ttt -1 . /,,., 1..,..,/.,..1.,.,/. .t t t.. t tt ttt t tt tt t 05 tttt ttt tt tt ttttt ttt tt tt tttttttt tttttttt tt tttt/t .t.. ... o- -・ ・・ Curveof 113-subharmonic tttt tttt ttt ttt ttt It/t /t.tltt Oscillation

oK 4mgo . CH,t) at e=OO at 100mm above tttlt 1 'e'1 la Fig.5-3 Tank 30 i20

Shell

Displacement-Freqttency Bottom o

Curveof 113-subharmonic Osci

3011ation3 042 O

(Hi) at e=90e at 100mm above Tank

subharmonic vibration responses take place,

b)

Expressions

of Response of the Strainof CircumferentiaiDistributien

Adopting

sampling timeinterval12rr!to

(w

:

frequency

of the extemal periodic

force)

and sampling

number 64

fer

every point,we obtain responses of strains of circumferential

distribution

at 16points at the mid-height

85

mm

from

the

bottom

of cylindrical shell tank, They were evaluatecl to coeffic:ients of

Fourier

series

for

the circumferential

direction.

The

responses of thestrains were also resolved to

harmonic,

higer-harmonic,

and sub-harmonic oscillation components as follows

e(e, t)#

tY.,

[I

Qolt+tl,

(Q..

eos ye+R,,sin ve)l cos

kgt

+( Soh+

tl,(S.hcos

ve+ Tvksin ve)] sin

hlitt]

・・・-i-"・・・・-・・・・・・・---・・・・・・・・-・・,,..

(22)

In

order to compare the strain responses with analyzed responses we introduce root-mean-square

values of strain with respect tecircumferential

distribution

for each

harmonic

oscillation of component

as follows

its1,=[Q:,+

Sg,+S

tT.,(QZ..+R:,+

Si,+ Ti,)i12]

(h=

1,2,--, 31)--・-・・・・.,..,..,,,.,,.

(23)

Setting

acceleration of the shaking table 3

g

<root-mean-square

value), we had the strain-frequency response curves at the mid-height line.The strain-frequency responses of

fundamental

harmonic

oscillation are

depicted

in

Fig.6, where

h=6

in

Eq.(23).

The

1/2-subharmonic and the lf3-subharmonic are shown in

Figs.

7-1

and

7-2,

respectively. Responses of the subharmonic oscillations are observed inthe region ef the externai

frequency

[404,

422].

The

instable region of the subharmonic

(9)

-98-Architectural Institute of Japan

NII-Electronic Library Service

ArchitecturalInstitute of Japan , xi6G 4oo 350 300 zso 200 150 1OO 50 e

lell..,..

1:1 lh・・・ /t :t .tt rms '

・-・--・ ・-・・

1/1・

-"",・11

・.OtiSui・.・E;.ti-pti'IYb.+htsGS

3o so go i?o tso IBO 210 240 27e 3DO 330 360 390 420 450(H,) 'Fig.6Strain

(Fms)-Frequency

Curveof the FundamentalOscillationobtained byVibrationTest

'

'

-6

xio soo '''':;'';・'''v'''7'''i''r'v''/''''i'.'/'''.''''l'''1'''i'''i''''1''''i'''1'''i'''T''''

f'ti''''"'i'''1

4oo・・・-・/・・./・・・/・・・・/・・・+・・・/・・i・・・・/・・・-i・・・/・・-E---/--- /-'.' l''/' '/''']・''/'・・・/・'''/''. ,'''r',/ ttttttttttttttt tttt tttt

;::1:lll:il111il:i-・・・'i'''ll・1111・11:i:l:i・1・111111Illl:I/11.・l・;il・i:i・111;1・ll・1;11i・1:Il"S,il:l:l・

1.00・・-・・1・・・・1・・・・1,・・・.・-1. --1---S-・・1-・・1・・・・1・・・・'i ・i・・-I・・-・'1-・・1・・・・1・・-'1・''''1''''1'4''1,,'''i e' ''' ''''' ' ' ' 3o 13 41 OcH,)

Fig.7-1 Strain

(rms)-Frequency

Curveef 112-subharmonlc Oscillationobtained by VibiationTest -6

xio soo '''''i''i'',,,'/'''i'''/'''.''''I''i''i'''/''''1''''i/'・''I'''/''''i''''i'''1''''1''''1''''''Fm'si'"'I''/

400'''''r"r'''v'.I'''i'''/' /,''''l''''i'''i'''{''''/' 't''1'/'''r':'''/''''/''''/'', . ','''r''':

'

ttttt... ttttt tttt

300-・・・・1・-・・;・・・:・・・・1-・・1・・・・:・・・.'-・・・1・・・・i・・・:・-・・/・・・・.・-/・・・・,・・・・.・・/・・・・1・・・・l・.・-1・・,・1・-・・1.・.-・・・1,.・,1.・.,i

t /tttttttttttttttt.tt t. .ttt

200 .---1---

l-

--,1-

[--・-,i---i,・・・-1--・

1・-・・i,・・-i・・・-1-・・・i・・・・'lv・・1・・・・1i・・・・1i・・・・l'・・'/1''''1i''''1''''1''''l'!'''1''''1'

''i

ioo--・・・i-・・・I・・・・1・・・・I・・・・I・・・・/・・・・'・・・・i・・・・1・・・-l・・・・1・・・・1・-・・1・・・・1・・・・1・・・E・・・・1・・・・,・・・・.・-1・・・・,・・・l-・K・・・1-・・・, 111111・11/11//1////1// lsl1 o . 30 13 .. . 41 O(va) ' t . '

Fig.7-?.Strain

(rms.)-FIequency

Curveof 1!3-subharmonic Oscillationo,bt7ined by VibrationTeE,t

'oscillations

may

be

clividedin

two region,

One

is

th'eregion

[404,・

406], another isther'egion

[407,

4Z2] , where responses of strains in

Fig.7

and these of the displacementof thg cylindrical shell shDwn in

Figs.4 and5may indicate

differnet

vibration' modes. .

The subharmonic oscillation

Fesponsgs

happened

tg

branch

ou't in a regien of external

frequency

(Hz)

[404,

422],' which did.n'tobserved under-the acceleration

gf

the shaking ,ta.ble'1

g.

The

strain corresponding to

Eq.

(23)

is

also used as the strain for each harmonic oscillation in

following'theoretical afialyses.

3.2 Natural Frequencies of a

Cylindrical

Shell

witb PartiallyFilled

Water

,

Computed

natural

frequencies

of

bulging・

vibrations are shown in

Table2,

where resonated

frequencies

observed

in'vibration

tests are also depicted. , ' ・

3.4 Nonlinear VibrationAnalysesZ) , ,

The

vibration modes corresporiding

to

the normal・ coordinates

g,,and

e,

are employed forthe

Galerkin's

method, These normal modes takenon-zero values under ground excitations, generallyL

And

modes corresponding to,e,

(i=4,5,6)

which can take

identical

zero values are employed to

derive

model nonlinear ordinary differentialequations of motion. /

3,5

Response-Curves

of the Fundamental

Harmonic

Oscillation

of

Each

Norpaal

Coordinate

a)

Response-Curves

of the Fundamental

Harmonic

Oscillation

,The

fundarnental

harmonic oscillation of the'normal coordinates are examined

by

assuming the

following

steady-state solutioqs .. , ,. . ・,

Si=CH,iCOSa,t,

62=Cn,iCOswt

・・・・-・--・・・・・・・.・・(24-1,2),

Computed

strain. response-curve・at the

mid-height

circular

line

(85

mm

from

the

bottom

of the

・sheli'tank) isshown inFig.8 with

O,

where

another curve with v cerresponds to strain

response curves obtained by the

linear,theory.

Table2 Natural・FrequencieSof EachCiicumferential Number N(Hz) No1234567 124 2ee'408 No.1(eMp.)(theery)205.tttt.218.3.1.2.2t5;-124.4161''tttttt163.0....tt123,9126tttttt131.1186tttt186.1283.6・420.'4' co5 22g40.36380tttttt354.04T3t-tttt4T8.5 Ho.2(exp,),(lheery)7as,7co3.9429.3se3ttt31S.6272,4ttt283.4tt-t-t He.3texp,i{theery)8se.9701.7T66,7605.5510,Ot..47S.75e8.7.'oo'hl'o' -99-NI・I-Elect'ronic Library

(10)

Architectural Institute of Japan ArchitecturalInstitute of Japan xtoLe soo 400 300 2eo 1OO o ttt tt. .tt .. ttt tt ttt tt/ttt. .t ttt]ttt/ t .L rms 1;t i・P.. -t 'e'.''i' 'i 30 -65 100 135 170 205 240 275 345 3BO 415 45U(H.) Fig.8 Strain

(rms)"Frequency

Re]ationsforFunclamentalHarmonicOscillation

×lde soo 400 300 200 1OO o 0cH,) Fig9 Strain

(rms)-Frequency

RelationsforFundamentalHarmomc Oscillation xi66 4oo 350 300 250

?:8

100 50 O oeooo 0(H2) Fig.10-1 Strain

(rms)-Frequency

Curvesof the Fundamental Oscillation obtained byApalyses and Test '-s

xio

l

,

i

,

i

, too

sg b'("H'z'" Fig.10--2Strain

(rms)-Frequency

Curvesof the Fundamental Osillationexcept Vibration Modes with N=1

There

isfew

difference

between

them inthe

figure.

b) Branching Response-Curves of the

Fundamental

Harmonic

Osciliation"'

Harmonic responses of the normal coordinates

e,

(

i=4,

5,6)may branchout fromsome pointson the response-curve of the normal coordinates

having

a Fourier expansion number

for

circumferential

direction

N=1.

In

ordeT toanalyze the branchingresponse-curves, we assume

Gi=C",iCostot,

ei==:C",icoswt

(i=4,5,6)t・t--・・・・・・---・--・・-・-・・・t・・・・-・(2s-1,2)

Computed

branchingstrain response-curves at the mid-height circular

line

corresponding to

e,

(

i--4,5,6)are shown in

Fig.9

with

Q,

where the responses with

O

are the sarne with

Fig.8.

Response

curves of

e,

branch

out

from

thepointofthe external

frequency

thatcorresponds tothenatural

frequency

e,

(i=4,5,6)

on the response curves of

a,,

where

&,

(i=4,5,6,)

have

identicalnaught 'values. The fundamentalharmonic oscillation component C,,,itakes non-zero value when C",iand C6,,,are

identical

zero.

However,

both

C.,,

and

C,,n

take non-zero values er identical zero, c)

Comparison

of the Fundamental Harmonic

Oscillation

Responses

Strainresponses ef the

fundamental

harmonic

oscillation obtained

by

the vibration testsare shown in Figs.10-1and 10-2with

D,

where analyzed response curves obtained in

b)

are shown with

O

and

O.

Strain

responses

(root-rnean-square

value with respect tocircumferential

distribution)

with and without the modes of vibrations which

have

the Fourierexpansion number IV=1 are depictedinFig.10-1and Fig.

10-2,

respectively. Analyzed response curves of the fundamentalharmonic oscillation simulate the responses obtained

in

experimental tests,globally. And, response curves inFig.9 shows that the

(11)

-100-Architectural Institute of Japan

NII-Electronic Library Service

ArchitecturalInstitute ofJapan xid6 ioooi soo・ 600・ 4oe・ 200. o

--

11

1'1....[1----・ , . t"t./ ・・i・/・ ,・-i-・

・・・-i・

[' ,,..,. '

7(,

/1;

iill.i'

Il

...,

'}'dsv' . ' t/-tttttttt}1 ttt1/ .t 'at/'le.sl/・i i /ttt t .. tttt ' x166 30 Fig.11 1000 ・・・-・1・ ・ / eoo 1 ' 6DO・・・・-1-・・ 400 .・・・・1・・・ 2eo. ・・ o 65 100 135'170 205

Branching Strain

(rrT}s)-Frequency

i 240 275 Curvesof 310 345 380 415 450(H.) 112-subharmonic Oscillation

l'?Q'

S-Lt//;4"-1・il

' ...,.. ..IN, ttt t ttt t ]tt t/tttlt[. t ttt. ...t 1. ,--1..I. {. ./ ttt tt ttttt lttt ./. .1. ttt t/tt ' rms ttt

g51;C12,'1<O

./ .t x16e 37 Fig.'12 600 ・--・・:・ 500 ' 400 tt..t ' 300 -・・・・1・ -・ 1 200 ..t .t.. 1eD...1... o' 373 376 Branching tttttttttt ttttttt tt.. ttttt.lttt/ttt tlttttlt tttt t..t 379 3S2 3S5 3Se 39: Strain

(rms)-Frequency

ttt1.tt tlttttl.ttt1.ttt1ttttlttttlttt tttttttt/...t t/tt..1....1. .t.1..t .1t...I..t t tt tttttt t t t t t t t t t ttt t t t i t t t t t t t - t t t ttt t t 1・ 1/1/I1 t t t t . t . t t ttt t t tt t t t t t t t tt t t t.t t . t/ttttt ttt.t.t 394 397 Cgrvesof ':'i'.t,1, ..,l,.tt tt.ttttttt.tttt ttttt tttttttt tttt ' 'i'' 400 4e3 406

4og 4i2 415cHi) 112-subharmonic Oscillation ' / 'I' t/t ' 360 -365 370 375 380 3e5 390 395 400 405 410 4t 420(H,)

Fig.13 BranchingStrain

(rms)-Frequency

Curvesof 113-subbarmonicOscilt'ation

normal mocles.・

having

the

FourieT

expansion number N :l 1

(out-of-round

modes) includethe response of

fundamental

harmonic

oscillation components inthe responses of cylindrical shell tanks on a shaking table.3.6

Response

Curves

of

Subharmonic

Oscillations

Normal coordinates corresponding tovibration modes with IV>・1 may take non-zero response under some magnitude of theground excitations. Here, we examine

branching

responses of

e,

(

i=4,

5), and

instable

pointgon theresponse curves of the normal coordinates with IV=1, where the 112-subharmonic

oscillation component of

k,

and the 113-subharmonicoscillation component of

&,

may

branch

out,

a),

Simple

Branching ,Responses of the lf2-subharmonic Oscillation

Taking intoaccount coupling of thenormal coordinate

6,

and one of

e,

(i=4,

5),・we

assume the

followingsteady-state solutions . ,

' '

Si=C",i

cos blt,

e,=Ciuf!cos

w12 t・・・・・・・・・・・・・・-・・・・・・・・・・・・・・t・・・・・・・・--・-・・・・・-・-・・・-(26-1,2),

Branching

response gurves at the mid-height circular

line

where the 112-subharmonic,oscillation

component

have

non-zero value are shown in

Fig,

11with

Q.

There

appear response curves inthe

neighborhood of the external frequency 262Hz and 372Hz, where the 112-subharrnonicoscillation component corresponding to

a,

and

gl,

respectively, takes non-zero value.

b)

Branching

Responses

of the 1!2-subharmonic

Oscillations

in

a

'Resonance

Region

In order to examine effects of a resonance region of

S,

on responses of the 1/2-subharrhonic

oscillation, we consider theequations ef motion where normal rnodes

6i,

eL2,

and

ai

are adopted, and

assume '

Si=CnnCOS

tut,

G2=C",iCOS

tot,

ai=

Csinf2COS

to/2t"''''''''''''""'''''''''(27Tl,2,3)

Branching

strain response curves at the mid-height circular

line

where the 112-subharmonic oscillation component havenon-zero value are shown inFig.12with

Q.

Since

the

harmonic

oscillation

component

C,2,,

increaseinthe region of external

frequency

(Hz)

[403,

407], the'112-subharmonic

oscillation component

C,,,,!,

decreases

and takes identicalzero value

in

a small region ofthefrequency '

[407.25,

407.33]. ・ ・ .

(12)

-Architectural Institute of Japan ArchitecturalInstitute of Japan x16e looo soo 6ee 4oo 200 o 0cHt)

Fig.14-1 BranchingStrain

(rms)-Frequency

Cuivesof 1!2-subharmonic Oscillation -e xlo 6oo

::g

;gg

100 o (H.)

Fig14-2 Branching Strain

{rms)-Freqtiency

Curves of 113-subharmonic Oscillation

c)

Branching

Responses

of the 113-subharmonic

Oscillation

Taking into account coupling of the normal coordinate

6,,

G,

and

ai,

we assurne the

following

solutions

6i=Cn,icoswt,

a2=C,2,icoswt,

ei=C",,13cosw/3t・・・・-・・-・----・-・-・・・---・(28-1,,2,3)

There are two response curves, where the113-subharrnonicoscillation component

C,i,v:

takes non-zero

values.

They

are shown

in

Fig.13

with t)s.

d)

Branching

Responses

of

Coupling

of the 112-and the 113-subharmonic

Oscillati.ons

Inorder toexamine coupling of the

112-

and the

113-subharmonic

oscillations inaresonance region of

G,,

we consider the equations of motion where normal modes

Gi,

62,

&i

and

",

are adopted, and assume the

following

solutions

en=Ctu

cos tut,

G2=Ciz,i

cos a)t---・-・・-・・--・---・・・・-・・・-・・・・・---・--・・・・・--・・-・・・・

(2g・-1,

2)

et=C",vscos

cv13 t,

fti=Csi,v2cos

cv12 t・・・・・--・・・・・・-・・-・・・・-・・・・--・--・・・----・-・・-・・・

(29・-3,4)

Branching

strain response curves atthe mid-height circular

line

of the 1!2- and the 113-subharmonic

oscillations are shown inFig.14-1 with

O

and Fig.14-2with A, respectively. Inthe region of external

frequency

(Hz)

[372,

402], the112-subharmonic oscillati,on component

Cst,iit

takes non-zero value under the 113-subharmonic oscillation component C,,,,!,=O, which isdealtinb). Inthe neighborhood of the

frequency

402Hz,

C,,,,!,

branches

out, and C,,,,f,decreasestozero at thefrequency402,7

Hz.

Similarly,

in

the region where the external

frequency

is

larger

than 406.7Hz, the component

C,,,v2

takes non-zero value under

C.,,13=O.

The

113-subharmonicoscillation component

has

non-zero value

inthe region of the external

frequency

[405.

3,406.7].

In

the region of the

frequency

[402.

7,405.3],

response curves are coincide with theseshown inc), where

C"a!3

takesnon-zero values and

Csui,

take

identical

zero.

Though

responses of the l12-and the 113-subharmonicoscillations occur insmall region of external

frequency

under some magnitude of ground acceleration, they

become

significant vibrations.

e)

Comparison

of the

Analyzed

Responses

with

These

in

Vibration

Tests

Strain

responses of the 1/2- and the 1/3-subharmonic oscillations at the micl-height circular line observed in vibration testsunder the external acceleration

3

g are already shown inFigs.7-1and 7-2

with

[],respectively.

These subharrnonic oscillations appeared ina srnall

frequency

regions

[4o4,

422].When the acceleration of the shaking table2g, they appeared inthe

frequency

region

[409,

413].

According

tothe responses observed

in

vibration tests,the responses of the subharmonic oscillation in

the

frequency

regions

[4o4,

406]might take

different

vibration modes with these

in

[407,

422],

Then,

responses invibration testsrnay

have

connection with other vibration modes.

But,

itseems that the

branching

responses of the subharmonic oscillation inthe resonance region of the normal coordinate

fi,

(13)

-102-Architectural Institute of Japan

NII-Electronic Library Service

ArchitecturalInstitute of Japan

are

qualitatively

the nonlinear vibration phenornenon caused by coupling of the 112- and the

113-subharmonic oscillations taking place in

different

normal cbordinate with

different

Fourier

expansion numbers・in circumferential

directions

of cylindrical shell tanks.

''

.

Inorder to,determinestable responses interms of analyses of stationaFy solutions of the interactive

systems, we hav.etosolve the equations of motion with more

degree

of freedom and more numbers of

harmonic

oscillation components, and examine the stability of obtained steady-state solutions, which

needs more elaborate studys.

4.

Conclusions

1. A basicdifferentiqlequations which governthe dynamic interactivebehaviorsbetween the potential

fluid

and elastic tanks in

finite

defQrmations

are

derived.

The equations and th'e

boundary

conditions are

defined

ininitialundeformed configurations:

' 2. A

procedureof combination of the

finite

element method and the Galerkin'smethod.allows'us to

obtain nonlinear ordinary

differential

equations of mQtion with arbitrary numbers of unknowns.'

3.

In

Qrder toobtain steady-state solutions of the ordinary

differential

equations under periodicground' excitations, we・apply the

Galerkin's

proceduretotheequations. Analyzing a cylindrical shell tank

without

initial

geometrical

imperfections,

we can obtain responses where'subharmonic oscillations

branch

out and grow significant yibrations with ,largeamplitudes. .

4. Typicalresponses curves of a cylindrical shell tank with partiallyfilledwater observ,ed in'vibration testsare shown,

In

a sm.all region of theexternal

frequency

responses pf 113-and

112-subharmonic

oscillations

happened

to

branch

out and

become

remarkable vibrations with targe

displacements

and '

t t

st-ralns. '

'

'

5.

Comparing

the responses obtained

by

analyses and thgseobserved invibration tests,we may

eonclude that responses analyzed here simulate the subharmonic responses observed in the tests, Appendix 1

Increment ExpresFions of a Functionatof- which IntegralRegions contain Unknown Variables

The fluidvo]ume isafunctionofnot only initialconfigurations butalso the wave height oandi elastic deformatlonsof shells u.

Thlen, the increment of a iunctiondefipedin the fluidvolume i"givenby

A.XllllLl,.,.,FdV==ffl(1,.,.,AFdti+LCFAoknt・

...,..dS'+ntFAun .dS'-'-''-'-'"''""-'-・-・-・・----・-(a)

where

ihe

vector n, isthe outward no[mal directionof thefluid,and S'isthe area after deforrnations. Appepdix2

PartialIntegralof

h

Functlonalof which IntegratRegionscontairf Unknown Variables The expression (a}in Appepdix 1 leadsto

gtY]lll(l..,Fdv=ffXl,.,.,iidv+.XIC)F:hk.nL

...dsf+./](1Fabni- .ds''--"-'--'-'','-'-'h-"---・-・・--(b)

'

Sinceeach terms take naught values at arbitrary time, we have

,Ct].[]tlXI,.,.,SdVdt=Xlt'['YIC.FbhnJ ...,,dS'-Y](IFani. .dS'ldt''''-'''''-''-'-'-'''-'-v・--・--・---(c)

Appendix 3

Strain and Curvature,and Area ElemeAtof a ConicalFrustum

ExpTessing an initialrnid-plane of the shelt rO LnFig.1,we have

rO=( ro+ssin a)cos ei+(re+ssin a)sin oj+scos ak "H-''"-"""-HH-H'r'H"""""""""""H---'h:H"" {d'l}

A?={r,.r,.)ii'=], A;=(r,er,e}V'== ro+rsina'"--'"-''-'--"'-H'H"Hhh'HHHH''H''''''''''''''''''-'"'-''"--'(d-2,3)

Througholitthispaperthenotation (),.denotesdlfferentiationwith respect s, narnely. ( )..±a( )la2and ( ),e=a( }fee. Assumingthatdeforrnationsofaconical frustumsatisfy theKirchnoff-Loveassumption, we haveunit tangentialvectors t,and t,, and the norrnal vector n

ti=r:.IAr=sin acos di--sinasin di+cosak ・---・--・・・---・---・---・---・--・---・--・・・・・・・・・・・----:;(e-])

t,=rl:elA:= L-sin ei+cos bj,n=-cos ecos ai-sin ecos of+sinak '-'--"-'-r---''''"---・(e-2,3)

A

(14)

Architectural Institute of Japan

Arohiteotural エnstitute  of  Japan

The axes directed toe unit vectors  ti and  n are  set  s・and  n−axes . Using the unit vectors , we  express  the deformation vector

    配=ut 」十v‘診十 wn  7,7・鹽・7・r・7・一・一・・鹽・鹽・鹽・P・P・・7・7・7… ,・… r・P・・r・r7r鹽,鹽・鹽,7・・… 

一・・P・P・p’,・・・・・・・・・・・…

 『・『・・鹽,・・・・… 『・『… 『… 鹽… 鹽・鹽・鹽・鹽,・一・』・7… 7・’{f)

The position vector  after deformations is given by      紀o呂rO

十ロ・・・・・・・・・・・・…7・・・・… 7・77r7・・凾・・・・・・・・・・… 鹽・鹽一・・・・・… P・… 7… 一・・・・…匸・・・・・… P7P7P・・…一・・・・・・・・・・・・・・・・… 一鹽一一・一一一・・・・・・・・・・・・… (9)

Adopting the expressiQn  derived from Novozhllovi7), we have the norma 亘vector  af ヒer deformations

   n’=

1

−∂13t]一含z3t :十〔1十εu 十ezDnV1(1十2∂},}〔1十2{}

92

)}

1 /2・・一・・・・・・・・・…一・・・・・・・・・・・・・…一…一・・・・…一・・・・・・・・・・・…一・・・・・・・・・…∴・ (h)

where

    e,1=u,s,  em==(u.e−vsin  cr)/r,∂12=v,,,  e、、置似θ+ usin α一ωcosa }/r     e、,=ω,。,a,、=〔ω.,+VCOS  a)/r,  e:、 =・ a.+(el,+ei,+ ek)/2

    ∂

1

en十(蝕 +∂1,+錫 )/2

 Taking lnto account  u, v,ω《 r、 and using the unlt vectors  before defQrmatbns,  we  express  an area element  on the interactive sUrfaCe   after  defOrmationS.

  

 

n、Cls

w,。t、+

÷

贓 一(1+u,S+

÷

v,e)・

1

・ded・

       

・…一 ・・・・・・・・・……・…・…・・……・…ω

Reterences

1)Luke, J.C.:Avariational principle for a fluid with  a free surface , J. Fluid Mech, Vol、27, part.2, PP.395−397,1967

2>Minakawa, Y. and Hangai, Y.NQn 且iロear  Lateral Vibrations of SheLls of Revolution, Proc. of 25th Japan National    Congress for Applied Mechanics, pp.59〜73,1975

3) 木村憲 明,大 橋 弘 隆 :軸 対 称 容 器におけるス ロ ッシング の非 線 形応答,日本機 械学 会論文集,第

385pp30243033

    19784

;Minakawa, Y.:The Periodic Solutien PrQblems of RonhneaτEquations Qf Motion under  Periodic FoTce, Proc、 of 27th   

Japan

 Nationat Congress for Applied Meehanics, pp.429−45e,1977

5>C且ough , R. W.,Niwa, A.,and Clough、 D.P.:Experimental Seismic Study ef Cylindrical Tapks, Proc. ASCE , VoL.105,

    no.ST l2,  pp.2565〜2597,1979

6>堀 直人,谷 資信, 田中 弥 寿 雄 ;液 体の入っ た円筒シェ ル の動 的 解 析,日本 建 築 学 会 諭 文 報 告 集,第282号,pp.83−94,

    昭 和54年8月

7) 池 田 駿 介、秋 山成興,中村 広昭,白井 伸一:円筒タン ク の液 体 動揺に関 する研 究,土木 学 会 論 文 報 告 集,第 290号,pp.53〜65

    1979年10月

8)Haroun, M . A. and  Housner, G. W.:Dynamic Characteristics of  Liquid Storage Tanks :Complications in Free Vibrat{on    Analysis of Tanks, Proc. ASCE , Vol.e8, No. EM  5, pp.783〜818,1982

9> 皆 川 洋一;液 体の 入っ た 円筒シェ ル の非 線形 振動解析,日本 建 築 学 会 大会 学 術 講 演 梗 概 集,pp.2565〜2566,昭 和59 年10月

10) 皆川 洋一:有限変 形 場で のポテ ン シ ャ ル流 体と弾 性 体 容 器の相互作 用を支配 す る 汎 閧 数,日 本 建 築 学 会 構 造 系論 文 報 告 集,第     362号,pp.105〜115昭 和6ユ年4月

]1) 皆川 洋一:加 速 度を受け るポテンシャ ル流 体と弾性 体 容 器の相 互 作 用の汎 関 数 と 第一変 分,日本 建 築 学 会 大 会 学 術 講 演 梗 概 集,    構造1,pp.243−244, 昭 和61年8月

12}Minakawa, Y.Lagrangian FunctiQns of  the lnteractive Behavior Between Petential Fluid and Elastic Container.s in Fields    of Finite Deformations:PTe¢. IASS  Symposium, Osaka, Vol.1, pp.73−80,1986

131 皆 川 洋一:加 速 度 を 受 け る 有 限 変 形 場に おけ る ポ テンシャ ル流体と弾 性 体の相 互 作 用 問 題の解 析,日本 建 築 学 会 中国 ・九 州 支    部 研究 報 告,第 7号 ・1,pp.125〜128昭 和62年3月 14) 大 森 博 司,松 井 徹 哉,日 比 野浩:液体貯槽の有限 振幅液面動 揺にす る研 究,日本 建 築 学 会 構 造 系 論 文 報 告 集,第375号,    PP.65−72,1987年5 15) 皆 川 洋一:水の入っ た円 筒シェ ル の水 平振動にお け る非 線形 振 動応答 の 影 響の評 価,平 成元年 度 科学 研究 費 補助 金 〔一般研 究    C)研 究成 果報 告 書 16) 皆 川 洋一:円筒シヱ ル の水 平 振 動 実 験にお ける高次 振動モードお よ び非線 形 振 動の生起,日本 建 築 学 会 大 会 学 術講演梗 概 集,   構 造1,pp.1233−1234,1990年10月

17) Novezhilov:Foundations ol the Nonlinear Theory ef Elasticity, GraylDck Press,1953

18)Kyuichiro Washizu :Variational Methods in Elastic and Plasticity, Pergamen Press, PP.522−528

(Manuscript received  September 10,1991;Paper Accepted February 28,1992

(15)

Architectural Institute of Japan

NII-Electronic Library Service

Arohiteotural エnstitute  of  Japan

和 文要 約 序   水の入 っ た円筒シi ル を水 平 振 動 台に設置 して応 答を 測 定した実 験 結 果はい くつ か報 告され 微 小 変 形 を仮 定 し た線 形 振 動 理 論か らは予 測できない 振 動が観 測さ れ た と報告され て い る。Cloughら5) は円 筒 断 面が 正 円で は な くなる振 動モ ードが生起する ことを報 告し,シi ル の 初 期 不 整がこ の振 動モードの発生に関 与して い る も の と 指 摘 し て い る。皆 川15〕.16 ) 周 期 的地 動 を受け る 円 筒 シェ ル の周 方 向フーリエ級 数 展 開 次 数 N =7まで の振動モー ドと外 力 振 動 数と同一の振 動 数を有す る基 本 振 動 数の ほ か,外 力 振 動 数の 2,3倍の振動 数を持つ 高 調 波 振 動, および1/3,ユ/2,3/2 倍の振動数を持つ分 数 調 波 振 動の 応 答と を組み合わ せ た応答曲線を示 している。  容 器に 入っ た 液体と容器の相 互 作 用 問 題は液 体を ポテ ンシャ ル流 体と定し た定式 化が な さ れて く の線 形 解 析が報告fi〕さ れ 工学 的知 見ら れ て し か し なが ら,この線 形理論は実験で観 測 され てい る非 線 形 振 動と判 断さ れ る応 答の生 起を解明 する基 礎 式 を も た ら さ ない。L叫ke1;はポテン シャ ル流 体の圧 力 積 分が 有限 波高の境界条 件を含む厳 密なス ロ ッシング振 動の汎 関 数と なる こ とを示し た。こ の汎 関 数か ら得られる運 動 方 程 式へ 逐 次 積 分 法 を適 用し て,中 山,鷲 津1e }は有 限 波 高の ス ロ ッ シ ン グ振 勤の 過 渡 応 答を解析し て い る。 Luke の示した汎 関 数は変形後の 形 状で定 義 され て いる の で,周 期 的 外 力の も のでの振 動の定性的な振 動 特性 を 把握す るの には適切では ない。こ の 汎 関 数,あるい はこ の数に基づ い て得ら れ る基 礎 式を変 形 前の領 域に お い て波 高に関 するマ クロ ーリン展 開し て得ら れ る基 礎 式 を 利用し て,木村ら3い 大森ら14) は非線形 振 動と しての ス ロ ッ シ ン グ振 動を解 析してい る。皆川10 )・12 ] この流 体の 圧力表現を容器変形, お よび液体自由 表 面での波 高の変 . 化に伴う流体場の変 化 を 考 慮し た流 体 場で積 分すると有 限変形 場,す なわち流 体の有限波 高お よ び弾 性 体 容 器の 変 形に伴う流 体 場の変 化 を考 慮に入れ た変 形 場,で のポ テンシャ ル流 体と容 器の相互作 用 問題 の 汎関数と な るこ と を示し,限変形 場での 基 礎 式 を 誘 導し た。本 論 文は, ま ず 三方 向の速度 外力 を受け る有限変形 場で のポ テン シャル流体と 回転シェ ル容器の相互 作 用 問 題の基 礎 式 を 誘 導し,この基 礎 式ヘ モ ーダル アナ リシ ス法 (Galerkin 法)を適 用2, し て非線形常微分方 程 式へ びく方 法 を示 す。つ ぎ に 周期 外 力 を 受け るこ の常 微 分 方 程 式へ 調 和バ ラン スを適 用して,実験 結果が報告さ れ てい るモ デル に生 起す る振 動 応 答を解析 し, 解 析され た応 答と実 験か ら得ら れ る応 答の対 応 を検 討 し,実 験において観 測され る非 線 形 振 動 応 答15 〕・16 〕が理 論 解 析か ら裏 付け ら れ ること を示す。 1.ポテ ン シャ ル 流体の圧 力 表 現 式  慣性系に右手 系デカ ル ト全体座標系 (0−xjy , Z) を定め る。容器に右 手 形 デカ ル ト座 標で表された局 部 座 標 系 (o−x,y, z)を定 義す る。 こ の局 部 座 標 系の x, y, z 方 向の 単 位 方 向ベ ク トル をそ れぞれ i, 

j

, ’k と表 す。 局 部 座 標 系は回 転シ〕・ル で構 成さ れ た容 器 を扱 うの で適 宜 円 筒座標系 (rt θ,’zを も利用す る。 容 器は回 転しない で速度 v。で運 動 す る もの と 仮 定 す る。容器 と ともに運 動 する観 測者が観 測す る容器内の流 速を v と する。この と き慣性 系に有る観測者の測す る容器の流 速 q は (1)式の よ うに表 さ れ る川 。 式 (1)・で表 現 さ れ る容 器と と もに運動す る観 測 者が観 測す る容 器 内の 流 速に (2>式でさ れ る速 度ポテン シャ ル ψ を導 入 する。 局 部座標 系に お け る 流体自 由 表 面の静 水時の z 座 標g。,重 力 加速度 g と し, 式 (2 )の速度ポ テン シャ ル を利用 す る と,座 標 r に お け るポテンシャル 流体の 圧 力 は (3)式の よ うに表現 され る6  流体自由表面 (S∫)の Z 方 向 波 高 η, . 容器 と の互 作用面 (S,)での弾 性 体 容 器の変 位ベ ク トル h, 弾 性 体 容器 の ひずみエ ルギー密 度 関 数 をA,流 体 場 VL,弾 性体の体 積 睦, 流 体お よ び弾 性 体の質量密 度をそ れ ぞ れ ρt,およびρE と す れ ば,こ の相互作・用 問 題を支 配 す る汎

ma

数 1ψ, u )は (4)』式の よ うに表さ れ る。   式 (4)の流 体 場は波 高 η,相互作 用 面で の弾 性 体 容 器の変 位ベ ク トル u との関 数と して定 義さ れ る。式 (5) を考 慮し て,(4>式の第一変 分 δ1, を算 定 し て (6) 式 を得る。  流 体 自 由表 面 Sノ,相 互 作 用 面 S‘で の変形 後の面 積 分 要 素は (8),(9}式の よ うに表現さ れ る (付録 3参 照 )。 変形後.の位 置での 関 数の 評 価 は (10},(ll)式の表 現 を 採 用 す る。   (8),(9 )式 を (7)式へ 代 入 , (10), (11) 式, お よび付 録2 を考 慮す る、と,(6}式は (12)式の よ う に表 現され る。 2.・非 線 形 常微 分 方 程 式の誘 導      、  こ こ で は,(12) 式へ Galerkin適 用 て,非 線 形 常 微 分 方 程 式を誘 導4Pす る。 こ の方 法は 二つ の手 順 を踏 む。1.(12)式の線 形 問題 め 固 有 振 動 数お よ び振 動モ ー ドを 解 析 する。 2.得 られた固 有 振 動モードを 用い’t Galerkin法 (モ ーダル ・リダク ショ ン法 )を (12)式 一 105一 N工 工一Eleotronio  Library  

Fig. 5-2           (               30 9 120Shell Displacement-FrequencyBottommm)       .2'・・・・1・・・/'・・1'・'1'-・/・・・:'・・/・・=・          tttttttt          tttttttt          tt   tttttt     .ts ・・・・・I・・・!・・・1・・'1''' '''''1'''''' ttt/ttl         tttttttt

参照

関連したドキュメント

W ang , Global bifurcation and exact multiplicity of positive solu- tions for a positone problem with cubic nonlinearity and their applications Trans.. H uang , Classification

Let X be a smooth projective variety defined over an algebraically closed field k of positive characteristic.. By our assumption the image of f contains

We list in Table 1 examples of elliptic curves with minimal discriminant achieving growth to each possible torsion group over Q

We recall here the de®nition of some basic elements of the (punctured) mapping class group, the Dehn twists, the semitwists and the braid twists, which play an important.. role in

(4) The basin of attraction for each exponential attractor is the entire phase space, and in demonstrating this result we see that the semigroup of solution operators also admits

Keywords: continuous time random walk, Brownian motion, collision time, skew Young tableaux, tandem queue.. AMS 2000 Subject Classification: Primary:

By the algorithm in [1] for drawing framed link descriptions of branched covers of Seifert surfaces, a half circle should be drawn in each 1–handle, and then these eight half

In my earlier paper [H07] and in my talk at the workshop on “Arithmetic Algebraic Geometry” at RIMS in September 2006, we made explicit a conjec- tural formula of the L -invariant