• 検索結果がありません。

第126回定例研究会 予稿? HYDROGENIUS研究の進捗と水素脆化基本原理:九州大学 副学長/村上敬宜

N/A
N/A
Protected

Academic year: 2021

シェア "第126回定例研究会 予稿? HYDROGENIUS研究の進捗と水素脆化基本原理:九州大学 副学長/村上敬宜"

Copied!
4
0
0

読み込み中.... (全文を見る)

全文

(1)

水素エネルギーシステム Vol.33, No.4 (2008) 資 料

第 126 回定例研究会 資料Ⅰ

HYDROGENIUS研究の進捗と

水素脆化基本原理

2008年10月30日 水素エネルギー協会126回定例研究会

九州大学 伊都キャンパス

Yukitaka Murakami

Kyushu University

The Research Center for Hydrogen Industrial Use and Storage (HYDROGENIUS), National Institute of Advanced Industrial Science and Technology (AIST)

2

Outline

1. INTRODUCTION : BACK GROUND OF HYDROGEN ENERGY TECHNOLOGY DEVELOPMENT IN JAPAN AND HYDROGENIUS PROJECT

2. EFFECT OF HYDROGEN ON STRENGTH OF MATERIALS 2.1 Effect of Hydrogen on Static Strength of Steels

2.2 Effect of Hydrogen on Fatigue Crack Growth 2.2.1 Cr-Mo steel: JIS SCM435

2.2.2 Effect of Hydrogen on Fatigue Crack Growth Behavior of Austenitic Stainless Steels

A. Hydrogen entry into austenitic stainless steels.

B. Effects of hydrogen and test frequency on fatigue crack growth. C. Effects of hydrogen on striation formation.

D. What happens if non-diffusible hydrogen is removed by the special heat treatment?

3. CASE STUDIES

3.1 Dispenser Failure at the Hydrogen Station of EXPO 2005 in Nagoya 3.2 Hydrogen Storage Cylinder at Kasumigaseki Hydrogen Station, Tokyo 4. CONCLUSIONS

4

NEDO – HYDROGENIUS Project

HYDROGENIUS

• Hydrogen Fatigue and Fracture Team • Hydrogen Tribology Team

• Hydrogen Thermophysical Properties Team • Hydrogen Simulation Team

Opening ceremony of HYDROGENIUS Nov. 9, 2007

HYDROGENIUS lab. tour

HYDROGENIUS Lab. Building

• Experiments under 100 MPa high-pressure hydrogen gas environment

• High-sensitive and accurate analysis for solution of basic principles in hydrogen-material interaction problems

4

3

Fuel Cell Commercialization Task Group

Hydrogen and Fuel Cell Research Projects in AIST

Hydrogen & Fuel Cell Research should go back to the Basic

Ministry of Economy, Trade and Industry Agency for Natural Resources and Energy

Polymer Electrolyte Fuel Cell Cutting-Edge Research Center

FC-Cubic Research Center for Hydrogen Industrial Use and Storage HYDROGENIUS April 1, 2005

July 1, 2006

• Solution of Mechanism of Hydrogen Embrittlement • Establishment of Database and

Basic Technologies for Achieving Hydrogen Society

Advanced Fundamental Research on Hydrogen Storage Materials

HYDROSTAR April 1, 2007 • Lowering Cost of Polymer

Electrolyte Fuel Cell (PEFC) • Improvement of Durability and

Reliability of PEFC • Establishment of Compact and Energy Efficient Hydrogen Storage System through Fundamental Studies of Materials

Breakthrough of Technical Limit by Concentrating Research Resources 3

5 Workshop High pressure

H-autoclaves Fatigue test Micro structural analysis, measurements H-measurement Microscope SIMS TDS Autoclave lab. Autoclave Specimens

Wokshop Fatigue testing machine

Original materials

NEDO – HYDROGENIUS Project

H-measurement

(2)

水素エネルギーシステム Vol.33, No.4 (2008) 資 料

6 H H H H H H Shearing Shearing H H H H H H H H H HH H H HH H H Necking Necking H H H H H HH H H H H H H H H H H H H HH H H H H H H H H H H H H H H H H Inclusion H H H H H H H H Inclusion H

2.1 Mechanism of Hydrogen Embrittlement in Tensile Fracture

Uncharged Hydrogen-charged

(c-1) Nucleation

(c-2) Growth

(c-3) Coalescence

Schematic illustration of nucleation, growth and coalescence of voids.

•Voids are elongated in the lateral direction to the tensile axis.

•Nucleation of voids occurs at lower strain. Hydrogen enhances

Localized Slip Deformation.

Hydrogen effects

(a) Uncharged (0.05ppm)

(b) Hydrogen charged (0.91ppm) Voids in longitudinal cross section of tensile fractured specimens.

20 mm 20 mm 500mm

500mm

Development of voids in the hydrogen charged specimen of JIS-SGP(0.078% carbon steel)

6 * T. Matsuo, S. Matsuoka and Y. Murakami (2007)

8 H da H H H H H H H H H H H a H da H H H H H H H H H H H a

da/dN-DK diagram for the hydrogen-charged and uncharged specimens of JIS-SCM435.

Schematic image of the mechanism of effect of hydrogen and test frequency on fatigue crack growth.

Mechanism of Hydrogen Embrittlement in Fatigue Crack Growth

Frequency Effect on Hydrogen-Induced Fatigue Crack Growth Acceleration

• The crack growth rate increases with decreasing frequency of cyclic loading. • There is an upper limitof the hydrogen-induced crack growth acceleration.

Uncharged specimen Hydrogen-charged (0.56ppm) (0.56ppm) (0.54ppm) m MPa 17  K JIS-SCM435

* T. Tanaka et al., Trans. Japan Soc. Mech. Eng., vol. 73 (2007), pp. 1358-1365.

10 10

Hydrogen thermal desorption spectrum of Type 316L

Effect of Hydrogen on Fatigue Behavior of Austenitic Stainless Steels

7 Hydrogen Content Distributions and Results of Tensile Tests

(Type 316 stainless steel)

0 10 20 30 40 50 60 70 80 0 0.5 1 1.5 2 H y d ro g e n c o n te n t CH (m a ss p p m )

Depth from surface z(mm)

Hydrogen-exposed(102MPa, 393K, 120h)

Hydrogen-exposed (10MPa, 553K, 200h)

Hydrogen content distributions

30mm 500m m 30mm 30mm 500mm

2.1 Mechanism of Hydrogen Embrittlement in Tensile Fracture

① ②

Hydrogen is saturated in the specimen

Hydrogen exists only in the surface layer ①Saturated ②Not saturated

Cup-and-Corn type Shear-type fracture from surface crack

H H H H H H H H H H H H H H H H H H H H H H H H H H H H ① ② * Y. Mine et al. (2007) 9 (a) Plane stress (b) Plane strain

(c) Schematic image of plastic zone at crack tip

(e)Plastic zone produced at crack under no hydrogen

(f)Plastic zone produced at crack under hydrogen

(g) No hydrogen effect (h) Hydrogen effect (d) Difference in fracture between plane stress

and plane strain

Hydrogen and Frequency Effects on Plastic Zone Size

11 11

Effect of Hydrogen on Fatigue Behaviour of Austenitic Stainless Steels

Influence of hydrogen charging on crack growth from 100 mm hole for austenitic stainless steels SUS304, SUS316 and SUS316L. Hydrogen charging was carried out at 50 °C for 672 hours. Charging method: cathodic charging

Kanezaki et al (2008)

(3)

水素エネルギーシステム Vol.33, No.4 (2008) 資 料

12 12 Influence of hydrogen and test frequency

on crack growth from 2a = 200mm, of (a) type 304(σ= 280MPa), (b) type 316L(σ= 280MPa), and (c) effect of hydrogen and test frequency

on crack growth rate of type 316L

Effect of Hydrogen on Fatigue Behavior of Austenitic Stainless Steels

Murakami et al (2008)

14 Difference in striation morphology between a hydrogen-charged specimens and uncharged speimens of type 304:

(a) uncharged (σ=260MPa, f = 1.5Hz, 2.2wppm) and (b) H-charged (σ=260MPa, f = 1.5Hz, 6.7wppm). The arrows in the figures indicate the crack growth directon

Effect of Hydrogen on Fatigue Behavior of Austenitic Stainless Steels

Murakami et al (2008)

16

What Happens When Nondiffusible

Hydrogen is Removed by Special

Heat Treatment?

Hydrogen thermal desorption spectrum of Type 316L

Effect of Hydrogen on Fatigue Behavior of Austenitic Stainless Steels

Murakami et al (2008)

13 Difference in crack growth behavior between hydrogen-charged specimens and

uncharged speimens of type 304 (σ=280MPa): (a) uncharged (f = 1.2Hz, 2a = 782mm, N = 11000, 2.2wppm), (b) uncharged (f = 0.0015Hz, 2a = 778mm, N = 8300, 2.2wppm), and

(c) H-charged (f = 1.2Hz, 2a = 801mm, N = 5150, 3.7wppm)

Effect of Hydrogen on Fatigue Behavior of Austenitic Stainless Steels

Murakami et al (2008)

15 Relationship between ratio of striation height H to spacing s,

H/s, and stress ratio (1-R).

Effect of Hydrogen on Fatigue Behavior of Austenitic Stainless Steels

Murakami et al (2008)

17 Hydrogen thermal desorption spectrum of Type 316L

Effect of Hydrogen on Fatigue Behavior of Austenitic Stainless Steels

Murakami et al (2008)

(4)

水素エネルギーシステム Vol.33, No.4 (2008) 資 料

18

Hydrogen Trapped at O-site of FCC Metals

Hydrogen at O-site

20 20 Crack tip opening and striation formation mechanism in fatigue: (a) no hydrogen effect, (b) hydrogen effect, (c) schematic image of thick plastic zone wake produced at a crack under no hydrogen, and (d) schematic image of shallow plastic zone wake produced at a crack under hydrogen effect

Effect of Hydrogen on Fatigue Behavior of Austenitic Stainless Steels

Murakami et al (2008)

19 19 Influence of hydrogen and test frequency

on crack growth from 2a = 200mm, of (a) type 304(σ= 280MPa), (b) type 316L(σ= 280MPa), and (c) effect of hydrogen and test frequency

on crack growth rate of type 316L

Effect of Hydrogen on Fatigue Behavior of Austenitic Stainless Steels

Murakami et al (2008)

参照

関連したドキュメント

北陸 3 県の実験動物研究者,技術者,実験動物取り扱い企業の情報交換の場として年 2〜3 回開

金沢大学学際科学実験センター アイソトープ総合研究施設 千葉大学大学院医学研究院

会長 各務 茂夫 (東京大学教授 産学協創推進本部イノベーション推進部長) 専務理事 牧原 宙哉(東京大学 法学部 4年). 副会長

【 大学共 同研究 】 【個人特 別研究 】 【受託 研究】 【学 外共同 研究】 【寄 付研究 】.

社会学文献講読・文献研究(英) A・B 社会心理学文献講義/研究(英) A・B 文化人類学・民俗学文献講義/研究(英)

山階鳥類研究所 研究員 山崎 剛史 立教大学 教授 上田 恵介 東京大学総合研究博物館 助教 松原 始 動物研究部脊椎動物研究グループ 研究主幹 篠原

本研究科は、本学の基本理念のもとに高度な言語コミュニケーション能力を備え、建学

本研究科は、本学の基本理念のもとに高度な言語コミュニケーション能力を備え、建学