• 検索結果がありません。

More precisely we prove that the Cauchy problem has unique nontrivial solution in C((0,1] ˙Bγp,p(R

N/A
N/A
Protected

Academic year: 2022

シェア "More precisely we prove that the Cauchy problem has unique nontrivial solution in C((0,1] ˙Bγp,p(R"

Copied!
22
0
0

読み込み中.... (全文を見る)

全文

(1)

ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu (login: ftp)

BLOW UP OF SOLUTIONS FOR KLEIN-GORDON EQUATIONS IN THE REISSNER-NORDSTR ¨OM METRIC

SVETLIN G. GEORGIEV

Abstract. In this paper, we study the solutions to the Cauchy problem (utt∆u)gs+m2u=f(u), t(0,1], xR3,

u(1, x) =u0B˙p,pγ (R3), ut(1, x) =u1B˙γ−1p,p (R3),

where gs is the Reissner-Nordstr¨o m metric; p >1, γ (0,1),m 6= 0 are constants,f ∈ C2(R1),f(0) = 0, 2m2|u| ≤f(l)(u)3m2|u|,l= 0,1. More precisely we prove that the Cauchy problem has unique nontrivial solution in C((0,1] ˙Bγp,p(R+)),

u(t, r) =

(v(t)ω(r) fort(0,1], rr1

0 fort(0,1], rr1, wherer=|x|, and limt→0kukB˙γ

p,p(R+)=∞.

1. Introduction

In this paper, we study properties of the solutions to the Cauchy problem (utt−∆u)gs+m2u=f(u), t∈(0,1], x∈R3, (1.1) u(1, x) =u0∈B˙p,pγ (R3), ut(1, x) =u1∈B˙p,pγ−1(R3), (1.2) wheregs is the Reissner-Nordstr¨om [2],

gs= r2−Kr+Q2

r2 dt2− r2

r2−Kr+Q2dr2−r22−r2sin2φdθ2,

the constants K and Qare positive, m 6= 0, p∈ (1,∞) and γ ∈ (0,1) are fixed, f ∈ C2(R1), f(0) = 0, 2m2|u| ≤ f(l)(u) ≤ 3m2|u|, l = 0,1. More precisely we prove that the Cauchy problem (1.1)-(1.2) has a unique nontrivial solution u in

2000Mathematics Subject Classification. 35L05, 35L15.

Key words and phrases. Partial differential equation; Klein-Gordon; blow up.

c

2005 Texas State University - San Marcos.

Submitted March 14, 2005. Published June 27, 2005.

1

(2)

C((0,1] ˙Bp,pγ (R+)) such that limt→0kukB˙γp,p(R+) =∞. The Cauchy problem (1.1)- (1.2) may rewrite in the form

r2

r2−Kr+Q2utt− 1

r2r((r2−Kr+Q2)ur)

− 1

r2sinφ∂φ(sinφuφ)− 1

r2sin2φuθθ+m2u=f(u),

(1.3)

u(1, r, φ, θ) =u0∈B˙γp,p(R+×[0,2π]×[0, π]),

ut(1, r, φ, θ) =u1∈B˙p,pγ−1(R+×[0,2π]×[0, π]), (1.4) wherex=rcosφcosθ,y=rsinφcosθ,z=rsinθ, φ∈[0,2π],θ∈[0, π].

When gs is the Riemann metric, m = 0, f(u) = |u|p; u0, u1 ∈ C0(R3) in [1, Section 6.3] is proved that there exists T > 0 and a unique local solution u∈ C2([0, T)×R3) of (1.1)-(1.2) such that

sup

t<T , x∈R3

|u(t, x)|=∞.

Whengs is the Riemann metric, m = 0, f(u) =|u|p, 1≤ p <5 and initial data are in C0(R3), in [1] is proved that the initial value problem (1.1)-(1.2) admits a global smooth solution.

Whenφ6= 0, π,2π,θ6= 0 are fixed constants we obtain the Cauchy problem r2

r2−Kr+Q2utt− 1

r2r((r2−Kr+Q2)ur) +m2u=f(u), (1.5) u(1, r) =u0∈B˙p,pγ (R+), ut(1, r) =u1∈B˙γ−1p,p (R+). (1.6) Our main result is as follows.

Theorem 1.1. Let mbe a non-zero constant, p∈(1,∞),γ∈(0,1) and K, Qbe positive constants for which

K2>4Q2, 1

1−K+Q2 >1, 1−K+Q2>0, with1−K+Q2 is small enough such that

K−p

K2−4Q2

2 −2p

1−K+Q2>0.

Also let f ∈ C2(R1), f(0) = 0, 2m2|u| ≤ f(l)(u) ≤ 3m2|u|, l = 0,1. Then the Cauchy problem (1.1)-(1.2) has a unique nontrivial solution u(t, r) = v(t)ω(r) ∈ C((0,1] ˙Bp,pγ (R+))for which

t→0limkukB˙γp,p(R+)=∞.

This paper is organized as follows: In section 2 we prove that the Cauchy problem (1.1)-(1.2) has unique nontrivial solution ˜u = v(t)ω(r) ∈ C((0,1] ˙Bγp,p(R+)). In section 3 we prove that

t→0limk˜ukB˙γp,p(R+)=∞, where ˜uis the solution, which is received in section 2.

Let

C= pγ.2 2−1

1/p

.

LetA >0,Q >0,B >0,K >0, 1< β < αbe constants for which

(3)

(H1) 1−K+Q8 2

8 1−K+Q2

2m2

α2A + 4m2

≤1, αAm >1 (H2)

1 1−αK+α2Q2

1 1−αK+α2Q2

m2

α4A2 −2m2r21 r1−1

β 2

≥1 and α4(1−αK+αm2 2Q2)A2 −2m2r21≥0,

(H3)

C2p(1−γ) p(1−γ)

1/p 8 1−K+Q2

8 1−K+Q2

2m2

α2A2 +m2+6m2 AB

<1 (H4) α12

1 1−αK+α2Q2

m2 α2A4β12

m2 A2 >0 (H5)

2p(1−γ) p(1−γ)

1/p

16C 1−K+Q2

8 1−K+Q2

2m2

α2A2 + 4m2

<1 (H6) K2>4Q2,A≥ 1−K+Q8 2 >1, AB6 <1, 1> 2QK2 > K−

K2−4Q2

2 , 1−K+

Q2>0 is small enough such that 1> K−p

K2−4Q2

2 −3p

1−K+Q2>0, 2

K−p

K2−4Q2−2p

1−K+Q2 ≤β < α≤3, where

r1=K−p

K2−4Q2

2 −

√2 4

p1−K+Q2. Example. Let

A= 1

4, B= 1

, p= 3

2, γ= 1

3, α= 3, 1

β = K−p

K2−4Q2

2 −3

2

p1−K+Q2, K= 4 3 +1

620−3 22, Q2=1

3 +1 620−1

22, m2=4,

where 0< <<1 is enough small such that (H1)-(H6) hold. Then 1−αK+α2Q2= 1−3K+ 9Q2=20,

1−K+Q2=2.

Remark 1.2. Let2= 1−K+Q2. Note that from (H6) we haveg(r) =r2−Kr+

Q2>0 forr∈[0, r1],g(r) is decrease function forr∈[0, r1]. Also (forr∈[0, r1]) we have

r2

r2−Kr+Q2 ≤ 1 1−K+Q2. In deed, letting ˜r= K−

K2−4Q2

2 , we haver1= ˜r−

2

4 . Note that function r2

r2−Kr+Q2 is increasing forr∈[0, r1]. Therefore,

r2

r2−Kr+Q2 ≤ r12

r12−Kr1+Q2 ≤ 8

2 = 8

1−K+Q2.

(4)

Note that the function

1 r2−Kr+Q2 is increasing forr∈[0, r1]. Therefore, forr∈[0, r1],

1

r2−Kr+Q2 ≤ 8 1−K+Q2.

Here we will use the following definition of the ˙Bγp,p(M)-norm (γ∈(0,1),p >1) (see [3, p.94, def. 2], [1])

kukB˙p,pγ (M)=Z 2 0

h−1−pγk∆hukpLp(M)dh1/p , where ∆hu=u(x+h)−u(x).

Lemma 1.3. Let u(x)∈ C2([0, r1]), u(x) = 0 forx ≥r1, 0 < r1 <1. Then for γ∈(0,1),p >1 we have

CkukB˙γp,p([0,r1])≥ kukLp([0,r1]). Proof. We have

kukp˙

Bp,pγ ([0,r1])= Z 2

0

h−1−pγk∆hukpLp([0,r1])dh

= Z 2

0

h−1−pγku(x+h)−u(x)kpLp([0,r1])dh

≥ Z 2

1

h−1−pγku(x+h)−u(x)kpLp([0,r1])dh

= Z 2

1

h−1−pγku(x)kpLp([0,r1])dh

=ku(x)kpLp([0,r1])

Z 2 1

h−1−pγdh

=ku(x)kpLp([0,r1])

2−1 pγ2 ; i.e.,

kukp˙

Bp,pγ ([0,r1])≥2−1

pγ2 ku(x)kpLp([0,r1]).

From this estimate, we haveCkukB˙p,pγ ([0,r1])≥ ku(x)kLp([0,r1]) which completes the

proof.

2. Existence of local solutions to the Cauchy problem(1.1)-(1.2) Here and below we suppose that the positive constantsA, K,Q,B, 1< β < α satisfy (H1)-(H6). Lett∈(0,1]. Letv(t) be function which satisfies the hypotheses:

(H7) v(t)∈ C3[0,∞),v(t)>0 for allt∈[0,1]

(H8) v00(t)>0 for allt∈[0,1],v0(1) =v000(1) = 0,v(1)6= 0

(5)

(H9)

min

t∈[0,1]v(t)≥ 1

A, max

t∈[0,1]v(t)≤ 2 A, min

t∈[0,1]

v00(t) v(t) ≥ m2

α2A2, max

t∈[0,1]

v00(t)

v(t) ≤ 2m2 α2A2; limt→0[v00(t)− m2

α2A2v(t)] = +0, v00(t)− m2

α2A2v(t)≥0 fort∈[0,1].

Note that there exist a functions v(t) for which (H7)-(H9) hold. For example consider the function

v(t) = (t−1)2+m2A22 −1 A3mα22

. (2.1)

Thenv(t)∈ C3[0,∞);v(t)>0 for allt∈[0,1] because (H1), we have αAm >1; i.e., (H7) holds. Since

v0(t) =2(t−1)

A3mα22 , v0(1) = 0, v00(t) = 2

A3mα22 ≥0 ∀t∈[0,1], v000(t) = 0, v000(1) = 0, it follows (H8). On the other hand

min

t∈[0,1]v(t)≥ 1

A, max

t∈[0,1]v(t)≤ 2

A, v00(t)

v(t) = 2

(t−1)2+m2A22 −1, which implies

min

t∈[0,1]

v00(t) v(t) ≥ m2

α2A2, max

t∈[0,1]

v00(t)

v(t) ≤ 2m2 α2A2, v00(t)− m2

α2A2v(t) = m4

α4A5(2−t)t, lim

t→0[v00(t)− m2

α2A2v(t)] = +0;

i.e., (H9) holds.

Here and below we suppose thatv(t) is a fixed function satisfying (H7)-(H9). In this section we will prove that the Cauchy problem (1.1)-(1.2) has unique nontrivial solution of the form

u(t, r) =

(v(t)ω(r) forr≤r1, 0 forr≥r1, withtin (0,1] andu∈ C((0,1] ˙Bγp,p(R+)).

Let us consider the integral equation

u(t, r) =





 Rr1

r 1 τ2−Kτ+Q2

Rr1

τ

s4 s2−Ks+Q2

v00(t) v(t)u(t, s) +s2m2u(t, s)−f(u(t, s))s2

ds dτ, for 0≤r≤r1,

0 forr≥r1,

(2.2)

whereu(t, r) =v(t)ω(r) andt∈(0,1].

(6)

Theorem 2.1. Let p∈ (1,∞), m 6= 0 and γ ∈ (0,1) be fixed constants and the positive constants A, B, Q,K, α > β > 1 satisfy (H1)–(H6) and f ∈ C2(R1), f(0) = 0, 2m2|u| ≤f(l)(u)≤3m2|u|, l= 0,1. Let also v(t)is function for which (H7)–(H9) hold. Then the equation (2.2) has unique nontrivial solution u(t, r) = v(t)ω(r)for which w∈ C2[0, r1], u(t, r1) = ur(t, r1) =urr(t, r1) = 0for t∈(0,1], u(t, r)∈ C((0,1] ˙Bp,pγ [0, r1]), forr∈[α1,1β]andt∈(0,1]u(t, r)≥A12, forr∈[α1, r1] andt∈(0,1]u(t, r)≥0, forr∈[0, r1]and t∈(0,1]|u(t, r)| ≤ AB2 ,u(t, r) = 0for r≥r1,t∈(0,1].

Proof. LetN ={u(t, r)∈ C([0, r1]) :t∈(0,1]}withu(t, r) =ur(t, r) =urr(t, r) = 0 for t ∈(0,1], r ≥r1, u(t, r)∈ C((0,1] ˙Bp,pγ [0, r1]). For r ∈[α1,β1] and t ∈(0,1], we have u(t, r) ≥ A12. Forr ∈ [0, r1] and t ∈ (0,1], we have |u(t, r)| ≤ AB2 . For r∈[α1, r1] andt∈(0,1], we haveu(t, r)≥0}.

We remark that ifu ∈N is a solution of (2.2),u ∈ C2([0, r1]). We define the operatorR as follows

R(u) = Z r1

r

1 τ2−Kτ +Q2

Z r1

τ

s4 s2−Ks+Q2

v00(t) v(t) u(t, s) +s2m2u(t, s)−s2f(u)

ds dτ, for 0≤r≤r1 andt∈(0,1].

First we show that R : N → N. For each u ∈ N, we have the following five statements:

(1) Sinceu∈ C([0, r1]) andf ∈ C2(R1), from the definition of the operator R we haveR(u)∈ C2([0, r1]),R(u)|r=r1 = 0,

∂rR(u) = 1 r2−Kr+Q2

Z r r1

[ s4

s2−Ks+Q2 v00(t)

v(t)u+s2(m2u−f(u))]ds,

∂rR(u) r=r

1 = 0,

2

∂r2R(u) = K−2r (r2−Kr+Q2)2

Z r r1

[ s4

s2−Ks+Q2 v00(t)

v(t) u+s2(m2u−f(u))]ds

+ r4

(r2−Kr+Q2)2 v00(t)

v(t) u(t, r) + r2

r2−Kr+Q2(m2u(t, r)−f(u)).

Sinceu(t, r1) = 0,f(u(t, r1)) =f(0) = 0 we obtain

2

∂r2R(u) r=r

1= 0.

Note that R(u) = 0 forr≥r1, t ∈(0,1] becauseu(t, r) = 0 forr ≥r1, t∈(0,1]

andf(u(t, r)) =f(0) = 0 forr≥r1,t∈(0,1].

(2) Forr∈[0, r1],t∈(0,1] we have|u(t, r)| ≤ AB2 . Then

|R(u)|

=

Z r r1

1 τ2−Kτ+Q2

Z τ r1

s4 s2−Ks+Q2

v00(t)

v(t) u+s2(m2u−f(u)) dsdτ

≤ Z r

r1

1 τ2−Kτ+Q2

Z τ r1

s4 s2−Ks+Q2

v00(t)

v(t) |u|+s2(m2|u|+|f(u)|) dsdτ .

(7)

Since|f(u)| ≤3m2|u|), the above quantity is lees than or equal to Z r

r1

1 τ2−Kτ+Q2

Z τ r1

s4 s2−Ks+Q2

v00(t)

v(t) |u|+ 4s2m2|u|

dsdτ

= Z r

r1

1 τ2−Kτ+Q2

Z τ r1

s4 s2−Ks+Q2

v00(t)

v(t) + 4s2m2

|u|dsdτ

≤ 2 AB

Z r r1

1 τ2−Kτ+Q2

Z τ r1

s4 s2−Ks+Q2

v00(t)

v(t) + 4s2m2 dsdτ

where we use r2−Kr+Qr2 21−K+Q8 2, r2−Kr+Q1 21−K+Q8 2 for r ∈ [0, r1]. The above estimate is also less than or equal to

2 AB

8 1−K+Q2

8

1−K+Q2 max

t∈[0,1]

v00(t)

v(t) + 4m2

= 2 AB

8 1−K+Q2

8 1−K+Q2

2m2

α2A2 + 4m2

≤ 2 AB.

In the above inequality we use (H1). Consequently,

|R(u)| ≤ 2

AB forr∈[0, r1], t∈(0,1].

(3)Forr∈[α1, r1] andt∈(0,1] we haveu(t, r)≥0. Then R(u) =

Z r1 r

1 τ2−Kτ +Q2

Z r1 τ

s4 s2−Ks+Q2

v00(t) v(t) u(t, s) +s2m2u(t, s)−s2f(u)

ds dτ

(where we usef(u)≤3m2uforr∈[α1, r1],t∈(0,1]. The above quantity is greater than or equal to

Z r1 r

1 τ2−Kτ +Q2

Z r1 τ

s4 s2−Ks+Q2

v00(t)

v(t) u(t, s) +s2(m2u(t, s)−3m2u) ds dτ

≥ Z r1

r

1 τ2−Kτ+Q2

Z r1

τ

s4 s2−Ks+Q2

v00(t)

v(t) −2m2s2

u(t, s)ds dτ

≥ Z r1

r

1 τ2−Kτ+Q2

Z r1

τ

1

α2(1−αK+α2Q2) min

t∈[0,1]

v00(t)

v(t) −2m2r21

u(t, s)dsdτ

= Z r1

r

1 τ2−Kτ+Q2

Z r1

τ

m2

α4(1−αK+α2Q2)A2 −2m2r21

u(t, s)ds dτ . From (H2), we have

m2

α4(1−αK+α2Q2)A2 −2m2r21≥0.

From this inequality and fromu(t, r)≥0 forr∈[α1, r1],t∈(0,1],r2−Kr+Q2>0, forr∈[0, r1], we get

R(u)≥0 f or r∈[1

α, r1], t∈(0,1].

(8)

(4) Forr∈[α1,β1] andt∈(0,1] we have thatu(t, r)≥ A12. Using f(u)≤3m2ufor r∈[α1,β1], t∈(0,1], we have

R(u)≥ Z r

r1

1 τ2−Kτ +Q2

Z τ r1

s4 s2−Ks+Q2

v00(t)

v(t) u−2s2m2u dsdτ

≥ Z r

r1

1 τ2−Kτ +Q2

Z τ r1

s4

s2−Ks+Q2 min

t∈[0,1]

v00(t)

v(t) u−2s2m2u ds dτ

= Z r

r1

1 τ2−Kτ +Q2

Z τ r1

s2 s2

s2−Ks+Q2 min

t∈[0,1]

v00(t)

v(t) u−2m2u ds dτ

≥ Z r1

r

1 τ2−Kτ+Q2

Z 1β

1 α

s2 s2

s2−Ks+Q2 min

t∈[0,1]

v00(t)

v(t) u−2m2u ds dτ

≥ Z r1

1 β

1 τ2−Kτ+Q2

Z 1β

1 α

s2 s2

s2−Ks+Q2 min

t∈[0,1]

v00(t)

v(t) u−2m2u ds dτ

≥ 1 A2

1 1−αK+α2Q2

m2

α4A2 −2m2r21 r1− 1

β

2 1

1−αK+α2Q2 ≥ 1 A2, (see (H2)); i.e., forr∈[α1,1β] andt∈(0,1] we haveR(u)≥ A12.

(5) We have the estimate k∆hR(u)kpLp=

Z r1 0

Z r+h r

1 τ2−Kτ +Q2

Z r1 τ

s4 s2−Ks+Q2

v00(t) v(t) u(t, s) +s2(m2u−f(u))

ds dτ

p dr

≤ Z r1

0

Z r+h r

1 τ2−Kτ +Q2

Z r1

τ

s4 s2−Ks+Q2

v00(t) v(t) |u|

+ 4m2|u(t, s)|s2

ds, dτp

dr

where we use that for s∈[0, r1], s2−Ks+Qs4 21−K+Q8 2, s2−Ks+Q1 21−K+Q8 2 and u(t, r) = 0 for r ≥r1 and t ∈ (0,1]. By (H9) the above estimate is less than or equal to

Z r1

0

Z r+h r

8 1−K+Q2

Z r1

τ

8

1−K+Q2 max

t∈[0,1]

v00(t)

v(t) |u|+ 4m2|u|

dsdτp dr

≤ Z r1

0

Z r+h r

8 1−K+Q2

Z r1 τ

8 1−K+Q2

2m2

α2A2|u|+ 4m2|u|

dsdτp dr

≤ Z r1

0

Z r+h r

64 (1−K+Q2)2

2m2 α2A2

Z r1

0

|u|ds+ 8

1−K+Q24m2 Z r1

0

|u|ds dτp

dr

≤hp 64 (1−K+Q2)2

2m2

α2A2kukLp[0,r1]+ 8

1−K+Q24m2kukLp[0,r1]

p

; i.e,,

k∆hR(u)kpLp[0,r1]

≤hp 64 (1−K+Q2)2

2m2

α2A2kukLp[0,r1]+ 8

1−K+Q24m2kukLp[0,r1]

p .

(9)

Consequently, kR(u)kp˙

Bγp,p[0,r1]

= Z 2

0

h−1−pγk∆hR(u)kpLp[0,r

1]dh

≤ 64

(1−K+Q2)2 2m2

α2A2kukLp[0,r1]+ 8.4m2

(1−K+Q2)kukLp[0,r1]

pZ 2 0

h−1+p(1−γ)dh

= 64

(1−K+Q2)2 2m2

α2A2kukLp[0,r1]+ 8.4m2

(1−K+Q2)kukLp[0,r1]

p 2p(1−γ) p(1−γ). Therefore,

kR(u)kB˙γp,p[0,r1]

≤ 64

(1−K+Q2)2 2m2

α2A2kukLp[0,r1]+ 8.4m2

(1−K+Q2)kukLp[0,r1]

2p(1−γ) p(1−γ)

1/p . From Lemma 1.3, we have

kR(u)kB˙γp,p[0,r1]≤C 64 (1−K+Q2)2

2m2

α2A2kukB˙p,pγ [0,r1]

+ 8.4m2

(1−K+Q2)kukB˙p,pγ [0,r1]

2p(1−γ) p(1−γ)

1/p .

From the above inequality, ifu∈B˙p,pγ [0, r1] we get R(u)∈B˙p,pγ [0, r1] fort∈(0,1].

From statements (1)–(5) above,R:N→N.

Now, letu, u1∈N. Then k∆h(R(u)−R(u1))kpLp

= Z r1

0

Z r+h r

1 τ2−Kτ+Q2

Z r1

τ

s4 s2−Ks+Q2

v00(t)

v(t)(u(t, s)−u1) +s2(m2(u−u1)−(f(u)−f(u1)))

ds dτ

p

dr.

From the mean value theorem,|f(u)−f(u1)|=|u−u1kf0(ξ)|whereξ∈(u, u1) or ξ∈(u1, u). Then

|f(u)−f(u1)| ≤3m2|ξ||u−u1| ≤3m2|u−u1kq|,

where|q|= max{|u|,|u1|}. Since|u| ≤ AB2 forr∈[0, r1],t∈(0,1] we have

|f(u)−f(u1)| ≤ 6m2

AB|u−u1|.

Now, we use thatu(t, r) = 0 forr≥r1 andt∈(0,1], to obtain

(10)

k∆h(R(u)−R(u1))kpLp

≤ Z r1

0

Z r+h r

1 τ2−Kτ+Q2

Z r1

τ

s4 s2−Ks+Q2

v00(t)

v(t)|u(t, s)−u1| +s2m2|u−u1|+|f(u)−f(u1)|

ds dτp

dr

≤ Z r1

0

Z r+h r

1 τ2−Kτ+Q2

Z r1 τ

s4

s2−Ks+Q2 max

t∈[0,1]

v00(t)

v(t)|u(t, s)−u1| +s2m2|u−u1|+|f(u)−f(u1)|

ds dτp

dr

≤ Z r1

0

Z r+h r

1 τ2−Kτ+Q2

Z r1 τ

8

1−K+Q2 max

t∈[0,1]

v00(t)

v(t) |u(t, s)−u1| +m2|u−u1|+6m2

AB|u−u1| ds dτp

dr

≤ Z r1

0

Z r+h r

8 1−K+Q2

Z r1 τ

8 1−K+Q2

2m2

α2A2+m2+6m2 AB

× |u−u1|dsdτp

dr

≤hp 8 1−K+Q2

p 8 (1−K+Q2)

2m2

α2A2 +m2+6m2 AB

p

ku−u1kpLp; i.e.,

k∆h(R(u)−R(u1))kpLp[0,r1]

≤hp 8 1−K+Q2

p 8 (1−K+Q2)

2m2

α2A2 +m2+6m2 AB

p

ku−u1kpLp. From the last inequality we get

kR(u)−R(u1)kp˙

Bp,pγ [0,r1]≤ 8 1−K+Q2

p 8 (1−K+Q2)

2m2

α2A2 +m2+6m2 AB

p

× ku−u1kpLp

Z 2 0

h−1+p(1−γ)dh.

From the above inequality and Lemma 1.3, kR(u)−R(u1)kB˙γp,p[0,r1]≤ 2p(1−γ)

p(1−γ)

1/p 8 1−K+Q2

8 (1−K+Q2)

2m2 α2A2 +m2+6m2

AB

ku−u1kLp[0,r1]

≤C 2p(1−γ) (p(1−γ)

1/p 8 1−K+Q2

8 (1−K+Q2)

2m2 α2A2 +m2+6m2

AB

ku−u1kB˙p,pγ [0,r1]

<ku−u1kB˙p,pγ [0,r1]

(see i3)). i.e.,

kR(u)−R(u1)kB˙p,pγ [0,r1]<ku−u1kB˙p,pγ [0,r1].

(11)

Consequently, the operatorR:N →N is contractive operator.

Lemma 2.2. The set N is closed subset ofC((0,1] ˙Bp,pγ (R+)).

Proof. Lett∈(0,1] be fixed. Let{un}be a sequence of elements of the setN for which

n→∞lim kun−uk˜˜ B˙p,pγ (R+)= 0, where ˜u˜∈B˙p,pγ (R+). We have

n→∞lim kun−uk˜˜ B˙p,pγ ([0,r1])= 0.

We define

˜ u=

(u˜˜ forr∈[0, r1], 0 forr > r1. We have

n→∞lim kun−uk˜ B˙p,pγ ([0,r1])= 0.

First we note that for u ∈ N, R(u) is continuous function of u and there exists R0(u) becausef(u)∈ C2(R1). In fact,

R0(u) = Z r1

r

1 τ2−Kτ+Q2

Z r1 τ

s4 s2−Ks+Q2

v00(t)

v(t) +s2m2−s2f0(u) ds dτ.

From which,

|R0(u)|

≥ Z r1

r

1 τ2−Kτ+Q2

Z r1 τ

s4 s2−Ks+Q2

v00(t)

v(t) +s2m2−s2|f0(u)|

ds dτ

≥ Z r1

r

1 τ2−Kτ+Q2

Z r1 τ

s4 s2−Ks+Q2

v00(t)

v(t) +s2m2−3m2s2|u|

ds, dτ

≥ Z r1

r

1 τ2−Kτ+Q2

Z r1

τ

s4 s2−Ks+Q2

v00(t)

v(t) +s2m2−6m2 ABs2

ds dτ

= Z r1

r

1 τ2−Kτ+Q2

Z r1

τ

s4 s2−Ks+Q2

v00(t)

v(t) +s2m2 1− 6

AB

ds dτ . From (H6), 1>6/(AB). Therefore, for s∈[0, r1] we have

s4 s2−Ks+Q2

v00(t)

v(t) +s2m2 1− 6

AB ≥0.

Then forr∈[0, r1] we have

|R0(u)|

≥ Z r1

1 α

1 τ2−Kτ+Q2

Z r1

1 α

s4 s2−Ks+Q2

v00(t)

v(t) +s2m2 1− 6

AB

s2 ds dτ

≥ r1− 1

α

2 m2

α2A2(1−αK+α2Q2)2 >0.

From this, foru∈N, there exists M := min

x∈[0,r1]|R0(u)(x)|>0

(12)

becauseR0(u)(x) is continuous function of x∈[0, r1]. Let M1= max

r∈[0,r1]

∂r(R0(u))(r) .

Now we prove that for each >0 there existsδ=δ()>0 such that

|x−y|< δ implies |um(x)−um(y)|< ∀m.

We suppose that there exists ˜ > 0 such that for every δ > 0 there exist natural m andx, y∈[0, r1], |x−y| < δ for which |um(x)−um(y)| ≥˜. We choose ˜˜ >0 such that ˜˜ < M˜. We note that R(um)(x) is uniformly continuous function of x∈[0, r1](Foru∈N the function R(u)(r) is uniformly continuous function ofr∈ [0, r1] becauseR(u)(r)∈ C2([0, r1]) and as in point (2) we have

∂rR(u)(r)

AB2 ).

Then there existsδ11(˜˜)>0 such that for everyu∈N

|R(u)(x)−R(u)(y)|<˜˜ for for allx, y∈[0, r1]: |x−y|< δ1. Then we may choose 0< δ <min

δ1,(M˜2M˜˜)AB

1 such that there exist naturalm andx1∈[0, r1],x2∈[0, r1] for which|x1−x2|< δand|um(x1)−um(x2)| ≥˜. In particular

|R(um)(x1)−R(um)(x2)|<˜˜. (2.3) Then by the mean value theorem, R(0) = 0, R(um)(x1) = R0(ξ)(x1)um(x1), R(um)(x2) =R0(ξ)(x2)um(x2),

|R(um)(x1)−R(um)(x2)|

=|R0(ξ)(x1)um(x1)−R0(ξ)(x2)um(x2)|

=|R0(ξ)(x1)um(x1)−R0(ξ)(x1)um(x2) +R0(ξ)(x1)um(x2)−R0(ξ)(x2)um(x2)|

≥ |R0(ξ)(x1)um(x1)−R0(ξ)(x1)um(x2)| − |R0(ξ)(x1)−R0(ξ)(x2)kum(x2)|

=|R0(ξ)(x1)kum(x1)−um(x2)|−

∂r(R0(ξ))(η)

|x1−x2kum(x2)|

≥M˜−M1δ 2 AB ≥˜˜,

which is a contradiction to (2.3).

Consequently, for each >0 there existsδ=δ()>0 such that

|x−y|< δ implies|um(x)−um(y)|< ∀m. (2.4) On the other hand, from the definition of the setN we have

|um| ≤ 2

AB ∀m. (2.5)

From (2.4) and (2.5), we conclude that the set{un} is compact subset ofC([0, r1]).

Then there exists subsequence {unk} and function u ∈ C([0, r1]) for which: for every > 0 there exists M = M() > 0 such that for every nk > M we have

|unk(x)−u(x)|< for everyx∈[0, r1]; u(x) = 0 forx > r1. From this and from limk→∞kunk−uk˜ B˙γp,p([0,r1]) = 0 we have: For every >0 ∃M =M()>0 such that for everynk> M we have

max

x∈[0,r1]|unk−u|< , kunk−uk˜ B˙γp,p([0,r1])< .

(13)

Then for everynk > M we have

|u−u| ≤ |u˜ −unk|+|unk−u|˜ < +|˜u−unk|, Z r1

0

|u−u|dx < r˜ 1+ Z r1

0

|˜u−unk|dx, Using the H¨older’s inequality,

ku−uk˜ L1[0,r1]< r1+r11/qZ r1

0

|˜u−unk|pdx1/p

, 1 p+1

q = 1, forh >0, we have

h−1−pγku−uk˜ L1[0,r1]< h−1−pγr1+r1/q1 h−1−pγZ r1 0

|˜u−unk|pdx1/p ,

Z 2 1

h−1−pγdhku−uk˜ L1[0,r1]

<

Z 2 1

h−1−pγdhr1+r11/q Z 2

1

h−1−pγZ r1 0

|˜u−unk|pdx1/p dh, Using H¨older’s inequality and that forh >1 we haveh(−1−pγ)p≤h−1−pγ,

1−2−pγ

pγ ku−uk˜ L1[0,r1]

<1−2−pγ

pγ r1+r1/q1 Z 2

1

h−1−pγZ r1

0

|˜u−unk|pdx1/p

dh

≤1−2−pγ

pγ r1+r1/q1 Z 2 1

h(−1−pγ)p Z r1

0

|˜u−unk|pdxdh1/p

≤1−2−pγ

pγ r1+r1/q1 Z 2 1

h−1−pγ Z r1

0

|˜u−unk|pdxdh1/p

. Using that forx > r1,unk(x) = ˜u(x) = 0, the above expression equals

1−2−pγ

pγ r1+r1/q1 Z 2 1

h−1−pγ Z r1

0

|∆h(˜u−unk)|pdxdh1/p

≤ 1−2−pγ

pγ r1+r1/q1 Z 2 0

h−1−pγ Z r1

0

|∆h(˜u−unk)|pdxdh1/p

= 1−2−pγ

pγ r1+r1/q1 k˜u−unkkB˙γp,p([0,r1])

< (1−2−pγ

pγ r1+r1/q1 ) i.e., for every >0,

1−2−pγ

pγ ku−uk˜ L1[0,r1] < 1−2−pγ

pγ r1+r1/q1 .

Consequently u = ˜u a.e.(almost everywhere) in [0, r1], |u|p = |˜u|p a.e. in [0, r1].

¿From here |un−u| = |un −u|˜ a.e., |un−u|p = |un −u|˜p a.e. in [0, r1]. Since

(14)

un(x) = u(x) = 0 for x > r1 we have |∆h(un−u)|p =|∆h(un−u)|˜ p, |∆hu|p =

|∆hu|˜p a.e. in [0, r1], forh >0. Therefore,u∈B˙p,pγ ([0, r1]) and Z r1

0

|un−u|pdx= Z r1

0

|un−u|˜pdx.

Now, we show that limn→∞kun−ukB˙p,pγ ([0,r1])= 0. Note that kun−ukB˙γp,p([0,r1])

=Z 2 0

h−1−pγ Z r1

0

|∆h(un−u)|pdx dh1/p

=Z 2 0

h−1−pγ Z r1

0

|∆h(un−u)|˜ pdx dh1/p

=kun−uk˜ B˙γp,p([0,r1])n→∞0.

Consequently, for every sequence {un} with elements from N, which converges in ˙Bp,pγ ([0, r1]) there exists function u ∈ C([0, r1]), u ∈ B˙p,pγ ([0, r1]), for which kun−ukB˙p,pγ ([0,r1])n→∞0.

Below we suppose that the sequence {un} is a sequence of elements of the set N which converges in ˙Bγp,p([0, r1]). Then there existsu∈ C([0, r1]), u(x) = 0 for x > r1,u∈B˙p,pγ ([0, r1]),kun−ukB˙γp,p([0,r1])n→∞0.

Now we suppose thatu(r1)6= 0. Sinceu∈ C([0, r1]), un ∈ C([0, r1]),un(r1) = 0 for every naturaln, there exist2>0 and ∆1⊂[0, r1], r1∈∆1, such that

|un|< 2

2, |u|> 2

for every natural n and every x ∈ ∆1. Then for every natural n and for every x∈∆1,

|un(x)−u(x)|> 2

2. Let3>0 be such that

3<2

2

1−2−pγ

pγ µ(∆1)r

1 q

1 , 1

p+1

q = 1, (2.6)

whereµ(∆1) is the measure of the set ∆1. There existsM >0 such that for every n > M we have kun−ukB˙p,pγ ([0,r1]) < 3. Consequently for every n > M and for everyx∈∆1we have

|un(x)−u(x)|>2

2, kun−ukB˙γp,p([0,r1])< 3. Also using the H¨older’s inequality, we have

2

2µ(∆1)<

Z

1

|un(x)−u(x)|dx

≤ Z r1

0

|un(x)−u(x)|dx

≤Z r1 0

|un(x)−u(x)|pdx1/p r1/q1 .

参照

関連したドキュメント

Trujillo; Fractional integrals and derivatives and differential equations of fractional order in weighted spaces of continuous functions,

In this paper, based on a new general ans¨atz and B¨acklund transformation of the fractional Riccati equation with known solutions, we propose a new method called extended

We include applications to elliptic operators with Dirichlet, Neumann or Robin type boundary conditions on L p -spaces and on the space of continuous

Kilbas; Conditions of the existence of a classical solution of a Cauchy type problem for the diffusion equation with the Riemann-Liouville partial derivative, Differential Equations,

– Solvability of the initial boundary value problem with time derivative in the conjugation condition for a second order parabolic equation in a weighted H¨older function space,

The study of nonlinear elliptic equations involving quasilinear homogeneous type operators is based on the theory of Sobolev spaces W m,p (Ω) in order to find weak solu- tions.. In

We also point out that even for some semilinear partial differential equations with simple characteristics Theorem 11 and Theorem 12 imply new results for the local solvability in

In this section, we are going to study how the product acts on Sobolev and Hölder spaces associated with the Dunkl operators. This could be very useful in nonlinear