• 検索結果がありません。

Study on a New Semi-Solid Injection Molding Method for Heat-Resistant Magnesium Alloys

N/A
N/A
Protected

Academic year: 2022

シェア "Study on a New Semi-Solid Injection Molding Method for Heat-Resistant Magnesium Alloys "

Copied!
9
0
0

読み込み中.... (全文を見る)

全文

(1)

Study on a New Semi-Solid Injection Molding Method for Heat-Resistant Magnesium Alloys

ņ Trial Production and Process Verification of Machine ņ

Tatsuya TANAKA*, Yutaka IMAIDA*, Kenji SHINOZAKI**, Makoto YOSHIDA***, Toshio FUJII****

(Received May 7, 2010)

Based on the experiment result of semi-solid injection molding machine which has the mold clamp force of 20 tonf reported previously, the trial model with the mold clamp force of 200 tonf was designed and then was manufactured. By using this trial model, accuracy of the control method of semi-solid temperature zone was verified, and it was checked that a solid phase rate could fabricate at least 30%. As the result of the trial test by same molding conditions, it was clarified that mobility differed by the molten state and the semi-solid one. And it was checked that there were many merits by comparing this new semi-solid injection molding process with the conventional die casting. In order to verify this new process, trial production molding of the clutch piston which was a main part of a car was carried out. At this time, in order to obtain the clutch piston without defect, an experimental design was used. Durability was evaluated using an equipment which allowed repeated load on a clutch piston without defect. As a result, trial production parts were inferior to the conventional parts made from aluminum alloy. In order to conquer this problem, it turned out that the part shape which was suitable for the Magnesium alloy of low rigidity compared with the aluminum alloy should be designed.

-G[YQTFU semi-solid processing, injection molding, magnesium, heat-resistance, solidification crack

ࠠ࡯ࡢ࡯࠼㩷ඨಝ࿕ടᎿ㧘኿಴ᚑᒻ㧘ࡑࠣࡀࠪ࠙ࡓ㧘⠴ᾲᕈ㧘ಝ࿕ഀࠇ

⠴ᾲ /I ว㊄↪ᣂඨಝ࿕኿಴ᚑᒻࡊࡠ࠮ࠬߩ⎇ⓥ㧔╙ੑႎ㧕

֣֣ᣂဳ VQP ဳ✦߼ജඨಝ࿕኿಴ᚑᒻᯏߩ⹜૞ߣᦨㆡᚑᒻ᧦ઙ֣֣

↰ਛ ㆐਽㧘੹੗↰ ⼾㧘◉ፒ ⾫ੑ㧘ศ↰ ⺈㧘⮮੗ ᢅᄦ

* Department of Mechanical and Systems Engineering, Doshisha University, Kyoto Tel: +81-774-65-6465, FAX: +81-774-65-6465, E-mail:tatanaka@mail.doshisha.ac.jp

** Department of Mechanical System Engineering, Graduate School of Engineering, Hiroshima University, Hiroshima

*** Department of Material Science and Engineering, Waseda University, Tokyo

**** Western Hiroshima Prefecture Industrial Institute, Kure, Hiroshima

㧚ߪߓ߼ߦ

ㄭᐕ㧘࿾⃿ⅣႺ߳ߩ໧㗴߆ࠄ᷷ᥦൻࠟࠬߢ޽ࠆ CO2೥ᷫߩߚ߼ߩദജ߇਎⇇ਛߢߥߐࠇߡ޿ࠆ㧚

CO2⊒↢ߩ18.5㧑㧔ㆇャㇱ㐷ߩว⸘㧕ࠍභ߼ࠆ⥄േ

ゞ↥ᬺߢߪ㧘㔚᳇⥄േゞ߿ࠟ࠰࡝ࡦࠛࡦࠫࡦߣ૬↪

ߔࠆࡂࠗࡉ࡝࠶࠼ゞߩ᥉෸߇⪺ߒ޿㧚ߘߒߡ㧘േജ Ḯߩᄙ᭽ൻߛߌߢߪߥߊ㧘ゞ૕シ㊂ൻߩ⋡⊛߆ࠄ㜞

ᒝᐲߩ㜞ᒛജ㍑᧼ߩ᭴ㅧㇱຠ߳ߩ૶↪߇Ⴧ߃ߡ޿

ࠆ㧚ߐࠄߦ㧘ࠕ࡞ࡒ࠾࠙ࡓ㧔AƐ㧕ว㊄߿ታ↪㊄ዻਛ ߢᦨ߽ૐኒᐲߩࡑࠣࡀࠪ࠙ࡓ㧔Mg㧕ว㊄ߩ⥄േゞ ㇱຠ߳ߩㆡ↪߽Ⴧടߒߡ߅ࠅ㧘ߎࠇࠄߩ᧚ᢱߦࠃࠆ シ㊂ൻߩᦼᓙߪᄢ߈޿㧚

৻⥸ߦ㧘シว㊄⵾⥄േゞㇱຠߪ㧘ᄢ㊂↢↥ߦะ޿

ߡ޿ࠆ࠳ࠗࠞࠬ࠻ᚑᒻ߇೑↪ߐࠇࠆߎߣ߇ᄙ޿㧚ߒ

(2)

߆ߒ㧘ᓥ᧪ߩ࠳ࠗࠞࠬ࠻ᴺߢᚑᒻߔࠆ႐ว㧘ᚑᒻਛ ߦᒻᚑߐࠇࠆᒁߌᎽ߿⎕ᢿ࠴࡞ߥߤߦࠃࠆᰳ㒱ߩ ሽ࿷ߦࠃࠅ㧘ᒝᐲߩା㗬ᕈߦਲߒߊ㧘㊀ⷐㇱ૏ߦ૶

↪ߐࠇߡ޿ࠆߣߪ⸒޿㔍޿㧚৻ᣇ㧘1970ᐕઍᓟඨߦ

MITߩFlemings1)ߦࠃߞߡឭ᩺ߐࠇߚඨṁⲢ࡮ඨಝ

࿕ࡊࡠ࠮ࠬߪ㧘࠳ࠗࠞࠬ࠻ᚑᒻᴺߩ⺖㗴⸃ᶖ߳ߩᦼ ᓙ߆ࠄ㧘੹߽ฦ࿖ߢ⎇ⓥ㐿⊒߇⛯ߌࠄࠇߡ޿ࠆ2,3)

⪺⠪ࠄߪ㧘᮸⢽↪኿಴ᚑᒻᯏࠍᡷㅧߒ㧘⠴ᾲ Mg ว㊄↪ߩၮ␆ታ㛎↪ඨಝ࿕኿಴ᚑᒻᯏࠍ⹜૞ߒߚ4)㧚 ߘߒߡ㧘ⵝ⟎⸳ቯ᷷ᐲߣඨಝ࿕ࠬ࡜࡝࡯ߩ࿕⋧₸᷹

ቯ߆ࠄ㧘ⵝ⟎ߩ᷷ᐲ೙ᓮᕈߣߘࠇߦ઻߁ඨಝ࿕ࠬ࡜

࡝࡯↢ᚑ᧦ઙߩᛠី㧘ߐࠄߦߪඨಝ࿕ᚑᒻᴺߩᒁߌ Ꮍᰳ㒱㒰෰߳ߩ᦭ലᕈߦߟ޿ߡ᣿ࠄ߆ߦߒߚ㧚

ᧄ⎇ⓥߢߪ㧘వߕၮ␆ታ㛎↪ඨಝ࿕኿಴ᚑᒻᯏ4) ߢขᓧߒߚၮ␆࠺࡯࠲ࠍࡌ࡯ࠬߦ⸳⸘ߩࠬࠤ࡯࡞

ࠕ࠶ࡊࠍ⹜ߺ㧘873K એ਄ߢ૶↪น⢻ߢ㧘ታ↪ൻࠍ

⋡ᜰߒߚဳ✦߼ജ200tonߩMg↪ඨಝ࿕኿಴ᚑᒻᯏ ࠍ⹜૞ߒߚ5)㧚ߘߒߡ㧘⹜૞ᚑᒻⵝ⟎ߦࠃࠆታ㛎߆ ࠄ㧘ඨಝ࿕ࠬ࡜࡝࡯↢ᚑ᧦ઙࠍ᣿ࠄ߆ߦߒ㧘᷷ᐲ೙

ᓮߩ᦭ലᕈߦߟ޿ߡᬌ⸽ߒߚ㧚ߘߩ਄ߢ㧘ౕ૕⊛ߥ ㇱຠ߳ߩㆡ↪଀ߣߒߡ㧘⥄േゞㇱຠߩࠢ࡜࠶࠴ࡇࠬ

࠻ࡦࠍᚑᒻߒ㧘ᦨㆡᚑᒻ᧦ઙࠍᛠីߒᚑᒻຠߩ․ᕈ

⹏ଔࠍⴕ߁ߎߣߢ㧘ᧄࡊࡠ࠮ࠬߩ᦭ലᕈࠍ᣿ࠄ߆ߦ ߔࠆߎߣࠍ⋡⊛ߣߒߚ㧚ᚑᒻታ㛎ߦߪ㧘Mg ว㊄ߩ

⠴ᾲᕈะ਄ߩ⋡⊛ߢ Ca ߇ᷝടߐࠇߚ AZ91D ߿ AM60ࠃࠅඨಝ࿕᷷ᐲ㗔ၞ߇⁜ߊ㧘ߐࠄߦ㔍ടᎿ᧚ ᢱߣߥߞߡ޿ࠆ⠴ᾲMgว㊄5)ࠍ૶↪ߒߚ㧚

㧚VQP ඨಝ࿕኿಴ᚑᒻⵝ⟎ߩ⹜૞

㧚 VQP ඨಝ࿕኿಴ᚑᒻⵝ⟎ߩၮᧄࠦࡦ࠮ࡊ࠻

Fig.1ߦߪ㧘ၮ␆ታ㛎↪ߦ⹜૞ߒߚဳ✦߼ജ20ton

ߩඨಝ࿕኿಴ᚑᒻᯏߩᮨᑼ࿑ࠍ␜ߔ4)㧚ᧄⵝ⟎ߪ᮸

⢽↪ࠗࡦ࡜ࠗࡦᑼ❑ဳ኿಴ᚑᒻᯏߩࡃ࡟࡞߅ࠃ߮

ࠬࠢ࡝ࡘㇱࠍ㜞᷷↪ߣߒߡ㋕♽⠴ᾲ㍑ߦᡷㅧߒ㧘ࠪ

ࡖ࠶࠻ࠝࡈࡃ࡞ࡉࠍઃਈߔࠆ╬㧘ᧄࡊࡠ࠮ࠬߩ᦭ല ᕈࠍᬌ⸽ߔࠆߚ߼ߦ⹜૞ߒߚ߽ߩߢ޽ࠆ㧚૶↪ߔࠆ Mgṁḡߪ1㨪ᢙPa㨯sߣ᮸⢽ߦᲧߴߡ㕖Ᏹߦ☼ᕈ߇ ૐߊ㧘ඨಝ࿕⁁ᘒ㧔ᵹേน⢻ߥ࿕⋧₸30㨪40wt%એ ਅ㧕ߢ߽᮸⢽ߩ☼ᕈߢ޽ࠆ100㨪1000Pa㨯s⒟ᐲ߹ߢ Ⴧടߒߥ޿㧚ߘߩߚ߼㧘ࠗࡦ࡜ࠗࡦᣇᑼߩ኿಴ᚑᒻ

ᯏߩᄢ߈ߥࡔ࡝࠶࠻ߢ޽ࠆ࠴ࠚ࠶ࠢ࡝ࡦࠣᯏ⢻ߢ ߪ㧘ṳᵨࠍ㒐߉኿಴ᓟߩ࿶ജࠍ଻ᜬߔࠆ㧔એਅ㧘଻

ᤨ࿶ജ㧕ߎߣߪ㔍ߒ޿ߎߣ߇ಽ߆ߞߡ޿ࠆ4)

ߘߎߢ㧘ታ↪ൻࠍ⋡ᜰߔ 200ton ඨಝ࿕኿಴ᚑᒻ ᯏߩၮᧄⵝ⟎᭴ᚑߪ㧘ඨಝ࿕ࠬ࡜࡝࡯ࠍᠣᜈ↢ᚑߔ ࠆࠬࠢ࡝ࡘᷙ✵ㇱߣ㊄ဳౝߦࠬ࡜࡝࡯ࠍ㜞ㅦ࡮㜞࿶

ߢ኿಴ߔࠆࡊ࡜ࡦࠫࡖ኿಴ㇱࠍಽഀߒߚࡊ࡝ࡊ࡜

ࡦࠫࡖᣇᑼࠍណ↪ߒߚ㧚ਥⷐㇱߪ㧘Fig.2 ߦ␜ߔࠃ ߁ߦ㧘ࠬࠢ࡝ࡘᷙ✵ㇱ㧘ࡊ࡜ࡦࠫࡖ኿಴ㇱߣၮ␆ታ Fig.1. Schematic illustration of lab molding machine.

Screw mixing part

Shut-off valve

Plunger injection part

Nozzle

Screw mixing part

Shut-off valve

Plunger injection part

Nozzle

Fig.2. Schematic illustration of the trial injection molding machine at clamp force 200ton.

(3)

㛎ᯏߣห᭽ߦࠪࡖ࠶࠻ࠝࡈࡃ࡞ࡉㇱ߆ࠄ᭴ᚑߐࠇ ࠆ㧚ࠪࡖ࠶࠻ࠝࡈࡃ࡞ࡉㇱߪ㧘࿁ォᑼߩ㐿㐽ᑯߢ⸘

㊂ᤨߦ㊄ဳౝ߳ߩMgߩᵹ಴ࠍ㒐ߋ㧚߹ߚ㧘ṁḡ߿

ඨಝ࿕ࠬ࡜࡝࡯ߪ㧘ࠬࠢ࡝ࡘߦࠃࠆ᛼಴ߒᵹേ߇࿎

㔍ߥߚ߼㧘వߩၮ␆ታ㛎ᯏߣห᭽ߦ㧘⥄㊀ߦࠃࠆᵹ

േࠍᦼᓙߒߡࠬࠢ࡝ࡘᷙ✵ㇱߪ❑㈩⟎ߣߒߚ㧚߹ߚ㧘

኿಴ᤨߪ㧘ࠬࠢ࡝ࡘ߇ਅ㒠ߒ㧘ࠬࠢ࡝ࡘࡋ࠶࠼ㇱߢ

኿಴ㇱࠍቢోߦኒ㐽ߒߚ⁁ᘒߦߔࠆߎߣ߇಴᧪ࠆ㧚

VQP ඨಝ࿕኿಴ᚑᒻᯏߩਥ઀᭽

ฦㇱ૏ߩኸᴺ᳿ቯߦ㓙ߒ㧘ࠬ࡜࡝࡯↢ᚑᤨ߅ࠃ߮

኿಴ᤨߩᔅⷐ᧦ઙ߆ࠄਥ઀᭽ࠍ᳿ቯߒߚ㧚Table 1 ߦᧄⵝ⟎ߩਥ઀᭽ࠍ␜ߔ㧚Mgว㊄ߪᲧᾲ߇ዊߐߊ

಄ළߒ߿ߔ޿ߚ߼㧘৻⥸ߦߪ㜞ㅦ࡮㜞࿶ߢߩ㊄ဳౝ

߳ߩలႯ߇ᔅⷐߣߐࠇߡ޿ࠆ㧚ඨಝ࿕᧚ߪ㧘ቢోṁ Ⲣ᧚ࠃࠅߐࠄߦᾲ㊂߇ዊߐ޿ߚ߼㧘኿಴ᤨߩࡊ࡜ࡦ

ࠫࡖߩᦨᄢㅦᐲࠍ4m/s㧘ߐࠄߦߪ┙ߜ਄߇ࠅࠍㅦߊ ߔࠆߚ߼ടㅦᐲࠍ40Gએ਄㧘ᦨᄢ଻࿶ജࠍ70MPa ߣ⸳ቯߒߚ㧚

ඨಝ࿕኿಴ᚑᒻᯏߩേ૞ේℂ

Fig.3 ߦᧄඨಝ࿕኿಴ᚑᒻᯏߩേ૞ේℂࠍ␜ߔ㧚

ඨಝ࿕ࠬ࡜࡝࡯↢ᚑߔࠆߚ߼ߩࠬࠢ࡝ࡘᷙ✵ㇱߩ

ࠬࠢ࡝ࡘߪ㧘ࠨࠗࠢ࡞㐿ᆎ೨ߦߪਅ㒠㧔೨ㅴ㧕ߒߡ

޿ࠆ㧚ߘߒߡ㧘(a)Mgว㊄ࠬ࡜࡝࡯ߩ⸘㊂ᤨߦ੍߼

⸳ቯߒߚ኿಴ኈ㊂ߣߥࠆ૏⟎߹ߢṁḡࠍ಄ළᡬᜈ ߒߥ߇ࠄ਄᣹ߔࠆ㧚ᰴߦ㧘(b)⸳ቯߒߚㅦᐲߢࠬࠢ࡝

ࡘ߇ਅ㒠ߒ㧘ඨಝ࿕ࠬ࡜࡝࡯ࠍᠣᜈߒߥ߇ࠄࡊ࡜ࡦ

ࠫࡖ኿಴ㇱ߳⒖ㅍߔࠆߣหᤨߦ㧘ࠬࠢ࡝ࡘࡋ࠶࠼ㇱ ߇ኽᱛᑯߣߥࠅ኿಴ㇱ߳ߩᵹ〝ࠍ㐽㎮ߔࠆ㧚ߎߩᤨ㧘

ࠪࡖ࠶࠻ࠝࡈࡃ࡞ࡉߪ㧘㐽ߓߚ⁁ᘒߢ⸘㊂ᤨߩ㊄ဳ

ౝ߳ߩMgߩᵹ಴ࠍ㒐ߋ㧚ߘߩᓟ㧘(c)ࡊ࡜ࡦࠫࡖߦ ࠃࠆ኿಴േ૞ߩ㐿ᆎߣหᤨߦࠪࡖ࠶࠻ࠝࡈࡃ࡞ࡉ ߪ㐿ߣߥࠅ㧘ඨಝ࿕ࠬ࡜࡝࡯߇ࡁ࠭࡞ࠍㅢߞߡ㊄ဳ

ౝ߳኿಴ߐࠇࠆ㧚ߘߒߡ㧘಄ළᓟ㧘(d)ဳ߇㐿߈ᚑᒻ

ຠ߇ขࠅ಴ߐࠇࠆ㧚

Fig.4 ߦ⹜૞ߒߚඨಝ࿕኿಴ᚑᒻᯏߩో૕㈩⟎࿑

ࠍ␜ߔ㧚ૉߒ㧘Mgว㊄ࠍṁ⸃ߔࠆἹߪ㒰޿ߡ޽ࠆ㧚

ඨಝ࿕኿಴ᚑᒻᯏߩᕈ⢻ᬌ⸽

⹜૞ߒߚဳ✦߼ജ 200ton ߩඨಝ࿕኿಴ᚑᒻᯏࠍ

↪޿ߡ㧘᷷ᐲ೙ᓮᕈ㧘኿಴ㅦᐲ㧘ടㅦᐲ㧘଻ᜬ࿶ജ

╬ߦߟ޿ߡߩᕈ⢻⹏ଔࠍⴕߞߚ㧚⹏ଔߦ૶↪ߒߚ Mgว㊄᧚ᢱߪAM♽ߦCaࠍᢙ%ᷝടߒ⠴ᾲᕈࠍะ

(a)Metering (Valve shut)

(b)Filling (Valve shut)

(d)Product extraction

(c)Injection (Valve off) (a)Metering (Valve shut)

(b)Filling (Valve shut)

(d)Product extraction

(c)Injection (Valve off) Fig.3. The principle of operation of semi-solid

injection molding machine.

Fig.4. The arrangement plan of a mechanical apparatus.

Table 1. The main specification of the trial injection molding machine at clamp force 200ton.

Item Main specification

Injection speed Maximum 4 m/s Acceleration at injection Minimum 40G Hold pressure at injection Maximum 70MPa

Capacity at injection 430cm3 Semi-solid ratio Maximum 30±5 % Vacuum in mold less than 5kPa

Cycle time less than 60sec Measurement accuracy less than ±1%

Clamp force 2000kN

(4)

਄ߐߖߚAMC403㧔Mg-4mass% Al-3mass% Ca㧦᷹

ቯ⚿ᨐࠃࠅ㧘ṁ⸃ὐ882K㧘ಝ࿕ὐ833K㧕6)ߢ޽ࠆ㧚

ฦㇱߩ᷷ᐲ೙ᓮᕈ

Fig.5 ߦ㧘ਥⷐ᭴ᚑㇱಽߢ޽ࠆࠬࠢ࡝ࡘᷙ✵ㇱ߅

ࠃ߮ࡊ࡜ࡦࠫࡖ኿಴ㇱߢߩᾲ㔚ኻߦࠃࠆ᷷ᐲ᷹ቯ

૏⟎ࠍ␜ߔ㧚ࠬࠢ࡝ࡘᷙ✵ㇱߪ SB㧘ࡊ࡜ࡦࠫࡖ኿

಴ㇱߪPBߣߒߡ඙೎ߐࠇߡ޿ࠆ㧚߹ߚ㧘᷹ቯ♖ᐲ ะ਄ߩߚ߼㧘ోߡߩㇱಽߦ᷷ᐲ⸳ቯ↪ߩᾲ㔚ኻߩㄭ றߦታ᷹ቯ↪ߩᾲ㔚ኻࠍ㈩⟎ߒ㧘ࠬࠢ࡝ࡘᷙ✵ㇱߪ㧘

౞๟ᣇะߢ180ᐲ⋧ኻะ޿ߩ૏⟎ߦ߽ᾲ㔚ኻࠍ㈩⟎

ߒ㧘ᷝ߃ሼߩ1ߣ2ߢ␜ߔ㧚

Fig.5. The positions where temperature were measured with the thermo couples.

Fig.6 ߦ㧘ඨಝ࿕ࠬ࡜࡝࡯ࠍ↢ᚑߔࠆࠬࠢ࡝ࡘᷙ

✵ㇱߩ᷷ᐲ೙ᓮᕈࠍᤨ㑆⚻ㆊߢ␜ߔ㧚ࠬࠢ࡝ࡘゲᣇ ะ 3 ߆ᚲߩ᷹ቯ⚿ᨐߢ޽ࠅ㧘SB-1 ߇ᦨ߽኿಴ㇱߦ ㄭ޿૏⟎ߢ޽ࠆ㧚ో૕ߩ⸳ቯ᷷ᐲߪ903K㨪913Kߢ

޽ࠅ㧘޿ߕࠇߩㇱ૏ߢ߽ᄌേ᏷ߪr1͠ౝߢផ⒖ߒ㧘

߶߷⸳ቯ᷷ᐲߢ೙ᓮߐࠇߡ޿ࠆ㧚ᰴߦTable 2ߦ␜

ߒߚ⸳ቯ᷷ᐲߩᄌᦝߦᓥߞߡSBߩ᷷ᐲ߇ᄌൻߒߚ

⁁ᘒࠍFig.7 ߦ␜ߔ㧚⸳ቯ᷷ᐲߩᄌᦝ㧔㒠ਅ㧕ߦว

ࠊߖߡࠬࠢ࡝ࡘᷙ✵ㇱߩ᷷ᐲ߽ૐਅߒߡ޿ࠆ㧚ฦㇱ

૏㧔SB ߅ࠃ߮ SN㧦ࡊ࡜ࡦࠫࡖㇱߣߩធวㇱ㧕ߪ㧘

⚂ 15 ಽ⒟ᐲߢ቟ቯߒߚ᷷ᐲߦߥߞߡ޿ࠆ㧚ߐࠄߦ

ࡊ࡜ࡦࠫࡖ኿಴ㇱౝߢታ᷹ߒߚඨಝ࿕ࠬ࡜࡝࡯᷷

ᐲ߽ห᭽ߦૐਅߒߡ޿ࠆ߇㧘቟ቯߒߚ᷷ᐲߦߥࠆߦ ߪ15ಽએ਄ߩᤨ㑆߇ᔅⷐߢ޽ࠅ㧘SNㇱ᷷ᐲߩᓇ㗀 ࠍᄢ߈ߊฃߌࠆߎߣ߇ಽ߆ߞߚ㧚

SNͲ1SB2Ͳ1 SNͲ2SB2Ͳ2 SB1Ͳ1SB4Ͳ1 SB1Ͳ2SB4Ͳ2

Fig.6. Change of the barrel temperature time over.

913 908 893 898 893 888 883

0 30 60 90 120

Temperature T (K)

Time t (min)

Shot8Ͳ10 Shot

11Ͳ15 Shot

17Ͳ21 Shot

22Ͳ27

SNͲ1SB4Ͳ1 SNͲ2SB4Ͳ2 SB1Ͳ1SB3Ͳ2 SB1Ͳ2SB5Ͳ1 SB2Ͳ1SB5Ͳ2 SB2Ͳ2slurry

Temperature T (K)

Fig.7. Change of the barrel temperature time over.

Table 2. Temperature condition at barrel.㧔Unit㧦K㧕 Shot No. Slurry SN SB1 SB2 SB3 SB4 SB5 SB6 8895 903 903 903 903 903 903 903

11903 893 866 864 865 865 873

17891 875 㸡 㸡 㸡 㸡 㸡 㸡

22882 871 862 860 861 861 869

(5)

኿಴೙ᓮᕈ

ᰴߦ㧘኿಴᧦ઙߦ㑐ߔࠆᬌ⸽ࠍታᣉߒߚ㧚ߘߩ⚿

ᨐࠍFig.8ߦ␜ߔ㧚኿಴ㅦᐲߩᦨ㜞୯ߪ4.5m/sߣ⋡

ᮡ୯ߩ 4m/s એ਄ࠍ㆐ᚑߒߚ㧚߹ߚ㧘ߘߩᤨߩടㅦ ᐲ߽57Gߣߥࠅห᭽ߦ⋡ᮡ୯ߩ40Gࠍ⿥߃ߡ޿ࠆ㧚 ߐࠄߦ㧘ᦨ㜞଻ᜬ࿶ജ߹ߢߩ೔㆐ᤨ㑆ߪ12msߢ㧘 ߘߩᤨߩ଻ᜬ࿶ജߪ77MPaߣ70MPaࠍ⿥߃ߚ㧚ߎ ߩ࿶ജߢ 1s એ਄଻ᜬน⢻ߢ㧘⹜૞ᯏߩ㜞޿ࠪ࡯࡞

ᕈ߇⸽᣿ߢ߈ߚ㧚

એ਄ߩ⚿ᨐ߆ࠄ㧘ࠨࠗࠢ࡞࠲ࠗࡓࠍ㒰޿ߡ㧘߶߷

⸳⸘ᤨߦ⋡ᮡߣߒߚ઀᭽୯ߪ㆐ᚑߢ߈ߚ㧚

Injection Stroke Ɛ (㬍0.1mm) Injection Force F (㬍100N)

Time t (ms)

Injection Speed V (mm/s)

Injection Stroke Injection Force Injection Speed Injection Speed :4.5 m/s Acceleration 57 G

Hold Time for Max. Pressure䋺1 s Hold Pressure 䋺77MPa Time until Max. Pressure 䋺12ms

Fig.8. Injection wave to evaluate the trial machine.

ඨಝ࿕ࠬ࡜࡝࡯↢ᚑࠪࡒࡘ࡟࡯࡚ࠪࡦ

ᧄ⎇ⓥߢ૶↪ߒߚ⠴ᾲMgว㊄ߩ☼ᐲ᷹ቯ߆ࠄᓧ ࠄࠇߚ☼ᐲ࠺࡯࠲ࠍ૶ߞߡ㧘ታ㓙ߩᚑᒻታ㛎ࠍߔࠆ ೨ߦ㧘ඨಝ࿕ࠬ࡜࡝࡯↢ᚑㇱߢ޽ࠆࠬࠢ࡝ࡘᷙ✵ㇱ ߩ᷷ᐲ⸳ቯߩᦨㆡൻࠍ⋡⊛ߦᢙ୯ታ㛎ࠍⴕߞߚ㧚

Fig.9 ߦ㧘☼ᐲ࠺࡯࠲ࠍၮߦ⸘▚ߒߚ☼ᕈࡕ࠺࡞

ࠍ␜ߔ㧚⠴ᾲMgว㊄ߩ☼ᐲ᷹ቯߦߪ㧘㜞᷷ߢㅪ⛯

⊛ߥ᷷ᐲᄌൻߦኻᔕߒߚ☼ᐲ᷹ቯ߇น⢻ߢ㧘㊄ዻߩ ᵹേᕈ߿ㅢᶧᕈ߇⹏ଔߢ߈ࠆᝄേ ᑼ☼ᐲ⸘ࠍ૶

↪ߒߚ7-8) 㧚Fig.10㧘11 ߦߪ㧘㜞☼ᕈᵹേ᦭㒢ⷐ⚛

ᴺߦࠃࠅ⸃ᨆߒߚࠬࠢ࡝ࡘᷙ✵ㇱߢߩṁⲢࠬ࡜࡝

࡯ߩᵹㅦಽᏓߣ᷷ᐲಽᏓ⚿ᨐࠍ␜ߔ㧚ᵹㅦಽᏓࠃࠅ

ࠬࠢ࡝ࡘᷙ✵ㇱ಴ญߢᣧ޿ㅦᐲ㗔ၞ߇޽ࠅ㧘ߎߩㇱ ಽߢࠬ࡜࡝࡯ߩ⊒ᾲߦࠃࠆ᷷ᐲ਄᣹߇੍ᗐߢ߈ࠆ㧚

߹ߚ㧘Fig.11ߩ᷷ᐲಽᏓ⚿ᨐ߆ࠄ㧘ࠬ࡜࡝࡯ߩ౉ญ

ߣ಴ญ᷷ᐲࠍᶧ⋧✢એ਄ߣߒ㧘ᷙ✵ㇱࡃ࡟࡞ო㕙᷷

ᐲ㧔Ⴚ⇇᧦ઙ㧕ࠍ873Kߣᶧ⋧✢એਅߦ⸳ቯߒߚ႐ ว㧘5min એౝߢࠬࠢ࡝ࡘవ┵ㇱઃㄭ߇ 873㨪875K 㧔ᗐቯ࿕⋧₸10%㧕ߦૐਅߒ㧘ߘߩవߩ᧚ᢱṛ⇐ㇱ ߪ896K⒟ᐲߦߥࠆߎߣ߇੍᷹ߢ߈ࠆ㧚ࠬࠢ࡝ࡘᷙ

✵ㇱߢߪ5ಽ⒟ᐲߩṛ⇐ᤨ㑆ࠍᗐቯߒߚᒻ⁁⸳⸘ࠍ ߒߡ߅ࠅ㧘903K ߢṁ⸃ߒߚṁḡߪ㧘ࠬࠢ࡝ࡘᷙ✵

ㇱߢߩᷙ✵ਛߦᶧ⋧✢᷷ᐲએਅ㧔ඨಝ࿕᷷ᐲ㗔ၞ㧕 ߦ಄ළߐࠇ㧘หᤨߦࠬࠢ࡝ࡘ࿁ォߦࠃࠆᠣᜈ૞↪ߢ

⊒↢ߔࠆߖࠎᢿᔕജߦࠃࠅ࿕⋧☸ߣߥࠅߘࠇ߇ಽ ᢔߒߚඨಝ࿕ࠬ࡜࡝࡯ߦ↢ᚑߐࠇࠆߎߣ߇ಽ߆ࠆ㧚

Fig.9. The viscous model used for the numerical analysis.

Fig.10. The velocity distribution in the screw mixing section by a numerical analysis.

ߎߩඨಝ࿕ࠬ࡜࡝࡯ߪ㧘ᚲቯߩ኿಴㊂ߛߌ⸘㊂ߐ ࠇࡊ࡜ࡦࠫࡖ኿಴ㇱ߳⒖ㅍߐࠇࠆ߇㧘ࠬࠢ࡝ࡘవ┵

ㇱߩṛ⇐ㇱߩ᷷ᐲ߇ᶧ⋧✢ࠍ⿥߃ߡ޿ࠆߚ߼ߦ㧘ṛ

⇐ᤨ㑆߇㐳ߊߥࠆߣౣṁ⸃ߐࠇࠆน⢻ᕈ߇޽ࠆ㧚1 ಽ⒟ᐲߩṛ⇐ߢ޽ࠇ߫ᾲવዉߦࠃࠅౣṁ⸃᷷ᐲߦ

Enlarged view

Enlarged view

0 50(mm/s)

0 250

^ 100 2`

4

0 3

8

1 2

29

3 4

1

exp 273.15 3.099 10 , 0.7552 3.641 10 , 58330

C C

C C T

C C

C C

K K K J K

­ ½

® ¾

¯ ¿

u u

20

15

10

5

0

773 823 873 923 973 Temperature T

䋨͠䋩

ViscosityȘ

Pa

s

^

1 00 2

`

4

0 3

8 1

2

29 3

4

1

exp 273.15 3.099 10

0.7552 3.641 10 58330

C C

C C T C

C C C K K

K J K

­ ½

® ¾

¯ ¿

u

u

䋨K䋩

(6)

ߪߥࠄߥ޿ߎߣࠍᾲવዉ⸃ᨆߦࠃࠅ⏕⹺ߒߡ޿ࠆ㧚 ߒ߆ߒ㧘ࠬࠢ࡝ࡘᷙ✵ㇱ߆ࠄࡊ࡜ࡦࠫࡖ኿಴ㇱ߳ߩ

ࠬࡓ࡯࠭ߥ⒖ㅍߣࠬࠢ࡝ࡘవ┵ㇱએ㒠ߩᠣᜈ૞↪

ࠍฃߌߥߊߥࠆㇱಽߢߩ᷷ᐲ⸳ቯߪ㊀ⷐߢ޽ࠆ㧚

1min.

2min.

3min.

4min.

5min.

903 903

873 903

903 (a) The boundary condition of temperature.(Unit䋺K)

(b) Change of the temperature distribution in every minute 873K 903K

Fig.11. Change of the temperature distribution over time by a numerical analysis.

ඨಝ࿕ࠬ࡜࡝࡯᷷ᐲ㧔࿕⋧₸㧕ߩ೙ᓮᕈ

ᧄ⹜૞ᚑᒻⵝ⟎ߪ㧘࿕⋧₸30wt%߹ߢߩඨಝ࿕ࠬ

࡜࡝࡯↢ᚑࠍน⢻ߣߔࠆߎߣࠍ⋡ᮡ୯ߣߒߡ޿ࠆ㧚 ߘߎߢ㧘਄⸥ߒߚᢙ୯⸃ᨆ⚿ᨐࠍㆡ↪ߒ㧘ฦㇱࠍㆡ

ಾߥ᷷ᐲߦ⸳ቯߔࠆߎߣߢ㧘ࠬ࡜࡝࡯᷷ᐲ㧔࿕⋧₸

ߣ৻⟵⊛ߦኻᔕ㧕ࠍ⥄࿷ߦ⸳ቯߢ߈ࠆ߆ߦߟ޿ߡᬌ

⸽ߒߚ㧚Fig.12ߦࠬ࡜࡝࡯↢ᚑㇱࠍઍ⴫ߒߡSB1ߩ

᷷ᐲࠍ❑ゲߦ㧘ᮮゲߦߪ኿಴ࡊ࡜ࡦࠫࡖㇱࠍઍ⴫ߒ ߡPB7ߣߒߡ኿಴ᚑᒻߐࠇߚMgว㊄ඨಝ࿕ࠬ࡜࡝

࡯߇ߤߩࠃ߁ߦᄌൻߒߡ޿ࠆ߆ࠍ␜ߒߚ㧚PB7ߩㇱ

૏ߢߩ᷷ᐲ߇903Kߩ႐วߪ㧘ᷙ✵ࠬ࡜࡝࡯↢ᚑㇱ ߩPB1ࠍ޿ߊࠄᄌൻߐߖߡ߽࿕⋧ߪᶖᄬߒߡ޿ߚ㧚

৻ᣇ㧘PB7ࠍ893Kએਅߦߔࠆߣ㧘ࠬ࡜࡝࡯↢ᚑㇱ ߢߩ᷷ᐲࠍ෻ᤋߐߖߚ᷷ᐲߦߥࠆߎߣ߇ಽ߆ߞߚ㧚 හߜ㧘Mg ว㊄ඨಝ࿕ࠬ࡜࡝࡯ߩ᷷ᐲ೙ᓮߦߪ㧘኿

಴ࡊ࡜ࡦࠫࡖㇱߩ᷷ᐲߪṁⲢ᷷ᐲ㧔ߎߩMgว㊄ߩ

႐วߪ㧘882K㧕એਅߣ኿಴ᤨߩࠬ࡜࡝࡯⾂⬿ㇱಽߢ

޽ࠆ኿಴ࡊ࡜ࡦࠫࡖㇱߩ᷷ᐲߩᓇ㗀ࠍฃߌߥ޿ߎ ߣ߇ಽ߆ߞߚ㧚ߘߩ⚿ᨐ㧘Mg ว㊄ඨಝ࿕ࠬ࡜࡝࡯

ߩ࿕⋧₸ߩ⸳ቯߦߪ㧘ᷙ✵ࠬ࡜࡝࡯↢ᚑㇱߢ޽ࠆ

SB1㨪SB5ߩㇱ૏ߢߩ᷷ᐲ⸳ቯߢน⢻ߢ޽ࠆ㧚

Fig.12. The mapping of the rate of solid phase by semi-solid temperature conditions.

ඨಝ࿕ࠬ࡜࡝࡯ߦࠃࠆ኿಴ᚑᒻᕈ

ࠬࠢ࡝ࡘᷙ✵ㇱߩᾲવዉ߅ࠃ߮ᵹേ⸃ᨆ⚿ᨐߣ ඨಝ࿕ࡑ࠶ࡊࠍၮߦ㧘ቢోṁⲢ⁁ᘒߣඨಝ࿕⁁ᘒ 㧔࿕⋧₸30%ࠍᗐቯ㧕ߩ᧦ઙࠍᗐቯߒ㧘ඨಝ࿕኿಴

ᚑᒻᯏో૕ߩᦨㆡߥ᷷ᐲ⸳ቯࠍⴕ޿㧘ቢోṁⲢߣඨ ಝ࿕ࠬ࡜࡝࡯⁁ᘒߩᵹേ⁁ᘒߩ㆑޿ࠍ⏕⹺ߔࠆ኿

಴ᚑᒻታ㛎ࠍታᣉߒߚ㧚᧼⁁㧔ෘߺ5mm㧕㊄ဳߦ㧘

ࠬ࡜࡝࡯⁁ᘒߩ⇣ߥࠆ᧚ᢱࠍหߓ኿಴᧦ઙߢᧂల ḩ኿಴ᚑᒻ㧔࡚ࠪ࡯࠻࡚ࠪ࠶࠻㧕ߒߚ㧚ᵹേᕈߩ㆑

޿ࠍFig.13ߦ␜ߔ㧚ቢోṁḡ߇㘧߮ᢔࠅߥ߇ࠄྃ㔵

⁁ߢలႯߐࠇߡ޿ࠆߩߦኻߒߡ㧘ඨಝ࿕ࠬ࡜࡝࡯ߪ ႙⁁ߢలႯߐࠇߡ޿ࠆ㧚ߎࠇߪ㧘ඨಝ࿕⁁ᘒߦࠃࠆ

☼ᕈߩჇട߇㧘ᵹേᕈߦᄢ߈ߊᓇ㗀ߒߡ޿ࠆߎߣ߇ ኈᤃߦಽ߆ࠆ㧚ߔߥࠊߜ㧘ඨಝ࿕ࠬ࡜࡝࡯ߩᣇ߇ࠃ ࠅ᮸⢽ߦㄭ޿☼ᕈᵹേࠍߒ㧘㊄ဳౝߢߩᵹേߩࠟࠬ

Ꮞ߈ㄟߺ╬ߩᡷༀ߇ᦼᓙߢ߈ࠆ⚿ᨐߣߥߞߚ㧚

SemiͲSolid SlurryMetal

MoltenMetal

Fig.13. The difference of flow status between semi-solid and molten metal.

PB7 of Temperature T (K)

SB1 of Temperature T (K)

853 863 873 883 893 903 913

863 873 883 893 903 913

853

883K 885K >893K

>893K

>893K 882K

882K 878K

875K 870K

>893K

(7)

㧚ࡊࡠ࠮ࠬߩᬌ⸽ߣࠢ࡜࠶࠴ࡇࠬ࠻ࡦߩ⹜૞

ᓥ᧪ߩ࠳ࠗࠞࠬ࠻ᚑᒻߣᲧߴߡ㧘ඨಝ࿕኿಴ᚑᒻ ࡊࡠ࠮ࠬߩ೑ὐࠍએਅߦ᜼ߍࠆ㧚

Ԙಝ࿕෼❗/ഀࠇߩᛥ೙߇น⢻

ԙࠟࠬᏎ߈ㄟߺߩᛥ೙߇น⢻

Ԛ㊄ဳ߳ߩ὾ઃ߈ߩᛥ೙߇น⢻

ԛ㊄ဳߩ㐳ኼ๮ൻߥߤ

ඨಝ࿕኿಴ᚑᒻⵝ⟎⹜૞ᓟ㧘ࡊࡠ࠮ࠬߩఝ૏ᕈࠍ ᬌ⸽ߔࠆᦨ⚳⊛ߥ⹜૞ᚑᒻຠߩ࠲࡯ࠥ࠶࠻ߣߒߡ㧘

Fig.14ߦ␜ߔ⥄േゞ↪ࠢ࡜࠶࠴ࡇࠬ࠻ࡦࠍᚑᒻߒ⹏

ଔߒߚ㧚ࠢ࡜࠶࠴ࡇࠬ࠻ࡦߪ㧘⥄േゞࡄࡢ࡯࠻࡟ࠗ

ࡦㇱຠߩਛߢ߽∋ഭᒝᐲߦኻߔࠆା㗬ᕈࠍᔅⷐߣ ߒ㧘߹ߚシ㊂ൻߩലᨐ߽⋭ࠛࡀߦኻߒߡᄢ߈޿ߚ߼㧘 ᓥ᧪᧚ᢱߢ޽ࠆAƐว㊄ߦઍᦧ಴᧪ࠇ߫㕖Ᏹߦലᨐ ߇ᄢ߈޿ㇱຠߢ޽ࠆ㧚౮⌀ߦߪ㧘࿕⋧₸ߩ᷹ቯ૏⟎

߽หᤨߦ␜ߒߡ޽ࠆ㧚

Fig.14. A clutch piston sample. Numbers indicate sites for the measurement of the rate of solid phase.

ᚑᒻຠౝㇱߩ࿕⋧₸᷹ቯ⚿ᨐ

Fig.14ߦ␜ߔࠃ߁ߦ㧘࿕⋧₸ߩ೙ᓮᕈߣ࿕⋧☸ߩ

ಽᢔߩဋ৻ൻࠍ⏕⹺ߔࠆߚ߼㧘ࠢ࡜࠶࠴ࡇࠬ࠻ࡦᚑ ᒻຠᢿ㕙ࠍ⎇⏴ߒ࿕⋧₸ࠍ↹௝ಣℂⵝ⟎ߢ᷹ቯ⹏

ଔߒߚ㧚࿕⋧₸ߪ5wt%ߣ30wt%ߦᗐቯߒߚ㧚ᚑᒻ

ຠౝㇱߩ࿕⋧₸᷹ቯ⚿ᨐࠍFig.15ߣTable 3ߦ␜ߔ㧚

⊕⦡ㇱಽ߇࿕⋧☸ߢ޽ࠆ㧚↹௝ಣℂ᷹ቯߦࠃࠆ⹏ଔ

⚿ᨐ߆ࠄ㧘᷹ቯ႐ᚲߦࠃࠆ࿕⋧₸ߩ߫ࠄߟ߈ߪ⷗ࠄ ࠇࠆ߇㧘࿕⋧₸ࠍ᳿ቯߔࠆ᷷ᐲ᏷㗔ၞߩ⁜ߐࠍ⠨ᘦ ߔࠆߣ㧘ᚑᒻຠో૕ߦᷰࠅᗐቯߒߚ࿕⋧₸ߩᚑᒻຠ

ࠍᓧߡ޿ࠆ㧚ߘߩ⚿ᨐ㧘㐿⊒ߒߚඨಝ࿕኿಴ᚑᒻᯏ ߦ߅ߌࠆඨಝ࿕ࠬ࡜࡝࡯↢ᚑߦ߅ߌࠆ࿕⋧₸ߩࠦ

ࡦ࠻ࡠ࡯࡞ᕈߦߟ޿ߡ߽᦭ലᕈ߇⏕⹺ߢ߈ߚ㧚 Temperature 875K Temperature 865K

200 ȝm

Position㽲Position㽸

Fig.15. The metallographic structure photographs in the positions of both Ԙ and Ԟfor 865K and 875K.

Table 3. The rate of solid phase in each position for 865K and 875K.

Temperature

(K) 㽲䇭(%) 㽵䇭(%) 㽸䇭(%) 㽻䇭(%) Calculated value(%)

865 28.8 24.5 30.6 25.330

875 7.9 6.9 10.1 5.110

ᦨㆡᚑᒻ᧦ઙߩᬌ⸛ߣຠ⾰⹏ଔ ᦨㆡᚑᒻ᧦ઙߩᬌ⸛

ᰴߦ㧘ᚑᒻຠߩຠ⾰⹏ଔߦߟ޿ߡㅀߴࠆ㧚ᧄ⎇ⓥ

ߢ⹏ଔኻ⽎ߣߒߚᚑᒻຠߩࠢ࡜࠶࠴ࡇࠬ࠻ࡦߪ㧘➅ ࠅ㄰ߒ⩄㊀㧔ᴤ࿶ജ㧕߇૞↪ߒ㧘⠴ਭᕈߣା㗬ᕈ߇ ⷐ᳞ߐࠇࠆ㊀ⷐ⥄േゞㇱຠߢ޽ࠆ㧚ߘߩߚ߼㧘ᰳ㒱 㧔ࡏࠗ࠼㧘ⓨ㓗㧕߇ౝᄖㇱߦሽ࿷ߔࠆߣߘߎ߇⿠ὐ ߣߥࠅ⎕უ߇ㅴⴕߔࠆߚ߼㧘ᰳ㒱ߩሽ࿷߇⸵ߐࠇߥ

޿㧚ߘߎߢ㧘వߕᚑᒻຠߩ⴫㕙ߦ߅ߌࠆᰳ㒱ࠍ⺞ߴ ࠆߚ߼Ⱟశត்ᴺߦࠃࠆ⋡ⷞ⹏ଔࠍⴕߞߚ㧚Fig.16 ߦ㧘ᚑᒻຠ⴫㕙ߩᰳ㒱ߩ᦭ήࠍ␜ߔ㧚ᰳ㒱޽ࠅߩᚑ ᒻຠ(a) ߆ࠄ㧘⿒⦡ߢ࿐߻ㇱಽ߇ᚑᒻᤨߦߢ߈ߚᰳ

㒱ߢ޽ࠆ㧚ᯏ᪾ടᎿᓟߦ߽Ḵㇱಽߩౝㇱߦᰳ㒱߇಴

⃻ߒߡ޿ࠆ㧚৻ᣇ㧘⴫㕙ߦᰳ㒱ߩή޿ᚑᒻຠ(b) ߪ㧘 ᯏ᪾ടᎿᓟߦ߽ౝㇱᰳ㒱ߪ߶ߣࠎߤ⃻ࠇߥ޿ߎߣ

߽หᤨߦ⏕⹺ߐࠇߚߚ߼㧘ᚑᒻຠߩ⹏ଔᣇᴺߣߒߡ㧘 12 ୘޽ࠆⓣㇱߩ⴫㕙ᰳ㒱ߩሽ࿷ᢙࠍⰯశត்ᴺߦ ࠃࠅ⋡ⷞⷰኤߒ㧘ᰳ㒱ᐲว޿ࠍ⹏ଔߔࠆߎߣ߇᦭ല ߣ⠨߃ࠄࠇߚ㧚

ᾃ ᵕ

ᵏ ᵏᵎ

(8)

(a) With void (b) Without void Fig.16. Existence of defect on the surface of the cast by

the color checks method.

਄ㅀߒߚⰯశត்ᴺߦࠃࠆ⴫㕙⋡ⷞᬌᩏߩຠ⾰

⹏ଔᣇᴺࠍ૶ߞߡ㧘ᰳ㒱ߩή޿ᚑᒻຠࠍᓧࠆ㧚ߘߩ ߚ߼㧘ታ㛎⸘↹ᴺߦࠃࠅᚑᒻ᧦ઙࠍᝄࠅಽߌ㧘ᦨㆡ ᚑᒻ᧦ઙࠍᚑᒻታ㛎ࠃࠅ᳿ቯߔࠆ 7)㧚ౕ૕⊛ߦߪ㧘

వߕTable 4ߦ␜ߔ೙ᓮน⢻ߥᚑᒻ᧦ઙࠍ᳿ቯߒ㧘

ߘߩฦ᧦ઙࠍL18⋥੤⴫ߦഀࠅઃߌߚ㧚ߘߒߡ㧘⸳

ቯߒߚฦᚑᒻ᧦ઙߢᚑᒻߒ㧘ᰳ㒱ߩ⁁ᘒ㧔ⓣㇱߩሽ

࿷୘ᢙ㧕ߦߟ޿ߡຠ⾰⹏ଔߒߚ㧚

Table 4. The forming experimental condition by semi-solid injection molding machine.

Control factor Level

Condition setup of semi-solid injection molding mHold time

of injection pressureachine.

A Pressure-up speed (Valve open angle %)

High (20%)

Low (13%)

- B Preset temperature of

screw barrel (K)

913 875 865

C Injection speed (m/s) 1 2 4

D Injection pressure (MPa) 20 40 70 E Hold time of injection

pressure (msec.)

200 600 1000

Condition setup of mold.

F Degree of vacuum (kPa) Atmos phere

50 5

G Temperature (K) 423 473 523

H Chill time (s) 1 3 10

⹏ଔ⚿ᨐࠍFig.17ߦ␜ߔ㧚❑ゲߪS/NᲧߢᚑᒻᕈ ߩᏅ⇣ࠍ␜ߒ㧘ᢙ୯ߩ㜞޿߶ߤᰳ㒱߇ήߊᚑᒻᕈ߇

⦟޿⁁ᘒࠍ␜ߒߡ޿ࠆ㧚࿑߆ࠄಽ߆ࠆࠃ߁ߦ㧘኿಴

ㅦᐲ㧘኿಴㧔㍌ㅧ㧕࿶ജߩᓇ㗀߇ᄢ߈ߊ㧘኿಴ㅦᐲ ߪㅦ޿߶ߤ㧘኿಴࿶ജߪ㜞޿߶ߤᚑᒻᕈߪ⦟޿㧚߹

ߚ㧘ඨಝ࿕ࠬ࡜࡝࡯ߩ↢ᚑ᷷ᐲߣߒߡߪ 875K㧔ᗐ ቯ࿕⋧₸10㧕߇ᦨ߽ᚑᒻᕈ߇⦟޿ߣ޿߁⚿ᨐߦߥ

ߞߚ㧚ߎߩ⸃ᨆ⚿ᨐࠍၮߦ㧘ᦨㆡᚑᒻ᧦ઙࠍ᳿ቯߒ ᚑᒻߒߚᚑᒻຠ߇వߦFig.16 (b)ߦ␜ߒߚഀࠇߩή

޿ᚑᒻຠߢ޽ࠅ㧘ߎߩ⚿ᨐ㧘ᰳ㒱ߩή޿ᚑᒻຠࠍ⠴

ਭᕈ⹜㛎ߦଏߔࠆߎߣ߇಴᧪ߚ㧚

S/ N Rat io

6 5 4 3 2

High Low 913 875 865 1 2 4 20 40 70

B C D

A

G H

S/ N R a ti o

6 5 4 3 2

200 600 1000 AT 50 5 423 473 523 1 3 10

E F

Fig.17. Influence on the optimum molding conditions by evaluation of the number of cast defects.

ࠢ࡜࠶࠴ࡇࠬ࠻ࡦߩ⠴ਭᕈ⹏ଔ

ㅢᏱߩ⠴ਭᕈ⹏ଔߦߪ㧘ᚑᒻຠ߆ࠄ⹜㛎 ࠍಾࠅ

಴ߒ㧘ᯏ᪾⊛․ᕈࠍ⺞ߴࠆߚ߼ߦᒁᒛࠅ߿ᦛߍߩ∋

ഭ⹜㛎ࠍⴕ߁㧚ߒ߆ߒ㧘਄ㅀߒߚࠃ߁ߦࠢ࡜࠶࠴ࡇ

ࠬ࠻ࡦߩࠃ߁ߥା㗬ᕈࠍᔅⷐߣߔࠆ㊀ⷐ଻቟ㇱຠ

ߪ㧘ታㇱຠߣห᭽ߥ➅ࠅ㄰ߒ⩄㊀ࠍᮨᡆ⊛ߦ૞↪ߐ ߖࠆߎߣ߇ߢ߈ࠆ࠹ࠬ࠻ࠬ࠲ࡦ࠼ࠍ⹜૞ߒ㧘ߘߩ਄

ߢ⠴ਭᕈࠍ⹏ଔߔࠆߎߣ߇ᄙ޿㧚੹࿁ߩ⠴ਭᕈ⹏ଔ ߢ߽㧘Fig.18ߦ␜ߔ࠹ࠬ࠻ࠬ࠲ࡦ࠼ࠍ⵾૞ߒ㧘ଏ⹜

ᚑᒻຠࠍขઃߌ㧘⠴ਭᕈ࠹ࠬ࠻ࠍታᣉߒߚ㧚⹏ଔᚑ ᒻຠߦߪ੹࿁⹜૞ߒߚ⠴ᾲMgว㊄ߣᓥ᧪᧚ᢱߢ޽

ࠆAƐว㊄ߢ࠳ࠗࠞࠬ࠻ᚑᒻߐࠇߚ2⒳㘃ߩᚑᒻຠ

ࠍ૶↪ߒߚ㧚Table 5ߦ㧘⎕៊ߔࠆ߹ߢߩ➅ࠅ㄰ߒ࿁

ᢙߣ⎕៊ㇱ૏ߩ㆑޿ࠍ␜ߔ㧚⃻࿷૶↪ߐࠇߡ޿ࠆ AƐว㊄ߪ㧘AƐ-1㧔395,400࿁ߢ⎕៊㧕એᄖߪ⎕៊ߖ

ߕ847,800࿁ߢ➅㄰ߒታ㛎ࠍᛂߜಾߞߚ㧚ߘࠇߦᲧ

ߴߡ㧘⠴ᾲ Mgว㊄ߪ㧘334,200 ࿁߇ᦨ㜞ߢ㧘ᦨ⍴

ߢߪ104,400࿁ߢౝ๟Ḵㇱ߆ࠄ⎕៊ߒߚ㧚⚿ᨐߣߒ

ߡ㧘⠴ᾲMgว㊄ߪAƐว㊄ਗߩ⠴ਭᕈࠍᓧࠆߎߣ

(9)

ߪߢ߈ߥ߆ߞߚ㧚৻ᣇ㧘⎕៊ߩᩮᧄ⊛ߥේ࿃ࠍᬌ⸛

߆ࠄ㧘೰ᕈߩ⇣ߥࠆ

2

⒳㘃ߩ᧚ᢱࠍหߓᒻ⁁ߢ߆ߟ หߓ࿶ജࠍ૞↪ߐߖߚߚ߼⚿ᨐ㧘೰ᕈߩ㆑޿㧔

ว㊄ߪ

Mg

ว㊄ߩ

1.4

୚㧕ߦࠃࠅ㧘⠴ᾲ

Mg

ว㊄ߩ

➅ࠅ㄰ߒᄌᒻᤨߩ߭ߕߺ㊂߇

1.4

୚ߣߥࠅ㧘ࠬࡊ࡝

ࡦࠣထ㕙ㄭறઃㄭߩᦨ⭯ㇱ߇⠴߃߈ࠇߕ⎕៊ߒߚ ߩߢߪߥ޿߆ߣ⠨߃ࠄࠇߚ㧚

Fig.19

ߦ⎕៊ㇱߩ౮⌀

ࠍ␜ߔ㧚

Fig.18. Test stand for the durability evaluation of a clutch piston.

Table 5. The evaluation result of the durability test.

Materi als

Sample No.

The number of times of

breakage

The parts of breakage

Mg

Mg-1 334,200 Near a spring seat side Mg-2 282,000 Near a spring seat side Mg-3 161,000 The corner part of a spring seat

side

Mg-4 232,200 The corner part of a spring seat side

Mg-5 104,400 The groove processing portion over all the circumferences

Al

AƐ-1 395,400 Near a spring seat side AƐ-2 847,800 The test close without damaging AƐ-3 847,800 The test close without damaging

Fig.19. The photograph of breakage near spring seat side.

⚿⸒

(1)

ඨಝ࿕

Mg

ᚑᒻ↪ߣߒߡဳ✦߼ജ

200ton

ߩ⹜૞

ᯏࠍ⸳⸘⵾૞ߒߚ㧚

(2) Ca

ࠍ฽߻ඨಝ࿕㗔ၞߩ⁜޿

AMC403

⠴ᾲ

Mg

ว㊄ߢ޽ߞߚ߇㧘ᢙ୯ࠪࡒࡘ࡟࡯࡚ࠪࡦࠍ૶ߞ ߚࡃ࡟࡞᷷ᐲߩᦨㆡߥ⸳ቯߦࠃࠅ㧘ᚲቯߩ࿕⋧

₸ࠍ߽ߟᚑᒻຠࠍ↢ᚑߔࠆߎߣ߇ߢ߈ߚ㧚

(3)

ඨಝ࿕ࠬ࡜࡝࡯ߩᵹേ⁁ᘒߪ㧘ṁḡࠬ࡜࡝࡯ߣ

⇣ߥࠅ㧘႙⁁ߢᵹേߒߡ޿ࠆߎߣ߇⏕⹺ߢ߈ߚ㧚

(4)

ታ㛎⸘↹ᴺߦࠃࠆᚑᒻ᧦ઙߩᦨㆡൻߦࠃࠅ㧘߶

߷ᰳ㒱ߩή޿ࠨࡦࡊ࡞ࠍᚑᒻߔࠆߎߣ߇ߢ߈ ߚ㧚

(5)

ታേ૞ߣห᭽ߥⒿ௛⁁ᘒߩਅ㧘➅㄰ߒ⠴ਭ࠹ࠬ

࠻ࠍታᣉߒߚ߇㧘ᓥ᧪᧚ᢱຠߢ޽ࠆ

ว㊄ਗ ߩ⠴ਭᕈࠍᓧࠆߎߣߪ಴᧪ߥ߆ߞߚ㧚

(6)

੹ᓟߩ

Mg

ว㊄᧚ᢱ߳ߩઍᦧߦ㑐ߒߡ㧘ㇱຠߩ

⸳⸘Ბ㓏ߢߩ

Mg

ว㊄ߩ೰ᕈߩ⠨ᘦ߇㊀ⷐߢ޽

ࠆߎߣ߇␜ໂߐࠇߚ㧚

ෳ⠨ᢥ₂

/%(NGOKPIǓ$GJCXKQTQH/GVCN#NNQ[UKPVJG 5GOKUQNKF5VCVG̍/GVCNNWTIKECNVTCPUCEVKQPU#

#RR㧚

ጟ㊁ ᔋ㧘̌࠮ࡒ࠰࡝࠶࠼㊄ዻߩ⵾ㅧᴺ̍㧘႟ᕈߣട

Ꮏ 㧘㧘RR㧚

09CPI--9CPǏ#5VWF[QH4JGQOQNFGF2CTVU QH0Q&KG%CUVKPI#NNQ[CV5GOK5QNKF5VCVGU̍

2TQEGGFKPI QH VJ +PVGTPCVKQPCN %QPHGTGPEG QH 5GOK5QNKF2TQEGUUKPIQH#NNQ[UCPF%QORQUKVGU RR㧚

↰ਛ㆐਽㧘੹੗↰⼾㧘◉ፒ⾫ੑ㧘ศ↰ ⺈㧘⮮੗ᢅ↵㧦 ห ᔒ ␠ ᄢ ቇ ℂ Ꮏ ቇ ⎇ ⓥ ᚲ ႎ ๔ 㧘 㧘 RR

ᐔᚑ ᐕᐲ࿾ၞᣂ↢ࠦࡦ࠰࡯ࠪࠕࡓᚑᨐႎ๔ᦠ㧔㕖

౏㐿㧕

ဈᧄ๺ᄦጊᧄ⎇৻㧘̌/I#N%C ♽ว㊄ඨṁⲢ኿಴ᚑ ᒻ ᧚ ߩ ᯏ ᪾ ⊛ ᕈ ⾰ ߣ ⚵ ❱ ̍㧘 シ ㊄ ዻ 㧘 RR㧚

http://www.kobelcokaken.co.jp/zigyou/kadaikaiketsu/it/20 03/2003_all.pdf

╣ේ⨃᮸ઁ㧘̌ᝄേ ☼ᐲ⸘ࠍ↪޿ߚṁⲢࠬ࡜ࠣߩㄦ ㅦ᷹ቯᛛⴚߩ㐿⊒̍㧘4& ␹ᚭ⵾㍑ᚲᛛႎ㧘

RR㧔㧕

(Cross section) 2ͲPTͲ1/8

Spring

ʔ107

参照

関連したドキュメント

Incidentally, it is worth pointing out that an infinite discrete object (such as N) cannot have a weak uniformity since a compact space cannot contain an infinite (uniformly)

Many interesting graphs are obtained from combining pairs (or more) of graphs or operating on a single graph in some way. We now discuss a number of operations which are used

It is suggested by our method that most of the quadratic algebras for all St¨ ackel equivalence classes of 3D second order quantum superintegrable systems on conformally flat

[3] Chen Guowang and L¨ u Shengguan, Initial boundary value problem for three dimensional Ginzburg-Landau model equation in population problems, (Chi- nese) Acta Mathematicae

This paper is devoted to the investigation of the global asymptotic stability properties of switched systems subject to internal constant point delays, while the matrices defining

In this paper, we focus on the existence and some properties of disease-free and endemic equilibrium points of a SVEIRS model subject to an eventual constant regular vaccination

Classical definitions of locally complete intersection (l.c.i.) homomor- phisms of commutative rings are limited to maps that are essentially of finite type, or flat.. The

Yin, “Global existence and blow-up phenomena for an integrable two-component Camassa-Holm shallow water system,” Journal of Differential Equations, vol.. Yin, “Global weak