Photocopying permitted bylicenseonly the Gordonand BreachScience Publishers imprint.
Printed inSingapore.
Generalized Bi-quasi-variational
Inequalities for Quasi-semi-monotone
and Bi-quasi-semi-monotone
Operators with Applications in
Non-compact Settings and Minimization Problems
MOHAMMADS.R.CHOWDHURY*andE.TARAFDAR
DepartmentofMathematics,TheUniversityofQueensland, Brisbane, Queensland40-72,Australia
(Received15October 1998; Revised 10May 1999)
Resultsare obtained on existencetheorems of generalized bi-quasi-variational inequali- tiesfor quasi-semi-monotone and bi-quasi-semi-monotone operatorsinboth compact and non-compact settings. Weshallusetheconceptofescaping sequences introduced by Border(FixedPointTheoremwithApplicationstoEconomicsandGameTheory, Cambridge UniversityPress,Cambridge,1985)toobtainresultsinnon-compact settings.
Existencetheoremsonnon-compact generalized bi-complementarity problems for quasi- semi-monotoneand bi-quasi-semi-monotone operatorsarealso obtained.Moreover,as applications ofsomeresultsof thispaperongeneralized bi-quasi-variational inequalities, weshallobtain existenceofsolutionsforsome kindofminimizationproblemswithquasi- semi-monotone andbi-quasi-semi-monotone operators.
Keywords: Bilinearfunctional;Generalizedbi-quasi-variational inequality;
Locallyconvexspace;Lowersemicontinuous;Uppersemicontinuous;
Upperhemicontinuous; h-bi-quasi-semi-monotone; Bi-quasi-semi-monotone;
h-quasi-semi-monotone; Quasi-semi-monotone operators; Minimizationproblems 1991 MathematicsSubjectClassification: 47H04, 47H10,47N10, 49J35, 49J45
*Corresponding author.
63
1.
INTRODUCTION
If1,isanon-emptyset,weshall denoteby2xthefamilyof all non-empty subsets ofX. IfXand Yare topologicalspaces and T:1,--*2
’,
then thegraphofTisthesetG(T):=
{(x,y)E1,x Y:yET(x)}.
Throughout thispaper, denotes either the real field or thecomplexfieldC.
Let Ebeatopologicalvector spaceover
,
Fbea vectorspaceoverffand
(,)
:F E ffbe a bilinear functional. If1,isanon-emptysub- setofE,
thenamap T: X 2Fiscalled (i) F-monotone (i.e.,monotone with respect to the bilinear functional(,))
iffor each x, y 1,, each uT(x)
andeachw T(y),Re(w
u, yx) >
0 and(ii)
F-semi-mono- tone(i.e., semi-monotonewithrespectto the bilinear functional(,))
iffor each x, y
X, infur(x) Re(u,
yx) <_ infwr(y Re(w,
yx}.
Notethat whenF=
E*,
thevectorspaceof all continuous linear functionals onEand(,
isthe usualpairingbetweenE*
andE,theF-monotonicity and F-semi-monotonicity notions coincidewith the usual definitions of monotonicity and semi-monotonicity(see,
e.g., Browder [4, p.79]
andBaeetal.
[2,
p.237]
respectively). Butfor simplicity of notionswe shallusetheterms monotoneand semi-monotone insteadofF-mono- tone and F-semi-monotone. Note also that T: X2Fis monotone if and only ifitsgraphG(T)
is a monotone subset ofi"xF;
i.e., for all(x,
y),(x2, Y2)
EG(T), Re(y2
y,x2x) >
O.For each
xoE,
each non-empty subset A of E and each e>0, let W(xo;e):={yF:I(y, xo}l<e}
and U(A;e):={yF:SUpxeA
I(Y, X)[ < e}.
Letor(F, E)
bethe(weak)
topologyonF generated bythe family( W(x; e):
x Eande> 0)
as asubbase for the neighbor- hood systemat0and6(F, E)
be the(strong) topology onF generated bythe family(U(A; e):
Ais anon-empty bounded subset ofEande> 0)
as abasefor the neighborhood systemat0. Wenotethen that
F,
when equipped with the(weak)
topologyor(F, E)
or the (strong) topology6(F, E),
becomesalocallyconvextopologicalvectorspacewhichis not necessarily Hausdorff. But if the bilinear functional(,)
F x E--.ffseparates pointsin
F,
i.e., for each yEFwith y 0, there exists x E such that(y, x) -
0, thenFalso becomesHausdorff. Furthermore,for a net(Y)er
in F and for y F, (i) y--+y incr(F,E)
if and only if(y, x)
--.(y, x)
for eachx Eand(ii)y --.yin6(F, E)
ifand onlyif
(y,x)-- (y,x)
uniformly for x A for each non-empty bounded subsetAofE.Let
Xbeanon-empty subset ofE.ThenXisaconeinEifXis con- vexandAXc
Xfor allA >
0. If Xis a coneinEand(,)"
F E isabilinear functional, then
" {w
EF:Re(w, x) >
0for all x EX}
isalsoaconein
F,
called the dual cone ofX (withrespecttothe bilinear functional(,)).
Thefollowingresultis
Lemma
of Shih andTan
in[13,
pp.334-335]"
LEMMA
A
Let Xbe a non-empty subsetof
aHausdorff
topological vectorspaceEandS"X 2Ebeanuppersemicontinuousmap such thatS(x)
isaboundedsubsetof
Efor
eachx X.Thefor
eachcontinuouslinearfunctionalpon
E,
themapfp
X---.definedbyfp(
y) SUpxs(y)Re(p, x)
is upper semicontinuous; i.e.,
for
eachA E,
the set {yEX:fp(y)=
SUpxs(y)
Re(p, x) < A}
isopeninX.The following resultis
Lemma
3 of Takahashi in[15,
p.177] (see
also Lemma3in[14,pp.71-72]"
LEMMA B Let XandYbe topologicalspaces,f: X benon-negative and continuous andg" Y be lower semicontinuous. Then the map F" Xx Y
, defined
byF(x,
y) f(x)g( y)for
all(x,
y)EXx Y, islowersemicontinuous.
Wenowstatethe following result which follows from Theorem 3.1 of ChowdhuryandTanin
[9] (see
alsoLemma2.1ofTarafdar andYuan[17]
and Theorem 2.2 of Tarafdar in[16])
and is a generalization of the celebrated 1972Ky Fan’s
minimax inequality in[11,Theorem1]:
THEOREM
A
LetEbeatopologicalvectorspace, andXbeanon-empty compactconvexsubsetof
E.Suppose
thatf,
g"XxX I{-, +o}
aretwomappingssatisfying thefollowingconditions:
(i)
for
each xX,
g(x,x) <
0 andfor
each x, yX, f(x,
y)>
0 impliesg(x,y)
>
0;(ii)
for
eachfixedx
X,the map yf(x,
y)islowersemicontinuous onX;
(iii)
for
eachfixed
yX,
theset{x
X: g(x, y)> 0}
isconvex;Then thereexistsa point Xsuch that
f(x, ) <_
Ofor
allx X.We shall need the following
Kneser’s
minimax theorem in[12,
pp.2418-2420] (see
also Aubin[1,
pp.40-41])"
THEOREM
B
Let Xbea non-empty convexsubsetof
a vectorspace andYbe a non-empty compact convex subset
of
aHausdorff
topologicalvectorspace.
Suppose
thatf
isareal-valuedfunction
onXx Ysuch thatfor
eachfixed
x EX,
the map yHf(x,
y) is lowersemicontinuous and convex on Yandfor
eachfixed
yY,
the mapxf(x,
y) is concaveonX. Then
minsup
f(x, y)
supminf(x, y).
yEY xEX xXYY
2.
GENERALIZED
BI-QUASI-VARIATIONAL INEQUALITIESFOR
QUASI-SEMI-MONOTONEAND
BI-QUASI-SEMI-MONOTONE OPERATORS
Inthissectionweshall obtain someexistence theorems ofgeneralized bi-quasi-variationalinequalities for quasi-semi-monotone and bi-quasi- semi-monotoneoperators.Ourresultswillextend andorgeneralizethe correspondingresultsin
[6]
and[14].
LetEandFbeHausdorfftopologicalvectorspacesoverthe field let
(,)
FxE-+(bbe abilinear functional, and letXbe a non-empty subset of E.Given aset-valuedmap S" X2xandtwoset-valued mapsM,
T:X---+2F,
the generalized bi-quasi-variational inequality(GBQVI)
problemis to find apoint33
Xandapoint ET()
such that33
and
Re(f-
if,j3-x)<
0 for all xES(33)
and forallfE M(33)
or tofind apoint
.f
EX,
a pointT(.f)
and apointj
EM(33)
such thatf
ES(.f)
andRe(a - ,.f- x) <
0 forallx ES(.f).
The above defini- tionofGBQVI
problemwasgiven in[6,p. 139]
which is aslight modifi- cation ofthe original definition ofGBQVI
problem of Shih andTan in[14].
The following definition is Definition 4.4.2 in
[6]
and generalizes Definition2.1(b)
in[9]:
DEFINITION Let Ebeatopologicalvectorspaceover
,
Fbeavectorspaceover andXbeanon-emptysubset
orE.
Let(,)
FxE--bbeabilinear
functional
andM:X-2Fbeamap. ThenMissaidtobe upperhemicontinuous on X
if
and onlyif for
eachpE,
thefunction fp
X-+IRtO{ +oo } defined
byfp(z)
supRe(u,p) for
each zX,
uM(z)
is upper semicontinuous on X (ifandonly
if for
each pEE,
thefunc-
tion
gp
X ItA{-c} defined
bygp(Z)
infRe(u,p) for
each zX,
ut(z) islowersemicontinuous on
X).
The following result is Proposition 4.4.3 in
[6]
and generalizes Proposition 2.4 in[9]:
PROPOSITION Let Ebeatopologicalvectorspaceoverb,Fbea vector spaceover a9andXbeanon-emptysubset
of
E. Let(,)
FxE a9beabilinear
functional
such thatfor
eachp E,
u(u,p)
istr(F,E)-con-
tinuousonFwhenFisequippedwiththe
or(F, E)-topology.
Let M:X2r be uppersemicontinuousfrom
therelativetopologyonXtothe weaktopol-ogy
or(F, E)
onF. ThenMisupper hemicontinuousonX.Note
thatthe converse ofProposition isnot true as can beseenin Example2.5of[9]
which isExample2.3 in[18,
p.392]:
The following definition is a generalization of
(3)
and(4)
of theDefinition2.6in
[9,
p.31].
DEFINITION 2 Let E be a topological vector space andXbe a non- emptysubset
of
E.Let Fbea vectorspaceover band(,)
FxE bbeabilinear
functional.
LetM:X--2Fbeamap.Supposeh X--I1. ThenMissaidtobe h-quasi-semi-monotone
if for
each x, y X,inf
Re(w,
y-x) + h( y) h(x) >
0weM(y)
whenever
inf
Re(u,
y-x) + h( y) h(x) >
O.uM(x)
Missaidtobequasi-semi-monotone
if
Mish-quasi-semi-monotonewith Weshallnowintroduce the following definition:DEFINITION 3 Let E be a topological vector space andXbe a non- emptysubset
orE.
Let Fbea vectorspaceover band(,)
F E-+bbeabilinear
functional.
LetM,
T’X2Fbe two maps.Suppose
h’X--IR.ThenMissaidtobe h-bi-quasi-semi-monotone
if for
each x,yEXandeach
finite
set{/3f
jO,
1,...,n} of
non-negative real-valuedfunctions
on
X,
( Y) I gt(y)inf wer(y)inf Re(g
w, yx) + h( y) h(x)l
+ /3(y)Re(p,y- x) >
0k=l
whenever
/3o(y) [l_ft(x)inf wET(y)inf Re(f-
w,yx) + h( y) h(x)]
n
+ Z/31(y)Re(pk,
y-x) > O,
k=l
wherePk
E’for
k 1,...,n.M is said to be bi-quasi-semi-monotone if M is h-bi-quasi-semi- monotone with h--0. If "each finite set
{/3:
j=0,1,...,n)
of non-negative real-valued functionson
X"
isreplacedby"each family{/30,
pE*)
of non-negative real-valued functions on X" and T=0, Mbecomes a generalized h-quasi-semi-monotone operator as definedin [7,Definition4, p.
296].
Clearly, a semi-monotone operator is also an h-bi-quasi-semi- monotone(respectively, ageneralized h-quasi-semi-monotone) opera- tor.Buttheconverseis nottrue; becauseifT-- 0,/3o
and/3k
0 for eachk 1,2,...,n(respectively,if/3o
andfor each pE*,/3p 0),
thenanh-bi-quasi-semi-monotone (respectively, ageneralized h-quasi- semi-monotone)operatoris anh-quasi-semi-monotone operatorwhich is notnecessarily a semi-monotone operator. The following example, which is Example 2.8 in[9]
shows that an h-bi-quasi-semi-monotone operatorTneednotbeasemi-monotone operator.Example 1 DefineT: 2 by
=[x’l/x]’
if0<x< 1;T(x) [1Ix, x],
ifx_>
1.Itisshownin
[9,
pp. 31-32]
that Tisnotsemi-monotonealthoughit isquasi-monotone.Thefollowing example,which isExample 2.9in
[9]
shows that anh- bi-quasi-monotone operatorTneednotbeaquasi-monotone operator.Example 2 DefineT:II--.2 by
[0,2x],
ifx>0;T(x)=
[2x,0],
ifx<0.Itis shown in
[9,
p.32]
that Tis not quasi-monotonealthoughit is semi-monotone(as
shown in[2,
p.241])
and therefore anh-bi-quasi- semi-monotoneoperator neednotbeaquasi-monotone operator.Theseexamplesjustify the validity of bi-quasi-monotone operators.
ThefollowingresultisLemma4.4.4in
[6]:
LEMMA LetEbeatopologicalvectorspaceover69,Xbeanon-empty compactsubset
of
EandFbeaHausdorff
topologicalvectorspaceover 69.Let
(,):
FxE 69bea bilinearfunctional
andT:X---2Fbean uppersemicontinuousmap such that each
T(x)
iscompact.Let Mbeanon-empty compactsubsetofF,
Xo EXand h X Ibecontinuous.Define
g:X Ibyg(y)
[inffeM infwer(y)Re(f-
w, yx0)] +
h(y)foreach y X. Sup-pose that
(,)
is continuous onthe(compact)subset[M-
yxT(
y)]xXofF
xE.ThengislowersemicontinuousonX.When h 0andM
{0},
replacing TbyT,
Lemma1 reducestothe Lemma2ofShihandTan
in[14,
pp.70-71].
The following result isLemma4.4.5in
[6]
and generalizesLemma4.2 in[9]:
LEMMA2 LetEbeatopologicalvectorspaceover69, Fbea vectorspace over 69andXbeanon-emptyconvexsubset
of
E.Let(,)
FxE 69beabilinear
functional.
EquipFwith thea(F, E)-topology.
Let Dbea non- emptya(F, E)-compact
subsetof F,
h X---,I
beconvexandM:X 2Fbe upperhemicontinuousalong linesegmentsinX.
Suppose f;
Xissuch thatinffM(x) infgD Re(f
g,x) <_ h(x) h() for
allx X.Theninf inf
Re(f g,- x) < h(x) h() for
allx X.feM()geD
We
shallnowestablish the following result:THEOREM Let E be a locally convex
Hausdorff
topologicalvector space over,
Xbe anon-empty compact convexsubsetof
EandFbea
Hausdorff
topological vector space over.
Let(,):F
xE be abilinear
functional
which is continuous on compact subsetsof
FxX.Supposethat
(a)
S X2xis an upper semicontinuous map such that eachS(x)
is closed convex;(b)
T:X2F is upper semicontinuoussuch that eachT(x)
is compact convex;(c)
h X liisconvexandcontinuous;(d)
M X---2e is upper hemicontinuous along line segments in Xand h-bi-quasi-semi-monotone (withrespect to(,))
such that eachM(x)
iscompact convexand
(e)
theset=yEX"
sup inf infRe(f-w,y-x)
xeS(y)feM(x)wET(y)
+ h(y) h(x) > O
)isopeninX.Then thereexistsapoint
f
Xsuchthat(i)
33 S(33)and
(ii) there exist a point
M( f)
and a pointv T( f)
with Re(j2-v,;f x) < h(x) h(29) for
allxS().
Moreover, if S(x)
Xfor
all xX,
Eis notrequiredtobelocallyconvexand
if
T=_O, the continuity assumption on(,)
can be weakenedto theassumption that
for
eachf
EF, the mapxH(fix)
iscontinuousonX.Proof
Wedividetheproofintothree steps:Step
1 Thereexists apointp
E Xsuch thatp
ES(p)
and sup | inf inf Re(f-w,:f-x)+h()-h(x)|<
0.xeS(p) LfeM(x)wET(p) I
Suppose
the contrary. Then for each yX,
eithery.
S(y) or there exists x S(y) such thatinffeM(x)infwer(y) Re(f-
w, yx) +
h(y)h(x) >
0; that is, for each yX,
either y S(y) ory E. If y S(y),thenbyaseparationtheorem,there exists pE
E*
suchthatRe(p,y)-
supRe(p,x)
>0.xaS(y)
Foreach pE
E*,
let(
V(p)
y X:Re(p,y)-
supRe(p,x) > 0}.
xeS(y)
ThenV(p)isopen by Lemma
A.
SinceX=Z] td peE,V(p),bycompact- ness ofX,
thereexistpl,p2,...,pnE*
such thatX )2tAI,.Ji"=l V(pi).
For simplicityof notations, let
V0
:-E
andVi-
V(pi) for 1,2,...,n.Let
{/30,/31,...,/3n}
be acontinuous partition of unity on Xsubordi- nated to the coveting{
V0, V1,...,V}.
Then/30,/31,...,/3, arecontin- uousnon-negative real-valued functionsonXsuchthat/3i
vanisheson Jf\Vi, foreach i=0, 1,...,n andEin=o 3i(X)--
for all x X. Define,:Xx
X-->I by(x,y) &Cy)/
inf infRe(f-
w,y-x) + hCy) hCx)
[feM(x)weT(y)
+ fli(y)Re(pi,
yx),
i=1
and
(x, y) &CY)/
inf infRe(g-
w,yx) + hC y) h(x)
[.geM(y)weT(y)
+ i(y)Re(pi,
y-x),
i=1
for each x, y X.Thenwehave thefollowing.
(1)
For each xEX, (x, x)=
0 and for each x, yX,
since Mis h-bi- quasi-semi-monotone,b(x,
y)>
0 implies(x,
y)>
0.(2)
Foreach fixedxX,
themapy H inf inf
Re(f-w,y-x)+h(y)-h(x)
feM(x) weT(y)
islower semicontinuousonX by Lemma 1;therefore the map y H /3o(y)| inf inf
Re(f-
w,yx) +h(y) hCx)[
LfM(x)wT(y)
is lower semicontinuousonX by Lemma B.
Hence
for each fixed xEX,
themapy(x,
y)islower semicontinuousonX.(3)
Clearly,for eachfixedyEX,
theset{x
EX:(x,
y)> 0}
is convex.Then and satisfy all the hypotheses of Theorem
A.
Thus by TheoremA,
there exists33
Xsuch that(x, 33) <
0for allxX,
i.e.,/30(33)[
inf infRe(f-
w,fx) + h(33) h(x)[
[feM(x)weT(y,)
+ /3i(.f,)Re(pi,- x) <_
0(2.1)
i=1
for allx X.
Choose2 E
S(33)
suchthatinf inf
Re(f- w,)3- ) + h() h(2) >
0feM()wer(.)
whenever
f10(33) >
0;itfollows that
/30()3) [
inf infRe(f- w,33 ) + h(33) h()
LfeM(2)weT()
whenever/3o() >
O.>0
If
{
1,...,n}
issuchthat/i(J3) >
0, then)3 V(pi)
and henceRe(p/,)3) >
supRe(p/, x) > Re(p/,.2)
xeS() sothat
Re(pi, 33- 2) >
0.Thennotethatfli(..f,)Re(pi,.f- 2) >
0 wheneverfli(J3) >
0 fori= 1,...,n.Since/3i(33) >
0,foratleast one E{0,
1,...,n},
itfollows that/30(33)[
LfeM()inf weT(p)infRe(f- w,33- ) + h(33) h()]
q-
13i( fz)Re(pi, f; 2) >
0,i=1
which contradicts
(2.1).
This contradictionprovesStep
1.Step
2inf inf
Re(f- w,.f x) < h(x) h(f;)
for allx ES(33).
feM(p)weT(p)
Indeed,from
Step 1,33 S(33)
which isa convexsubset ofX,
andinf inf
Re(f-
w,f; x) <_ h(x) h(f;)
for all x ES(33). (2.2)
feM(x)weT(p)
Hence by Lemma2,wehave
inf inf
Re(f-
w,f;x) < h(x) h(.f)
for allxS(33).
feM(p)weT(p)
Step 3 There exist a point
f
M(j3) and a point ET(j3)
withRe(jFrom
- v,.f
supStep
2x) <
weinfhaveh(x)
infRe(f-w, h( f)
for all xj3-x/+h(J3)-h(x)| <0;xeS(p)LfeM(P)weT(p)
sup inf
Re(f-
w,f x) + h( f;) h(x) <
O,xeS(p) f,w)eM(fi)xT(p)
(2.3)
where
M(j3)
xT(p)
is a compact convex subset of the Hausdorff topologicalvectorspaceF
xFandS(33)
isaconvexsubset ofX.Let
Q M(p)
xT(j3)
and the map gS(p)
xQ
be defined byg(x,q) g(x, (f, w)) Re(f- w,f x) + h(f;) h(x)
for eachx E
S(33)
and each q(f, w)
EQ M(33)
xT())).
Notethatfor eachfixed x
S(33),
the map(f, w)
g(x,(f, w))
is lower semicontinuous from therelative product topology onQ
toIRand also convex onQ.
Clearly,foreachfixedq
(f, w) Q,
themapx g(x,q) g(x,(f, w))
isconcaveonS(33).
ThenbyTheoremB
wehavemin sup
g(x, (f, w))
sup ming(x, (f, w)).
(f,w)eQ xeS(p) xeS(.,9) (f,w)EQ
Thus
min sup
Re(f- w,p- xl
4-h(p) h(x) <_
0, by(2.3).
(f,w)eQxeS()
Since
Q M(.f)
xT(33)
iscompact, thereexists suchthatsup
Re(- v, - x} + h() h(x) <_
O.xeS()
Therefore
Re(j
- v,. x) <_ h(x) h( f)
for all xHencethere exista
pointE M(33)
andapoint ET(33)
withRe(j - v,f, x) < h(x) h(f:)
for allxS().
Nextwe note from the aboveproofthat Eisrequired to be locally convex when andonlywhen the separation theoremisapplied to the case
yS(y).
Thus ifS:X2xis the constant mapS(x)=J(
for allx X, Eis notrequiredtobelocallyconvex.
Finally,ifT= 0,inorderto show that for each x X,y
4(x,
y)is lower semi-continuous, Lemma is no longerneeded and the weaker continuity assumptionon(,)
that foreachfE F,
themapx(f,x)
iscontinuousonXissufficient.Thiscompletestheproof.
When M is h-quasi-semi-monotone instead of h-bi-quasi-semi- monotone, the result follows immediatelyfromTheorem 1.
Notethatifthemap S" X 2xis, inaddition, lower semicontinuous and for each y
E,
Misuppersemicontinuousatsome point x inS(y)with
inffet(x/infwer(x/Re<f-
w, yx) +
h(y)h(x) >
0, then the setE
inTheorem isalwaysopen inX.THEOREM 2 Let E be a locally convex
Hausdorff
topological vector spaceover d, Xbea non-empty compact convexsubsetof
EandFbeavectorspaceover d.Let
(,)
FxE- beabilinearfunctional
such that(,)
separates pointsif
Fandfor
eachf
EF,
the mapx(f, x)
is contin-uous onX.EquipFwiththestrongtopology
6(F, E). Suppose
that(a)
S X--2x is a continuous map such that eachS(x)
is closedandconvex;
(b)
T: X--2Fis upper semicontinuoussuch that eachT(x)
is strongly compactand convex;(c)
h:X--. isconvexandcontinuous;(d)
M:X--2F is upper hemicontinuous along line segments in Xand h-bi-quasi-semi-monotone (with respect to(,))
such that eachM(x)
is6(F, E)-compact
convex; also,for
each y E {y X:supxsy)[inffetx) infwry) Re(f-
w,yx) +
h(y)h(x)] > 0},
Mis upper semicontinuous at some point x in
S(
y) withinfft x infwry) Re(f-
w, yx) +
h(y)h(x) >
O.Then thereexistsa point
f
Xsuchthat(i)
9 S(33)and
(ii) there exist a point
M(f:)
and a point Re(j- v,-x) < h(x)- h()for
allxS().
with
Moreover, if S(x)
Xfor
allxX,
Eis notrequiredtobelocallyconvex.Proof As (,):F
xEff is a bilinearfunctional such that for eachf F,
themapx(f, x)
is continuousonX andasFisequippedwith the strongtopology6(F, E),
it iseasytoseethat(,)
iscontinuousoncompact subsets ofFxX.Thus byTheorem 1,itsufficesto show that theset
sup[
inf infxES(y)"fEM(x) wET(y)
Re(f-
w,yx) + h(y) h(x)] >
0}
is open in X. Indeed, let Y0 E
E;
then by the last part of the hypo- thesis(d),
Misupper semicontinuous atsome pointx0in S(yo)withinffeM(x0) infwer(yo) Re(f
w, yoxo) + h(yo) h(xo) >
0.Leta := inf inf
Re(f-
w, yoxo)
/h(yo) h(xo).
fM(xo) wT(yo)
Thena
>
0.AlsoletW:=
{w
F:zSUp,
z2X[(W’Zl Z2)[ < ce/61"
Then Wis an open neighborhoodof 0inFso that
Ua
:=T(yo)+
Wisanopen neighborhood ofT(yo)inF. Since Tisuppersemicontinuous atYo,thereexists anopen neighborhood
N1
ofyoin Xsuch thatT(y)CU1
for all yE
N1.
Let
U2
:=M(xo) +
W,theU2
is anopen neighborhoodofM(xo)
inF.Since Misuppersemicontinuous atXo,thereexistsanopenneighbor- hood
Va
ofXoinXsuch thatM(x)
CU2
for allx EV1.
As
the map x--inff(x0)infwer(yo) Re(f-
w,xo x) + h(xo) h(x)
is continuous at Xo, thereexists an open neighborhood
V2
ofx0in X such thatinf inf
Re(f-
w,xo x) + h(xo) h(x)
feM(xo)wT(yo)
for all x
V2.
<a/6
Let
Vo
:=VIA Vz;
thenVo
is anopen neighborhood ofXoin X. Since XoVo
NS(yo)-
and Sislower semicontinuousatYo, thereexistsan open neighborhoodN2
ofYoinXsuch thatS(y)Vo
for all yNz.
Since the map y--
inffM(x0)infwr(yo) Re(f-
w,yYo) + h(y)-
h(yo)
is continuous atYo, there exists anopen neighborhoodN3
of Yo inXsuch thatinf inf
Re(f-
w,yYo) + h(y) h(yo)
feM(xo) wT(yo)
for all yE
N3.
< a/6
Let No N1
fqN2
fqN3.
ThenNo
is an open neighborhood ofYoinX such that for each y ENo,
wehave(i)
T(yl)CU1
T(yo)/WasYl EN1;(ii)
S(yl)fqVo
asYl N2;sowecanchooseanyXl S(yl)NVo;
(iii)
infff(x0)infwr(yo) Re(f-
w,ylYo) + h(yl) h(yo)l < a/6
asYl N3;
(iv)
M(Xl)
CU2 M(Xo) +
Wasx
V1;(v) inffM(xo) infweT(yo) Re(f-
w,xo Xl) + h(xo) h(xl)[ < a/6
asXl E V2;
itfollowsthat
inf inf
Re(f-
w,yXl) + h(yl) h(Xl)
fM(x) weT(y)
>
inf inf[feM(xo)+W][weT(yo)+W]
Re(f-
w,ylx + h(yl) h(xl) (by (i)and (iv)),
>
inf infRe(f-
w,ylXl) + h(yl) h(xl)
fM(xo) wT(yo)
+
inf infRe(f-
w,Y Xf6Ww6W
inf inf
Re(f-
w,ylYo) + h(y,) h(yo)
fM(xo)wT(yo)
+
inf infRe(f-
w, yoxo) + h(yo) h(xo)
fM(xo) wT(yo)
+
fM(xo) wgT(yo)inf infRe(f-
w,xo Xl) - h(xo) h(xl)
+
fewinfRe(f,
ylXl) --
wWinfRe(-w,
ylXl)
>_ -a/6 +
aa/6 a/6 a/6 a/3 >
0(by (iii)and (v));
therefore
sup inf inf
Re(f-
w,ylx) + h(yl)-
h(x)|>
0xS(y) If6M(x) wT(y)
as X S(yl).This shows thatYlG for allYl
No,
so thatEis open inX.Thisprovesthe theorem.When M is h-quasi-semi-monotone instead of h-bi-quasi-semi- monotone, the result follows immediately from Theorem 2.
Since a semi-monotone operator is also anh-quasi-semi-monotone operator andanh-bi-quasi-semi-monotone operator, Theorems and 2 areextensionsofTheorems 4.4.6 and 4.4.7 respectivelyin
[6].
Theproof of Theorem hereisobtainedbymodifyingtheproofof Theorem 4.4.6 in[6].
Although M is h-quasi-semi-monotone or h-bi-quasi-semi- monotoneinstead ofsemi-monotone,there isnodifferencebetween the proofof Theorem 2 here and theproofof Theorem 4.4.7in[6].
Butfor completenesswehave includedtheproofof Theorem 2 here.In Sections 3 and 4, we shall present out main non-compactcon- tribution ofthispaper.
3.
NON-COMPACT GENERALIZED
BI-QUASI-VARIATIONAL INEQUALITIESFOR
QUASI-SEMI-MONOTONEAND
BI-QUASI-SEMI-MONOTONE
OPERATORS
Let Xbe atopological space such thatX
Une=l Cn
where{Cn}n=l
isan increasing sequence of non-empty compact subsets ofX. Then a sequence
{Xn}n=l
in Xis said tobe escaping fromXrelative to{ Cn }n=l [3,
p.
34]
if for each n E1, there exists m E lt such thatxk C
for allk>m.
Inthis section, we shallapplyTheorem 2togetherwith theconcept of escaping sequences to obtain existence theorems on non-compact generalized bi-quasi-variational inequalities for quasi-semi-monotone and bi-quasi-semi-monotone operators.
Weshallnowestablishthe following result:
THEOREM3 Let Ebealocallyconvex
Hausdorff
topologicalvectorspace overb, Xbeanon-empty(convex)
subsetof
Esuch thatX,=
C,,where
{ C },
is an increasingsequenceof
non-empty compact convex subsetsof
XandFbea vectorspaceovere;.
Let(,)
F xE---,bbeabilinearfunctional
such that(,)
separates pointsinFandfor
eachf
EF,
the mapx
(f, x)
is continuous onX.EquipFwiththestrongtopology5(F, E).
Suppose
that(1)
S X 2xisacontinuousmap such that(a) for
eachxX, S(x)
isaclosedconvexsubsetof
Xand(b) for
eachn I1,S(x) c Cnfor
allxCn;
(2)
T:X2Fis uppersemicontinuous such that eachT(x)
is6<F,E)-
compactconvex;
(3)
h X-- IRisconvexandcontinuous;(4)
M:X’---+2r is upper hemicontinuous along line segments in Xand h-bi-quasi-semi-monotone (with respect to(,))
such that eachM(x)
is6(F, E)-compact
convex; also,for
each yE{
y X:SUPxS(y)[inffM(x) infwr(y) Re( f
w, yx) + h( y)-h(x)] >0},M
is upper semicontinuous at some point x in
S(
y) withinfft(x) infwr(y) Re( f
w,yx) + h( y) h(x) >
0 and M isuppersemicontinuouson
Cnfor
eachnN;
(5) for
each sequence{Yn)nC=l
inX,
withYnC. for
each nN,
whichis escaping
from
Xrelative to{C.)nl,
either there existsnoN
such that
Yno - S(Yno)
orthereexistno
NandXno S(Yno)
such thatminfM(y.o minwT(y.o Re(f-
W,Yno Xno) + h(Yno) h(xno) >
O.Then thereexists a point
29
Xsuch that(i)
S( )
and(ii) thereexist a
point M()
andapointv T(p)
with Re(j- v, :- x) <_ h(x) h() for
all xS().
Moreover, if S(x)
Xfor
all xX,
Eis notrequiredtobe locallyconvex.Proof
Fix an arbitrary nN. Note
thatC,
is a non-empty com-pact convex subset of E. Define
S,: Cn
2c",
h,:Cn
R andM, T: Cn
2ebyS(x)= S(x), hn(x) h(x), M(x) M(x)
andT(x) T(x)
respectively for each xC;
i.e.,S Sic , hn hick, M MIc
andT,
Tic
respectively.By
Theorem2,thereexists apoint3, Cn
such that
(i)’ fn S. (fn)
and(ii)’
there existsapoin@. M(33.) M.(fin)
andapoint 1nT(fin) Tn(n) withRe(n n,.fn x) < h(x) h(n)
forallxSn(fn).
Notethat
{ n}.=l
is asequence inXI..J.=l Cn
withp.
EC.
foreachnEN.
Case 1
{Pn}nC=l
is escaping fromJ/relativetoThen by hypothesis
(5),
there existsno EN
such that33n0
S(f.o) Sno (fno),
which contradicts(i)’
or there existno N
andXno S( )no) Sno ()no)
such thatmin min
Re(f- w,). Xno) + h(Pno) h(xno) > O,
fEM()n wET()no) which contradicts
(ii)’.
Case2
(f;n}n=l
isnotescaping from Xrelativeto(Cn}n=l.
Then there exist
nlEN
and a subsequence{)3nj)=
of(Yn)n=l
such that
33n
ECnl
for allj l,2,... SinceCnl
iscompact, there exista subnet{2,},r
of{f;nj}j=l
and33 Cn
CXsuchthat2 33.
Foreach a
F,
let2 33n.,
wheren
oc. Then accordingto our choiceofJ3n.
inCn.,
wehave(i)" ,,, Sn.()n.) S(Pn.)
and(ii)"
there exist a pointJn. M. (.f,e) M(fn.)
and a pointv,, Tn.(Pno) T(/o)
withRe(fn. -%,)no- x)+ h(Pn.)- h(x) <_
0for allxSno ()n.) S(.fno).
Sincen ,
thereexistsa0 F such that
n_> n
for all a_>
a0. ThusC c C.,
for alla
>_
a0. From(i)"
above wehave(33n., 33.) G(S)
for all a F.SinceSisuppersemicontinuous withclosedvalues,
G(S)
isclosed inXxX;
itfollowsthat93 S(93).
Moreover,
since{9?,. }-_>-0
and{ffno }_>0
arenetsinthe compactsets[.JxC. M(x)
and[.Jxc., T(x)
respectively, without loss ofgenerality, wemayassumethat the nets{f,.},r
and{,.}Er
convergetosome[..JxC. M(x)
andsome[.Jxc. T(x)
respectively.SinceMandT have closedgraphsonCn, M(f:)
andffT(33).
Let x
S(33)
be arbitrarily fixed. Letna _> n
be such that x SinceSislowersemicontinuous at93,
withoutloss ofgeneralitywemay assumethat for eachaF,
thereis anx,. S(93n.)
such thatXn, x.By (ii)"
wehave,Re(jo lfl;na,;na Xna
AI-h(Pn. h(xno) <
0 for alla F. Note that
Jn. .. f-
in6(F, E)
and{33,o x..}r
is anetinthe compact
(and
hencebounded)
setCn: -I.Jyc.: S(y).
Thus,we have for each e
>
0, there exists al>
a0 such that[Re(o n.--
(-- l),n Xn.)[ < e/2
for all a> a.
Since(j- #,33n
(j-#,p- x),
there existsa >
al such that[Re(?-V, Pno- Xn)-
Re(j -
#,33 IRe(L. x)l + < [Re(f e/2 %,
for all;n fv,.fn.
a> az. Xn,) Xn.
Thus forRe(j’- (-
a,, x))[ _> 33 x)[
< e/2 + e/2
e.Thus
lim
Re(L Vn,Pn Xn) Re(j - ,33- x).
By
continuity ofh,wehaveRe(j
<0- lirn[Re(L v,- x) + na, h() na h(x) Xna)
-}-h(n a) h(xna)].
COROLLARY Let
(E, II’ll)
be areflexive
Banach space, Xbe a non- empty closedconvexsubsetof
EandFbe a vectorspace over b. Let(,)
FxE dbeabilinearfunctional
suchthat(,)
separatespointsinF andfor
eachf
EF,the map xf x)
is continuous onX.EquipFwiththe strongtopology6(F, E).
Let S X--2xbe weakly continuoussuch thatS(x)
is closedconvexfor
each xX,
T: X 2Fbe weaklyupper semi-continuoussuch that each
T(x)
is6(F, E)-compact
convex, h X be convex and (weakly) continuous and M:X2F be (weakly) upper hemicontinuous along linesegments inXand h-bi-quasi-semi-monotone (withrespectto(,))
such that eachM(x)
is6(F, E)-compact
convex.Also,for
each y{
y X:SUpxs(y)[inffM(x)infw-(y) Re(f-
w, yx) +
h(y)
h(x)] > 0),
Mis weakly uppersemicontinuous atsome point x inS(y)with
inffM(x)infwr(y)Re(f
w, y--x) +
h(y)h(x) >
0andMisweaklyuppersemicontinuouson
C,,for
eachnN. Suppose
that(1)
thereexists an increasingsequence{rn}nl of
positivenumberswithr
o such thatS(x) c C, for
each x C, and each n N wherec,,- {x e x: Ilxll _< rn};
(2) for
each sequence{ Y,},ZI
inX,
withIly,,ll--, ,
either thereexistsno
Nsuch thatYno q S( Yno)
or there existno
N andXnoS( Yno)
such that
min min
Re(f-
w,Y,oXno) -+- h(Yno) h(xno) >
O.feM(Yn weT(Y.o)
Then thereexists Xsuchthat
(al) 33
ES(33)
and(b,)
thereexista pointf M( p)
andapointv e T( p)
withRe(- v,:9- x) < h(x) h(p) for
all xe S().
Proof
EquipEwiththe weak topology. ThenCn
isweakly compactconvex for each n E
N
such that X=UnC=l Cn.
Now if{Yn)n=l
is asequence in
X,
withynECn
for eachn 1,2,...,whichisescaping fromX relativeto{ Cn)n=l,
thenIly.ll
c.By
hypothesis(2),
eitherthere existsno
E11 such thatYno - S(Yno)
orthereexistno
E11 andXnoS(Yno)
suchthat
minfM(y,0 minw(y,0 Re(f-
w,ynoXno) + h(Yno) h(xno) >
O.Thus allhypothesesof Theorem 3 are satisfied so that the conclusion follows.
When M is h-quasi-semi-monotone instead of h-bi-quasi-semi- monotone, the result follows immediately from Theorem 3.
By
takingM 0 andreplacing T by TinTheorem 3,weobtainthe followingresult ofChowdhuryandTanin[8,Corollary3]:
COROLLARY 2 Let Ebealocallyconvex
Hausdorff
topologicalvector space over,
X be a non-empty(convex)
subsetof
E such thatX=
n=l
Cn, where{Cn}n=
is an increasing sequenceof
non-emptycompact convex subsets
of
X and F be a vector space over.
Let(,)
F E beabilinearfunctional
such that(,)
separatespointsinF andfor
eachf F,
the mapxH(f,x)
is continuouson X.EquipFwith thestrongtopology6(F, E).
Supposethat(1)
S:X---,2xisa continuousmap such that(i)’ (b) for
eachxX, S(x)
isaclosedconvexsubsetof
Xand(iii)’ (d) for
eachnII, S(x) c Cn for
allxC;
(2)
T:X---+2vis uppersemicontinuous such that eachT(x)
is6(F, E)-
compactconvex;
(3)
h X Iisconvexandcontinuous;(4) for
each sequence{Yn}n=l
inX,withyC,,for
eachn EIt,
whichisescaping
from
Xrelativeto{Cn}n=l,
eitherthereexistsno II
suchthat
Y,o-S(Yno)
or there existno
ElI andXno S(Yno)
such thatminwr(y.o) Re(w,y,,o X,,o) + h(Yno) h(xno) >
O.Thenthereexists a pointf
Xsuch that(i)
33
ES(93)and
(ii) thereexistsapoint
v T()
withRe(fv, f; x) < h(x) h( p)for
all xS( f;).
Moreover,if S(x)
Xfor
allxX,
Eisnotrequiredtobelocallyconvex.
4.
NON-COMPACT GENERALIZED BI-COMPLEMENTARIT PROBLEMS FOR
QUASI-SEMI-MONOTONEAND
BI-QUASI-SEMI-MONOTONE
OPERATORS
In this section, we shall obtain existence theorems on non-compact generalized bi-complementarity problems for quasi-semi-monotone and bi-quasi-semi-monotone operators.
By
modifying the proofof the result observed byS.C. Fang
(e.g.see [5, p.
213]
and[10,
p.59]),
the following result was obtained in[6,
Lemma4.4.10]:
LEMMA 3 LetXbeaconeinatopologicalvectorspaceEover band
F
bea vectorspaceoverb.Let(,)
FxE--. beabilinearfunctional.
LetM,
T X 2Fbetwomaps. Then thefollowingareequivalent:(a)
Thereexistf;
EX, M( f;)
and fvT( f;)
suchthatRe-
fv,f;- x) <
0for
allx 1,.(b)
Thereexistf;
X,M( f;)
andfvT(f;)
suchthatRe(?- , 33)
0 andjo_
fv.
Proof (a)
=,(b):
If x=0 by
(a)
we haveRe(- ff,33) <
0. Let xA.f, A >
1; thenA33
X. SubstitutingxA33
in(a)
wegetRe() - , 93 A33} <
0.ThusRe(- ,(1 A)33) <
0. Hence(1 A)Re(j - ,33} <
0 so thatRe(- r?, 33) >
0.HenceRe(.- , 33)
0.Now suppose that
- . Then there exists x X such that
Re(j
- b,33) <
0. But thenRe(j - b,33- x) Re(j7- ,33)-
Re(j-
#,x)
0Re(j- , x) >
0,whichcontradicts(a).
Therefore(b) = (a):
We have
Re(- ,33- x)
Re(j- }},)
Re(j- ,x)
0-Re(jWhen
- ,x) <
Xis a cone0 for allinE, byx X.applyingLemma
3 and Theorem 3 with h--0 andS(x)
I"for all x 1", we have immediately the followingexistence theorem of a non-compact generalized bi-complementarity problemfor bi-quasi-semi-monotoneoperator:
THEOREM 4 LetEbea
Hausdorff
topologicalvectorspaceovercb, Xbea coneinEsuch thatXn=l Cn
where( Cn )n=l
isan increasingsequenceof
non-empty compact convexsubsetsof
XandFbea vectorspaceoverLet
(,)
FxE bbeabilinearfunctional
such that(,)
separatespoints inFandfor
eachf
EFthe map xHf x)
is continuousonX.EquipFwith thestrongtopology6(F, E). Suppose
that(1)
T: X 2Fis upper semicontinuous such that eachT(x)
is6(F, E)-
compactconvex;
(2)
M:X--2F is upper hemicontinuous along line segments in X and bi-quasi-semi-monotone (with respect to(,))
such that eachM(x)
is6(F, E)-compact
convex; also,for
each y{
y X:SUpxs(y)[infft(x) infw
r(y)Re(f-
w,y-x)] > 0},
Misuppersemi-continuous atsome point xinS(y)with
infft(xinfwr(y) Re(f
w,y
x) >
0 andMisuppersemicontinuous onC,,for
eachn 1;(3) for
each sequence{ Yn}nl
inX,
withy,,C for
eachn 1I, whichisescaping
from
Xrelativeto{ Cn }n=l,
thereexistno
1I andXno
Xsuchthat
min min Re
f
w,Yno Xno >
O.fEM(yn wET(yn
Then there existapoint
f X,
a pointM(f;)
andapointsuch that
Re(j- ,, 33)
0andS- v .
COROLLARY 3 Let
(E, IIll)
beareflexive
Banach space,Xbeaclosed coneinEandFbeavectorspaceoverg;.Let(,)
FxE bbeabilinearfunctional
such that(,)
separates pointsinFandfor
eachf
EF,
the mapxH
f, x)
is continuous onX.EquipFwiththestrongtopology6(F, E).
Let T: X---.2Fbeweaklyuppersemicontinuoussuch thateachT(x)
is6(F, E)-
compact convex andM X--2Fbeweakly upper hemicontinuousalong line segmentsinXand bi-quasi-semi-monotone(withrespectto
(,))
suchthateach
M(x)
is6(F, E)-compact
convex.Also,foreach y{
y X:SUpxes(y)[inffeM(x) infweT(y) Re(f-
w,yx)] > 0},
M is weakly uppersemicontinuous at some point x in S(y) with
inffM(x)infwr(y)
Re(f-w,
y-x) >
0 and M is weakly upper semicontinuous onCn for
each n EN. Let
{rn}nC=l
bean increasing sequenceof
positive numberswith
rn
-’ c andCn {x
EX:IIxll <_ r,,} for
each n 1%I.Suppose
thatfor
each sequence{ Yn}n=l
inX,
withIly ll
o, thereexistno N
andXno
XsuchthatminfM(y.o minwr(y,o Re(f-
W,Yno -Xno) >
O. Then thereexistX, f
EM( f;)
and fvT( )
such thatRe(j -
fv,f;)
0 andj- .
Proof
Equip Ewith theweak topology. ThenCn
is weaklycompactconvex for each n
N
such that X[.Jn=l Cn
Now if{Yn}n=l
is asequencein
X,
withYnCn
for eachn 1,2,...,which isescaping from X relative to{C}n%l,
thenIlyll .
Hence by hypothesis, there existno
EN
andx
Xsuchthatmin min
Re( f-
w,Yno Xno) >
O.fM(yn wT(Yn
Thus all hypothesesof Theorem 4 aresatisfied so thattheconclusion follows.
When Mis a quasi-semi-monotoneinstead of bi-quasi-semi-mono- tone, the result follows immediately from Theorem4.
5.
APPLICATIONS TO MINIMIZATION PROBLEMS
In this section, as application of Theorem 2 on generalized bi-quasi- variational inequalities established in Section2,we shall consider the existenceof solutions for the following minimizationproblem:
infF(x) (5.1)
xE
where F is the sum of two extended real-valued functions g, h E
(-, +cx]
andEisatopologicalvectorspace. Weshallprove an existence theorem of solutions for(5.1).
To thisendwe shallnow introduce thefollowingdefinitiononsubdifferential which is obtained bymodifying the usual definition of subdifferential.DEFINITION 4 Let E be a topological vector space over
,
X be anon-empty convex subset