• 検索結果がありません。

Ôóíêöèîíàëüíî- äèåðåíöèàëüíûåîïåðàòîðûòàêîãîðîäàâîçíèêàþòïðèèçó÷åíèèêîëåáàíèéáàëîêèìîñòîâ,ñî- ñòàâëåííûõèçìàòåðèàëîâðàçëè÷íîéïëîòíîñòè.×òîáûðåøèòüóíêöèîíàëüíî-äèåðåíöèàëüíîå óðàâíåíèå, çàäàþùåå äèåðåíöèàëüíûéîïåðàòîð,ïðèìåíÿåòñÿìåòîäâàðèàöèè ïîñòîÿííûõ.å-

N/A
N/A
Protected

Academic year: 2022

シェア "Ôóíêöèîíàëüíî- äèåðåíöèàëüíûåîïåðàòîðûòàêîãîðîäàâîçíèêàþòïðèèçó÷åíèèêîëåáàíèéáàëîêèìîñòîâ,ñî- ñòàâëåííûõèçìàòåðèàëîâðàçëè÷íîéïëîòíîñòè.×òîáûðåøèòüóíêöèîíàëüíî-äèåðåíöèàëüíîå óðàâíåíèå, çàäàþùåå äèåðåíöèàëüíûéîïåðàòîð,ïðèìåíÿåòñÿìåòîäâàðèàöèè ïîñòîÿííûõ.å-"

Copied!
20
0
0

読み込み中.... (全文を見る)

全文

(1)

2019,Òîì21,Âûïóñê 2,Ñ.3857

ÓÄÊ517.927

DOI10.23671/VNC.2019.2.32116

ÎÁÈÑÑËÅÄÎÂÀÍÈÈ ÑÏÅÊÒÀ

ÔÓÍÊÖÈÎÍÀËÜÍÎ-ÄÈÔÔÅÅÍÖÈÀËÜÍÎ Î ÎÏÅÀÒÎÀ

ÑÑÓÌÌÈÓÅÌÛÌ ÏÎÒÅÍÖÈÀËÎÌ

Ñ. È. Ìèòðîõèí

1

1

ÍÈÂÖÌÓèì.Ì.Â.Ëîìîíîñîâà,

îññèÿ,119991,Ìîñêâà,Ëåíèíñêèåãîðû,1

E-mail:mitrokhin-sergeyyandex.ru

Àííîòàöèÿ.  ðàáîòå èçó÷àåòñÿ óíêöèîíàëüíî-äèåðåíöèàëüíûé îïåðàòîð âîñüìîãî ïîðÿä-

êà ñ ñóììèðóåìûì ïîòåíöèàëîì. ðàíè÷íûå óñëîâèÿ ÿâëÿþòñÿ ðàçäåëåííûìè. Ôóíêöèîíàëüíî-

äèåðåíöèàëüíûåîïåðàòîðûòàêîãîðîäàâîçíèêàþòïðèèçó÷åíèèêîëåáàíèéáàëîêèìîñòîâ,ñî-

ñòàâëåííûõèçìàòåðèàëîâðàçëè÷íîéïëîòíîñòè.×òîáûðåøèòüóíêöèîíàëüíî-äèåðåíöèàëüíîå

óðàâíåíèå, çàäàþùåå äèåðåíöèàëüíûéîïåðàòîð,ïðèìåíÿåòñÿìåòîäâàðèàöèè ïîñòîÿííûõ.å-

øåíèåèñõîäíîãîóíêöèîíàëüíî-äèåðåíöèàëüíîãîóðàâíåíèÿñâåäåíîêðåøåíèþèíòåãðàëüíîãî

óðàâíåíèÿÂîëüòåððû.Ïîëó÷èâøååñÿèíòåãðàëüíîåóðàâíåíèåÂîëüòåððûðåøàåòñÿìåòîäîìïîñëå-

äîâàòåëüíûõïðèáëèæåíèéÏèêàðà.Âðåçóëüòàòåèññëåäîâàíèÿèíòåãðàëüíîãîóðàâíåíèÿïîëó÷åíû

àñèìïòîòè÷åñêèåîðìóëûèîöåíêèäëÿðåøåíèéóíêöèîíàëüíî-äèåðåíöèàëüíîãî óðàâíåíèÿ,

çàäàþùåãî äèåðåíöèàëüíûé îïåðàòîð. Ïðè áîëüøèõ çíà÷åíèÿõ ñïåêòðàëüíîãî ïàðàìåòðà âû-

âåäåíà àñèìïòîòèêà ðåøåíèé äèåðåíöèàëüíîãîóðàâíåíèÿ, îïðåäåëÿþùåãîäèåðåíöèàëüíûé

îïåðàòîð. Àíàëîãè÷íîàñèìïòîòè÷åñêèìîöåíêàì ðåøåíèé äèåðåíöèàëüíîãîîïåðàòîðà âòîðîãî

ïîðÿäêàñãëàäêèìèèêóñî÷íî-ãëàäêèìèêîýèöèåíòàìèóñòàíàâëèâàþòñÿàñèìïòîòè÷åñêèåîöåí-

êè ðåøåíèé èñõîäíîãî óíêöèîíàëüíî-äèåðåíöèàëüíîãî óðàâíåíèÿ. Ïîëó÷åííûå àñèìïòîòè÷å-

ñêèåîðìóëûïðèìåíÿþòñÿäëÿèçó÷åíèÿãðàíè÷íûõóñëîâèé.Âðåçóëüòàòåïðèõîäèìêèçó÷åíèþ

êîðíåéóíêöèè,ïðåäñòàâëåííîéââèäå îïðåäåëèòåëÿâîñüìîãîïîðÿäêà.×òîáûíàéòèêîðíèýòîé

óíêöèè,íåîáõîäèìîèçó÷èòüèíäèêàòîðíóþäèàãðàììó.Êîðíèóðàâíåíèÿíàñîáñòâåííûåçíà÷åíèÿ

íàõîäÿòñÿ â âîñüìè ñåêòîðàõ áåñêîíå÷íî ìàëîãî ðàñòâîðà, îïðåäåëÿåìûõ èíäèêàòîðíîéäèàãðàì-

ìîé.Èçó÷åíûïîâåäåíèåêîðíåéýòîãîóðàâíåíèÿâêàæäîìèçñåêòîðîâèíäèêàòîðíîéäèàãðàììûè

àñèìïòîòèêàñîáñòâåííûõçíà÷åíèéèññëåäóåìîãîäèåðåíöèàëüíîãîîïåðàòîðà.

Êëþ÷åâûå ñëîâà: óíêöèîíàëüíî-äèåðåíöèàëüíûé îïåðàòîð, êðàåâàÿ çàäà÷à, ñóììèðóåìûé

ïîòåíöèàë,ãðàíè÷íûåóñëîâèÿ,ñïåêòðàëüíûéïàðàìåòð,èíäèêàòîðíàÿäèàãðàììà,àñèìïòîòèêàñîá-

ñòâåííûõçíà÷åíèé.

Mathematial Subjet Classiation (2010):34K08.

Îáðàçåö öèòèðîâàíèÿ: Ìèòðîõèí Ñ. È. Îá èññëåäîâàíèè ñïåêòðà óíêöèîíàëüíî-äèåðåí-

öèàëüíîãîîïåðàòîðàññóììèðóåìûìïîòåíöèàëîì//Âëàäèêàâê.ìàò.æóðí.2019.Ò.21,âûï.2.

Ñ.3857.DOI:10.23671/VNC.2019.2.321 16.

1.Ïîñòàíîâêà çàäà÷è

Èññëåäóåì óíêöèîíàëüíî-äèåðåíöèàëüíûé îïåðàòîð (ÔÄÎ), çàäàâàåìûé óðàâ-

íåíèåì

y (8) (x) + q(x)y(x) = λa 8 y(x) + αr(x)y(b), 0 6 x 6 π, 0 < b < π, a > 0,

(1)

2019 ÌèòðîõèíÑ.È.

(2)

ãäå

λ ∈ C

ñïåêòðàëüíûé ïàðàìåòð,

α ∈ C

, ñðàçäåëåííûìè ãðàíè÷íûìè óñëîâèÿìè

y (m 1 ) (0) = y (m 2 ) (0) = · · · = y (m 6 ) (0) = y (n 1 ) (π) = y (n 2 ) (π) = 0,

(2)

m 1 < m 2 < · · · < m 6

,

n 1 < n 2

;

m k , n 1 , n 2 ∈ { 0, 1, 2, . . . , 7 }

.

Âóðàâíåíèè (1)

q(x)

ïîòåíöèàë,

ρ(x) = a 8 > 0

âåñîâàÿóíêöèÿ. Ìûïðåäïîëà-

ãàåì, ÷òî

q(x)

è

r(x)

ñóììèðóåìûåóíêöèè íà îòðåçêå

[0; π]

:

q(x) ∈ L 1 [0; π] ⇔

Z x

0

q(t)dt ′

x

= q(x)

ïî÷òèäëÿ âñåõçíà÷åíèé

x

íà

[0; π];

r(x) ∈ L 1 [0; π] ⇔ Z x

0

r(t)dt ′

x

= r(x)

ïî÷òèäëÿ âñåõçíà÷åíèé

x

íà

[0; π].

(3)

2. Èñòîðè÷åñêèé îáçîð

Ñïåêòðàëüíûå ñâîéñòâà îáûêíîâåííûõ äèåðåíöèàëüíûõ îïåðàòîðîâ â ñëó÷àå äî-

ñòàòî÷íî ãëàäêèõ êîýèöèåíòîâ èçó÷àþòñÿ óæå äîñòàòî÷íî äàâíî.  ìîíîãðàèè [1,

ãë. 2℄èçó÷åíîàñèìïòîòè÷åñêîåïîâåäåíèåñîáñòâåííûõçíà÷åíèéèñîáñòâåííûõóíêöèé

äèåðåíöèàëüíûõ îïåðàòîðîâ ñ ãëàäêèìè, íåñêîëüêî ðàç äèåðåíöèðóåìûìè êîý-

èöèåíòàìè. Òàì æå îïèñàíà ìåòîäèêà íàõîæäåíèÿ àñèìïòîòèêè ðåøåíèé äèåðåí-

öèàëüíûõóðàâíåíèé,çàäàþùèõäèåðåíöèàëüíûé îïåðàòîðñ ãëàäêèìè êîýèöèåí-

òàìè, ïðè áîëüøèõ çíà÷åíèÿõ ñïåêòðàëüíîãî ïàðàìåòðà. Ïîëüçóÿñü òàêîé àñèìïòîòè-

êîé ðåøåíèé, â ðàáîòå [2℄ áûëè íàéäåíû àñèìïòîòè÷åñêèå îðìóëûäëÿ êîðíåé îäíîãî

êëàññà öåëûõ óíêöèé, êîòîðûå âîçíèêàþò â ñëó÷àå èçó÷åíèÿ îáûêíîâåííûõ äèå-

ðåíöèàëüíûõîïåðàòîðîâñðåãóëÿðíûìè ãðàíè÷íûìèóñëîâèÿìèñäîñòàòî÷íî ãëàäêèìè

êîýèöèåíòàìè.

Ñ ïîìîùüþ àñèìïòîòè÷åñêèõ îðìóë, íàéäåííûõ â ðàáîòå [2℄, â ðàáîòàõ [3℄ è [4℄

áûëèíàéäåíû îðìóëûäëÿâû÷èñëåíèÿ ðåãóëÿðèçîâàííûõ ñëåäîâäèåðåíöèàëüíûõ

îïåðàòîðîââûñøèõ ïîðÿäêîâñ äîñòàòî÷íî ãëàäêèìè êîýèöèåíòàìè.

Âðàáîòå[5℄àâòîð ïðîäåìîíñòðèðîâàëìåòîäèêóíàõîæäåíèÿîðìóëðåãóëÿðèçîâàí-

íûõñëåäîâäëÿäèåðåíöèàëüíûõîïåðàòîðîââòîðîãîïîðÿäêàñðàçðûâíûìèêîýè-

öèåíòàìè. Ñïåêòðàëüíûå ñâîéñòâà äèåðåíöèàëüíûõ îïåðàòîðîâ ñ êóñî÷íî-ãëàäêèìè

êîýèöèåíòàìè èçó÷àëèñü àâòîðîì â ðàáîòå [6℄,à â ðàáîòå [7℄ áûë èçó÷åí äèåðåí-

öèàëüíûéîïåðàòîð ñêóñî÷íî-ãëàäêîé âåñîâîéóíêöèåé.

 ðàáîòàõ [8, 9℄ áûëà èçó÷åíà êðàåâàÿ çàäà÷à äëÿ óíêöèîíàëüíî-äèåðåíöèàëü-

íîãîîïåðàòîðàâòîðîãîïîðÿäêàñãëàäêèìïîòåíöèàëîì,áûëèâû÷èñëåíûîðìóëûðåãó-

ëÿðèçîâàííûõñëåäîâòàêîãîîïåðàòîðà.Âðàáîòå[10℄àâòîðîìáûëèâû÷èñëåíûîðìóëû

ðåãóëÿðèçîâàííûõ ñëåäîâ äëÿ óíêöèîíàëüíî-äèåðåíöèàëüíûõ îïåðàòîðîâ âòîðîãî

ïîðÿäêàñ êóñî÷íî-ãëàäêèì ïîòåíöèàëîì.

Âðàáîòå[11℄áûëñîâåðøåíáîëüøîéïðîãðåññâèçó÷åíèèäèåðåíöèàëüíûõ îïåðà-

òîðîâñíåãëàäêèìèêîýèöèåíòàìè,áûëèçó÷åíîïåðàòîðâòîðîãîïîðÿäêàññóììèðóå-

ìûìïîòåíöèàëîì,íàéäåíûàñèìïòîòèêè ñîáñòâåííûõçíà÷åíèéèñîáñòâåííûõóíêöèé

îïåðàòîðàØòóðìàËèóâèëëÿ íàîòðåçêå. Âðàáîòàõ[12, 13℄áûëèèçó÷åíûîïåðàòîðû

âòîðîãîïîðÿäêà,óêîòîðûõïîòåíöèàë ÿâëÿåòñÿ

δ

-óíêöèåé.

Âðàáîòàõ[1417℄ àâòîð ïðîäåìîíñòðèðîâàë íîâóþ ìåòîäèêó èçó÷åíèÿäèåðåíöè-

(3)

÷òî ìåòîäèêà ðàáîòû [11℄íå ïåðåíîñèòñÿíà îïåðàòîðû,óêîòîðûõïîðÿäîêðàâåí ÷åòû-

ðåìèëèâûøå.Îòìåòèìòàêæå,÷òîñëîæíîñòüèçó÷åíèÿäèåðåíöèàëüíûõîïåðàòîðîâ

âîçðàñòàåòñóâåëè÷åíèåìïîðÿäêàäèåðåíöèàëüíûõóðàâíåíèé,çàäàþùèõäèåðåí-

öèàëüíûé îïåðàòîð.

ðàíè÷íûå óñëîâèÿ (2) ïîêàçûâàþò, ÷òî ìû èçó÷àåì ñðàçó öåëîå ñåìåéñòâîóíêöè-

îíàëüíî-äèåðåíöèàëüíûõ îïåðàòîðîâ âîñüìîãî ïîðÿäêà ñ ñóììèðóåìûìè êîýèöè-

åíòàìè. Ôóíêöèîíàëüíî-äèåðåíöèàëüíûå îïåðàòîðû (òàê íàçûâàåìûå íàãðóæåííûå

îïåðàòîðû)ïîðÿäêàâûøå âòîðîãîðàíååàêòè÷åñêè íåèçó÷àëèñü (äàæå âñëó÷àå ãëàä-

êèõêîýèöèåíòîâ).

3. Àñèìïòîòèêà ðåøåíèé âñïîìîãàòåëüíîãî óðàâíåíèÿ ïðè

λ → ∞

àññìîòðèìâñïîìîãàòåëüíîåäèåðåíöèàëüíîåóðàâíåíèå,ïîëó÷àþùååñÿèç(1)ïðè

α = 0

(èëè ïðè

r(x) ≡ 0

):

y (8) (x) + q(x)y(x) = λa 8 y(x), 0 6 x 6 π, a > 0.

(4)

Îáîçíà÷èì

λ = s 8

,

s = √ 8

λ

, ïðè÷åì äëÿ êîððåêòíîñòè äàëüíåéøèõ âûêëàäîê âûáåðåì îñíîâíóþ âåòâü àðèìåòè÷åñêîãî êîðíÿ, äëÿ êîòîðîé

√ 8

1 = +1

. Ïóñòü

w k (k = 1, 2, . . . , 8)

ðàçëè÷íûå êîðíè âîñüìîé ñòåïåíèèç åäèíèöû:

w 8 k = 1, w k = e 2πi 8 (k−1) , k = 1, 2, . . . , 8; w 1 = 1;

w 2 = e 2πi 8 = cos 2π

8

+ i sin 2π

8

=

√ 2 2 + i

√ 2

2 = z 6 = 0, w 3 = e 4πi 8 = i = z 2 ; . . . ; w m = z m−1 , m = 1, 2, . . . , 8.

(5)

×èñëà

w k (k = 1, 2, . . . , 8)

èç (5) äåëÿò åäèíè÷íóþ îêðóæíîñòü íà âîñåìü ðàâíûõ

÷àñòåé. Äëÿ íèõñïðàâåäëèâû ñëåäóþùèåñîîòíîøåíèÿ:

8

X

k=1

w k m = 0, m = 1, 2, . . . , 7;

8

X

k=1

w k m = 8, m = 0, m = 8.

(6)

Ìåòîäàìè ðàáîò [1416℄ óñòàíàâëèâàåòñÿ ñëåäóþùàÿ òåîðåìà.

Òåîðåìà 1. Îáùåå ðåøåíèå äèåðåíöèàëüíîãî óðàâíåíèÿ (4) èìååò ñëåäóþùèé

âèä:

y(x, s) =

8

X

k=1

C k y k (x, s); y (m) (x, s) =

8

X

k=1

C k y (m) k (x, s), m = 1, 2, . . . , 7,

(7)

ãäå

C k (k = 1, 2, . . . , 8)

ïðîèçâîëüíûå ïîñòîÿííûå, ïðè ýòîì ïðè áîëüøèõ çíà÷åíèÿõ ñïåêòðàëüíîãî ïàðàìåòðà

λ

äëÿ óíäàìåíòàëüíîé ñèñòåìû

{ y k (x, s) } 8 k=1

ñïðàâåäëèâû

(4)

ñëåäóþùèåàñèìïòîòè÷åñêèå îðìóëûè îöåíêè:

y k (x, s) = e aw k sx − A 7k (x, s) 8a 7 s 7 + O

e | Im s|ax s 14

, k = 1, 2, . . . , 8,

(8)

y (m) k (x, s) = (as) m

w m k e aw k sx − A m 7k (x, s) 8a 7 s 7 + O

e |Im s|ax s 14

,

(9)

k = 1, 2, . . . , 8; m = 1, 2, . . . , 7;

A 7k (x, s) = w e aw 1 sx

x

Z

0

q(t)e a(w k −w 1 )st dt ak1 + w 2 e aw 2 sx

x

Z

0

q(t)e a(w k −w 2 )st dt ak2

+ · · · + w 8 e aw 8 sx

x

Z

0

q(t)e a(w k −w 8 )st dt ak8 , k = 1, 2, . . . , 8,

(10)

A m 7k (x, s) =

8

X

n=1

w n w m n e aw n sx

x

Z

0

q(t)e a(w k −w n )st dt akn , m = 1, 2, . . . , 7.

(11)

Ïðèâûâîäå îðìóë(8)(11)ìûòðåáîâàëè âûïîëíåíèÿñëåäóþùèõíà÷àëüíûõóñëî-

âèé:

A 7k (0, s) = 0; A m 7k (0, s) = 0; y k (0, s) = 1; y (m) k (0, s) = (as) m w k m , k = 1, 2, . . . , 8; m = 1, 2, . . . , 7.

(12)

4. åøåíèå óíêöèîíàëüíî-äèåðåíöèàëüíîãîóðàâíåíèÿ (1)

Îáîçíà÷èì ÷åðåç

0 (x, s)

îïðåäåëèòåëü Âðîíñêîãî óíäàìåíòàëüíîé ñèñòåìû ðåøå- íèé

{ y k (x, s) } 8 k=1

âñïîìîãàòåëüíîãî äèåðåíöèàëüíîãîóðàâíåíèÿ(4):

0 (x, s) = det Wr[y 1 (x, s), y 2 (x, s), . . . , y 8 (x, s)]

=

y 1 (x, s) y 2 (x, s) . . . y 7 (x, s) y 8 (x, s) y 1 (x, s) y 2 (x, s) . . . y 7 (x, s) y 8 (x, s) . . . . y 1 (6) (x, s) y (6) 2 (x, s) . . . y (6) 7 (x, s) y 8 (6) (x, s) y 1 (7) (x, s) y (7) 2 (x, s) . . . y (7) 7 (x, s) y 8 (7) (x, s)

.

(13)

Èçîáùåéòåîðèèäèåðåíöèàëüíûõóðàâíåíèéñëåäóåò,÷òîîïðåäåëèòåëüÂðîíñêîãî

0 (x, s)

íå çàâèñèòîò ïàðàìåòðà

x

:

∆ 0 (x, s) = ∆ 0 (s) = ∆ 0 (0; s).

(14)

Èñïîëüçóÿ îðìóëû (8)(12),íàõîäèì

0 (x, s) = ∆ 0 (0, s) = ∆ 0 (s)

=

1 1 . . . 1 1

(as)w 1 (as)w 2 . . . (as)w 7 (as)w 8

. . . . (as) 6 w 6 1 (as) 6 w 2 6 . . . (as) 6 w 7 6 (as) 6 w 6 8 (as) 7 w 7 1 (as) 7 w 2 7 . . . (as) 7 w 7 7 (as) 7 w 7 8

= ∆ 00 (as) 28 ,

(15)

(5)

ãäå

00

îïðåäåëèòåëü Âàíäåðìîíäà ÷èñåë

w 1 , w 2 , . . . , w 8

:

00 = det Wandermond s(w 1 , w 2 , . . . , w 8 ) =

1 1 . . . 1 1

w 1 w 2 . . . w 7 w 8 w 6 1 w 6 2 . . . w 6 7 w 6 8 w 7 1 w 7 2 . . . w 7 7 w 7 8

= Y

k>m k,m=1,2,...,8

(w k − w m ) = ∆ 00 6 = 0.

(16)

àçëîæèâîïðåäåëèòåëü

0 (x, s)

èç (13)ïî ïîñëåäíåéñòðîêå, ïîëó÷èì

0 (x, s) = − y 1 (x, s)D 81 (x, s) + y 2 (x, s)D 82 − · · · − y 7 (x, s)D 87 (x, s) + y 8 (x, s)D 88 (x, s),

(17)

ãäå

D 8k (x, s) (k = 1, 2, . . . , 8)

àëãåáðàè÷åñêèå ìèíîðû ê ýëåìåíòàì âîñüìîé ñòðîêè è

k

-ãîñòîëáöà îïðåäåëèòåëÿ

0 (x, s)

èç (13):

D 81 (x, s) =

y 2 (x, s) . . . y 7 (x, s) y 8 (x, s) y 2 (x, s) . . . y 7 (x, s) y 8 (x, s) . . . . y (6) 2 (x, s) . . . y (6) 7 (x, s) y 8 (6) (x, s) ,

. . . .,

D 88 (x, s) =

y 1 (x, s) y 2 (x, s) . . . y 7 (x, s) y 1 (x, s) y 2 (x, s) . . . y 7 (x, s) . . . . y (6) 1 (x, s) y 2 (6) (x, s) . . . y 7 (6) (x, s) .

(18)

Ïåðåïèøåì óðàâíåíèå(1)ââèäå

y (8) (x) + q(x)y(x) − λa 8 y(x) = αr(x)y(b)

èðåøèìåãî

ìåòîäîì âàðèàöèè ïîñòîÿííûõ: áóäåì èñêàòü ðåøåíèå â âèäå

y = P 8

k=1 C k (x, s)y k (x, s)

,

ãäå

C k (x, s)

íåèçâåñòíûå óíêöèè,

y k (x, s) (k = 1, 2, . . . , 8)

ëèíåéíî-íåçàâèñèìûå ðå- øåíèÿâñïîìîãàòåëüíîãî óðàâíåíèÿ(4). Âðåçóëüòàòå äîêàæåì ñëåäóþùååóòâåðæäåíèå.

Òåîðåìà2.åøåíèå

y(x, s)

óíêöèîíàëüíî-äèåðåíöèàëüíîãîóðàâíåíèÿ(1)ïðåä- ñòàâëÿåòñÿâ âèäå

y(x, s) =

8

X

k=1

C k y k (x, s) + αy (b, s)

∆ 0 (s) H 8 (x, s),

(19)

ãäå

C k (k = 1, 2, . . . , 8)

ïðîèçâîëüíûå ïîñòîÿííûå,

{ y k (x, s) } 8 k=1

óíäàìåíòàëüíàÿ ñèñòåìàðåøåíèéóðàâíåíèÿ (4), îïðåäåëÿåìàÿ îðìóëàìè (7)(12),

H 8 (x, s) =

8

X

k=1

( − 1) k y k (x, s)

x

Z

0

r(t)D 8k (t, s) dt rk .

(20)

Ïðè ýòîì â ñèëó ñâîéñòâ ñóììèðóåìîñòè (3), ñâîéñòâ îïðåäåëèòåëåé è îðìóë (6)

ïîëó÷àåì

y (m) (x, s) =

8

X

k=1

C k y (m) k (x, s) + αy(b, s)

0 (s) H 8 (m) (x, s), m = 1, 2, . . . , 7,

(21)

H (m) (x, s) =

8

X

k=1

( − 1) k y k (m) (x, s)

x

Z

0

r(t)D 8k (t, s)dt rk , m = 1, 2, . . . , 7,

(22)

(6)

âåëè÷èíà

0 (s)

îïðåäåëåíà îðìóëàìè (14)(16).

Ñïðàâåäëèâîñòü îðìóë (19)(22) ìîæíî ïåðåïðîâåðèòü íåïîñðåäñòâåííîé ïîäñòà-

íîâêîé ýòèõ îðìóëâ óðàâíåíèå (1).

Ïîäñòàâëÿÿ

x = b

â óðàâíåíèå (19), (20), íàõîäèì

y(b, s) =

8

X

k=1

C k y k (b, s) + αy(b, s)

0 (s) H 8 (b, s), ∆ 0 (s) 6 = 0,

îòêóäàïîëó÷àåì

y(b, s) = P 8

k=1 C k y k (b, s)

ψ 8 (b, s) , ψ 8 (b, s) = 1 − α

0 (s) H 8 )b, s) 6 = 0.

(23)

Ïîñòàâèì

y(b, s)

èç (23) â (19), ñäåëàåì íåîáõîäèìûå ïðåîáðàçîâàíèÿ, ïðèäåì ê âû- âîäó îñïðàâåäëèâîñòè ñëåäóþùåãî óòâåðæäåíèÿ.

Òåîðåìà 3.Îáùååðåøåíèåóíêöèîíàëüíî-äèåðåíöèàëüíîãîóðàâíåíèÿ(1)èìå-

åòñëåäóþùèé âèä:

y(x, s) =

8

X

k=1

C k h k (x, s); y (m) (x, s) =

8

X

k=1

C k h (m) k (x, s), m = 1, 2, . . . , 7,

(24)

C k (k = 1, 2, . . . , 8)

ïðîèçâîëüíûå ïîñòîÿííûå,

h k (x, s) = y k (x, s) + α

∆ 0 (s)

y k (b, s)

ψ 8 (b, s) H 8 (x, s), k = 1, 2, . . . , 8,

(25)

h (m) k (x, s) = y (m) k (x, s) + α

0 (s)

y k (b, s)

ψ 8 (b, s) H 8 (m) (x, s),

(26)

k = 1, 2, . . . , 8, m = 1, 2, . . . , 7,

óíêöèè

y k (x, s)

,

y k (m) (x, s)

îïðåäåëåíû îðìóëàìè(7)(12),

H 8 (x, s)

,

H 8 (m) (x, s)

îïðåäå-

ëåíûâ (20)(22),

ψ 8 (b, s)

îïðåäåëåíàâ (23).

Ïðèýòîì ñïðàâåäëèâû ñëåäóþùèåíà÷àëüíûå óñëîâèÿ:

H 8 (0, s) = 0; H 8 (m) (0, s) = 0; h k (0, s) = y k (0, s) = 1;

h (m) k (0, s) = y (m) k (0, s) = (as) m w k m , k = 1, 2, . . . , 8; m = 1, 2, . . . , 7.

(27)

(7)

5. Èçó÷åíèå ãðàíè÷íûõ óñëîâèé (2)

Ïîäñòàâëÿÿ îðìóëû (24)(27)âãðàíè÷íûå óñëîâèÿ (2),èìååì

y (m p ) (0, s) = 0 ⇔

8

X

k=1

C k h (m k p ) (0, s) = 0 ⇔

8

X

k=1

C k y (m k p ) (0, s) = 0

8

X

k=1

C k (as) m p w m k p = 0, p = 1, 2, . . . , 6;

(28)

y (n j ) (π, s) = 0 ⇔

8

X

k=1

C k h (n k j ) (π, s) = 0, j = 1, j = 2.

(29)

Ñèñòåìà (28), (29) ñèñòåìà èç âîñüìè óðàâíåíèé ñ âîñåìüþ íåèçâåñòíûìè

C 1 , C 2 , . . . , C 8

.Ýòàñèñòåìàèìååòíåíóëåâûåðåøåíèÿòîëüêîâòîìñëó÷àå,êîãäàååîïðå-

äåëèòåëüðàâåí íóëþ.Ïîýòîìóâåðíî ñëåäóþùåå óòâåðæäåíèå.

Òåîðåìà 4. Óðàâíåíèåíà ñîáñòâåííûåçíà÷åíèÿ ÔÄÎ (1)(3) èìååò âèä

f (s) =

y 1 (m 1 ) (0, s) y 2 (m 1 ) (0, s) . . . y (m 7 1 ) (0, s) y 8 (m 1 ) (0, s) y 1 (m 2 ) (0, s) y 2 (m 2 ) (0, s) . . . y (m 7 2 ) (0, s) y 8 (m 2 ) (0, s) . . . . y 1 (m 6 ) (0, s) y 2 (m 6 ) (0, s) . . . y (m 7 6 ) (0, s) y 8 (m 6 ) (0, s) h (n 1 1 ) (π, s) h (n 2 1 ) (π, s) . . . h (n 7 1 ) (π, s) h (n 8 1 ) (π, s) h (n 1 2 ) (π, s) h (n 2 2 ) (π, s) . . . h (n 7 2 ) (π, s) h (n 8 2 ) (π, s)

.

(30)

Ó÷èòûâàÿ íà÷àëüíûå óñëîâèÿ(27), ïåðåïèøåì óðàâíåíèå(30) â ñëåäóþùåìâèäå:

f (s) = (as) m 1 (as) m 2 (. . . )(as) m 6

×

w 1 m 1 w m 2 1 . . . w m 7 1 w m 8 1 w 1 m 2 w m 2 2 . . . w m 7 2 w m 8 2 . . . .

w 1 m 6 w m 2 6 . . . w m 7 6 w m 8 6 h (n 1 1 ) (π, s) h (n 2 1 ) (π, s) . . . h (n 7 1 ) (π, s) h (n 8 1 ) (π, s) h (n 1 2 ) (π, s) h (n 2 2 ) (π, s) . . . h (n 7 2 ) (π, s) h (n 8 2 ) (π, s)

= 0.

(31)

àçëîæèâîïðåäåëèòåëü

f (s)

èçîðìóëû(31)ïîïîñëåäíèìäâóìñòðî÷êàì,ïîëó÷èì

f (s) = H 12 W 345678 + H 23 W 145678 − H 34 W 125678 + · · · + H 78 W 123456

+H 18 W 234567 − H 13 W 245678 + H 14 W 235678 = · · · = 0,

(32)

H mk =

h (n m 1 ) (π, s) h (n k 1 ) (π, s) h (n m 2 ) (π, s) h (n k 2 ) (π, s)

, m, k = 1, 2, . . . , 8;

(33)

W j 1 ,j 2 ,j 3 ,j 4 ,j 5 ,j 6

(

j k = 1, 2, . . . , 8

;

k = 1, 2, . . . , 6

) àëãåáðàè÷åñêèå ìèíîðûêýëåìåíòó

H mk

â îïðåäåëèòåëå

f (s)

èç (31),

j n 6 = m

,

j n 6 = k

, çíàê ¾+¿ â îðìóëå (32) ñòàâèòñÿ â òîì

ñëó÷àå,åñëè ïåðåñòàíîâêà

(m, k, j 1 , j 2 , j 3 , j 4 , j 5 , j 6 )

÷åòíàÿ,çíàê¾

¿åñëèïåðåñòàíîâêà

(8)

Àëãåáðàè÷åñêèå ìèíîðû

W j 1 ,j 2 ,j 3 ,j 4 ,j 5 ,j 6

áëàãîäàðÿ óäîáíûì îáîçíà÷åíèÿì ëåãêî âû-

÷èñëÿþòñÿ:

W 123456 =

w 1 m 1 w m 2 1 . . . w m 6 1 w 1 m 2 w m 2 2 . . . w m 6 2 . . . . w 1 m 6 w m 2 6 . . . w m 6 6

=

1 m 1 z m 1 . . . z 5m 1 1 m 2 z m 2 . . . z 5m 2 . . . . 1 m 6 z m 6 . . . z 5m 6

= Y

k>n;

k,n=1,2,...,6

(z m k − z m n ) = W 6 6 = 0,

(34)

òàê êàê îïðåäåëèòåëü

W 123456

ïðåäñòàâëÿåò ñîáîé îïðåäåëèòåëü Âàíäåðìîíäà ÷èñåë

z m 1 , z m 2 , . . . , z m 6

.

Äàëåå èìååì

W 234567 =

w 2 m 1 w m 3 1 . . . w m 7 1 w 2 m 2 w m 3 2 . . . w m 7 2 . . . . w 2 m 6 w m 3 6 . . . w m 7 6

=

z m 1 z 2m 1 . . . z 6m 1 z m 2 z 2m 2 . . . z 6m 2 . . . . z m 6 z 2m 6 . . . z 6m 6

= z m 1 z m 2 (. . . )z m 6 W 123456 = z M 6 W 6 , M 6 =

6

X

k=1

m k .

(35)

Àíàëîãè÷íûì îáðàçîì âûâîäèì

W 345678 = z 2M 6 W 6 ; W 145678 = ( − 1)z 3M 6 W 6 ; W 125678 = z 4M 6 W 6 ; W 123678 = ( − 1)z 5M 6 W 6 ; W 123478 = z 6M 6 W 6 ;

W 123458 = ( − 1)z 7M 6 W 6 ; W 123456 = z 8M 6 W 6 = W 6 .

(36)

Ïîäñòàâèì îðìóëû (34)(36)âóðàâíåíèå (33), ïîäåëèì íà

z 2M 6 W 6 6 = 0

, ïîëó÷èì

f (s) =

h (n 1 1 ) (π, s) h (n 2 1 ) (π, s) h (n 1 2 ) (π, s) h (n 2 2 ) (π, s)

h (n 2 1 ) (π, s) h (n 3 1 ) (π, s) h (n 2 2 ) (π, s) h (n 3 2 ) (π, s)

z M 6 + z 2M 6

h (n 3 1 ) (π, s) h (n 4 1 ) (π, s) h (n 3 2 ) (π, s) h (n 4 2 ) (π, s)

− . . .

= { φ 12 − φ 23 z M 6 + φ 34 z 2M 6 − . . . } (as) n 1 (as) n 2 = 0,

(37)

ïðè ýòîì êàæäûé èç îïðåäåëèòåëåé

φ mk

ìîæíî âûïèñàòü áîëåå ïîäðîáíî ñ ïîìîùüþ

îðìóë (25),(26):

φ 12 =

h (n 1 1) (π,s) (as) n 1

h (n 2 1) (π,s) (as) n 1 h (n 1 2) (π,s)

(as) n 2

h (n 2 2) (π,s) (as) n 2

=

u 11 u 12 u 21 u 22

=

y (n 1 1) (π,s) (as) n 1 + α

0 (s) y 1 (b,s) ψ 8 (b,s)

H 8 (n 1) (π,s) (as) n 1

y (n 2 1) (π,s) (as) n 1 + α

0 (s) y 2 (b,s) ψ 8 (b,s)

H 8 (n 1) (π,s) (as) n 1 y (n 1 2) (π,s)

(as) n 2 + α

0 (s) y 1 (b,s) ψ 8 (b,s)

H 8 (n 2) (π,s) (as) n 2

y (n 2 2) (π,s) (as) n 2 + α

0 (s) y 2 (b,s) ψ 8 (b,s)

H 8 (n 2) (π,s) (as) n 2

,

(38)

(9)

φ 23 =

h (n 2 1) (π,s) (as) n 1

h (n 3 1) (π,s) (as) n 1 h (n 2 2) (π,s)

(as) n 2

h (n 3 2) (π,s) (as) n 2

=

u 12 u 13 u 22 u 23

=

y (n 2 1) (π,s) (as) n 1 + α

0 (s) y 2 (b,s) ψ 8 (b,s)

H 8 (n 1) (π,s) (as) n 1

y 3 (n 1) (π,s) (as) n 1 + α

0 (s) y 3 (b,s) ψ 8 (b,s)

H 8 (n 1) (π,s) (as) n 1 y (n 2 2) (π,s)

(as) n 2 + α

0 (s) y 2 (b,s) ψ 8 (b,s)

H 8 (n 2) (π,s) (as) n 2

y 3 (n 2) (π,s) (as) n 2 + α

0 (s) y 3 (b,s) ψ 8 (b,s)

H 8 (n 2) (π,s) (as) n 2

, . . .

(39)

Ïîäñòàâëÿÿ îðìóëû(8)(11) è (17)(22) â (38), (39), âèäèì, ÷òî îïðåäåëèòåëè

φ 12

,

φ 13

ïðåäñòàâëÿþò ñîáîé êâàçèïîëèíîìû. Òàêèì îáðàçîì, óíêöèÿ

f (s)

èç (37) òàêæå

ïðåäñòàâëÿåò ñîáîé êâàçèïîëèíîì.

Äëÿ íàõîæäåíèÿ êîðíåé óðàâíåíèÿ (37) íåîáõîäèìî èçó÷èòü òàê íàçûâàåìóþ èíäè-

êàòîðíóþ äèàãðàììó ýòîãî óðàâíåíèÿ (ñì. [18, ãë. 12℄), ò. å. âûïóêëóþ îáîëî÷êó ïîêà-

çàòåëåé ýêñïîíåíò, âõîäÿùèõ â ýòî óðàâíåíèå. àñêëàäûâàÿ îïðåäåëèòåëè

φ 12 , φ 13 , . . .

ïî ñòîëáöàì, ïðèìåíÿÿ îðìóëû (8)(11), âèäèì, ÷òî â îïðåäåëèòåëü

φ 12

âõîäÿò ýêñ-

ïîíåíòû

e a(w 1 +w 2 )sπ

, â îïðåäåëèòåëü

φ 23

âõîäÿò ýêñïîíåíòû

e a(w 2 +w 3 )sπ , . . .

, â îïðå-

äåëèòåëü

φ mk

ýêñïîíåíòû

e a(w m +w k )sπ

. Çíà÷èò, èíäèêàòîðíàÿ äèàãðàììà óðàâíå- íèÿ(37)(39) èìååò ñëåäóþùèéâèä:

èñ. 1.

Íà ðèñ. 1 âíóòðåííÿÿ åäèíè÷íàÿ îêðóæíîñòü äåëèòñÿ ÷èñëàìè

w k (k = 1, 2, . . . , 8)

èç (5) íà âîñåìü ðàâíûõ ÷àñòåé, äëÿ âòîðîé îêðóæíîñòè ââåäåíû îáîçíà÷åíèÿ

w km = w k + w m (k, m = 1, 2, . . . , 8)

. Íà íàðóæíþþîêðóæíîñòü (èíäèêàòîðíóþ äèàãðàììó) ïî- ïàäàþòòîëüêî òî÷êè

w 1 + w 2

,

w 2 + w 3

,

w 3 + w 4 , . . .

,

w 7 + w 8

,

w 8 + w 9 = w 8 + w 1

, òî÷êè

w k + w m

,

(m − k) > 2

ïîïàäàþòâíóòðüèíäèêàòîðíîé äèàãðàììûèíà àñèìïòîòèêóêîð- íåéóðàâíåíèÿ(37)(39)íåâëèÿþò. Êîðíèóðàâíåíèÿ(37)(39)ìîãóòíàõîäèòüñÿòîëüêî

ââîñüìèçàøòðèõîâàííûõñåêòîðàõðèñ.1,áåñêîíå÷íî ìàëîãîðàñòâîðà,áèññåêòðèñûêî-

òîðûõÿâëÿþòñÿñåðåäèííûìè ïåðïåíäèêóëÿðàìèêñòîðîíàì ïðàâèëüíîãîâîñüìèóãîëü-

íèêà

w 12 w 23 w 34 . . . w 78 w 81 w 12

.

(10)

6. Óðàâíåíèå íà ñîáñòâåííûå çíà÷åíèÿ ÔÄÎ (1)(3) â ñåêòîðå 1)

èíäèêàòîðíîé äèàãðàììû

Äëÿ òîãî, ÷òîáû èçó÷èòüêîðíè óðàâíåíèÿ(37)(39) â ñåêòîðå1) èíäèêàòîðíîé äèà-

ãðàììûíàðèñ.1,íàäîîñòàâèòü òîëüêîýêñïîíåíòûñïîêàçàòåëÿìè

w ¯ 81 = w 12 = w 1 + w 2

è

w ¯ 78 = w 23 = w 2 + w 3

, ò. å. ýêñïîíåíòû

e a(w 1 +w 2 )sπ

è

e a(w 2 +w 3 )sπ

. Ïîýòîìó ñïðàâåäëèâî óòâåðæäåíèå.

Òåîðåìà 5. Óðàâíåíèå íà ñîáñòâåííûå çíà÷åíèÿ ÔÄÎ (1)(3) â ñåêòîðå 1) èíäèêà-

òîðíîé äèàãðàììûíà ðèñ.1 èìååòñëåäóþùèé âèä:

g 1 (s) =

u 11 u 12 u 21 u 22

u 12 u 13 u 22 u 23

z M 6 = 0,

(40)

ïðè÷åìâîâñåõàñèìïòîòè÷åñêèõîðìóëàõíåîáõîäèìîîñòàâèòüòîëüêîýêñïîíåíòûñïî-

êàçàòåëÿìè

w 1 + w 2

,

w 2 + w 3

,âåëè÷èíû

u mk

îïðåäåëåíû â (38), (39).

Èçó÷èì ñíà÷àëà àñèìïòîòè÷åñêîå ïîâåäåíèå óíêöèé

D 8k (x, s) (k = 1, 2, . . . , 8)

èç(17), (18).

Ïðèìåíÿÿ îðìóëû (8)(12)èñâîéñòâà îïðåäåëèòåëåé, èç (18) èìååì

D 81 (x, s) =

v 2A 72 R (x,s) 7 + . . . . . . v 7A 77 R (x,s) 7 + . . . v 8A 78 R (x,s) 7 + . . . w 2 v 2A 1 72 R (x,s) 7 + . . . . . . w 7 v 7A 1 77 R (x,s) 7 + . . . w 8 v 8A 1 78 R (x,s) 7 + . . . . . . . w 2 6 v 2A 6 72 R (x,s) 7 + . . . . . . w 7 6 v 7A 6 77 R (x,s) 7 + . . . w 6 8 v 8A 6 78 R (x,s) 7 + . . .

× (as)(as) 2 (. . . )(as) 6 = (as) 21

D 81,0 (x, s) − D 81,7 (x, s) 8a 7 s 7 + O

1 s 14

,

(41)

ãäå ââåäåíû îáîçíà÷åíèÿ

v k = e aw k sx (k = 1, 2, . . . , 8)

,

R 7 = 8a 7 s 7

, ¾

+ . . .

¿

+O( s 1 14 )

¿,

D 81,0 (x, s) =

v 2 . . . v 7 v 8 w 2 v 2 . . . w 7 v 7 w 8 v 8 . . . . w 6 2 v 2 . . . w 6 7 v 7 w 6 8 v 8

=

8

Y

k=2

v k δ 81 ,

(42)

ïðèýòîì â ñèëóîðìóë (5),(6) èìååì

8

Y

k=2

v k =

8

Y

k=2

e aw k sx = exp(a(w 2 + w 3 + · · · + w 8 )sx) = e −aw 1 sx ,

(43)

δ 81

àëãåáðàè÷åñêèé ìèíîð ê ýëåìåíòó âîñüìîé ñòðîêè è ïåðâîãî ñòîëáöà îïðåäåëèòå- ëÿ

00

èç(16):

δ 81 =

1 . . . 1 1

w 2 . . . w 7 w 8 . . . . w 2 6 . . . w 7 6 w 6 8

.

(44)

(11)

Ëåììà 1. Ìàòðèöà

δ kn (k, n = 1, 2, . . . , 8)

àëãåáðàè÷åñêèõ ìèíîðîâ ê ýëåìåíòàì

b kn (k, n = 1, 2, . . . , 8)

îïðåäåëèòåëÿ

∆ 00

èç (16)èìååò ñëåäóþùèé âèä:

kn ) =

δ 11 δ 12 δ 13 . . . δ 17 δ 18 δ 21 δ 22 δ 23 . . . δ 27 δ 28 δ 31 δ 32 δ 33 . . . δ 37 δ 38 . . . . δ 71 δ 72 δ 73 . . . δ 77 δ 78 δ 81 δ 82 δ 83 . . . δ 87 δ 88

= ∆ 00 8

1 − 1 1 . . . 1 − 1

− w 1 −1 w −1 2 − w −1 3 . . . − w −1 7 w −1 8 w −2 1 − w 2 −2 w −2 3 . . . w −2 7 − w 8 −2 . . . . w −6 1 − w 2 −6 w −6 3 . . . w −6 7 − w 8 −6

− w 1 −7 w −7 2 − w −7 3 . . . − w −7 7 w −7 8

(45)

 ñïðàâåäëèâîñòè ëåììû ìîæíî óáåäèòüñÿ, ðàñêëàäûâàÿ îïðåäåëèòåëü

00

èç (16)

ïî ñòðî÷êàì èëè ïîñòîëáöàì, èñïîëüçóÿîðìóëû(45).

Ñòðîãîå äîêàçàòåëüñòâî ëåììû ïðèâåäåíîàâòîðîì âðàáîòå [19℄.

Ñ ó÷åòîì(43)(45), îðìóëà (42)ïðèìåò âèä

D 81,0 (x, s) =

8

Y

k=2

v k δ 81 = e −aw 1 sx ( − w −7 1 ) = ( − 1)w 1 e −aw 1 sx ,

(46)

òàê êàê

w 1 8 = w k 8 (k = 1, 2, . . . , 8)

, ïðè ýòîìâ îðìóëå (41)èìååì

D 81,7 (x, s) =

A 72 (x, s) v 3 . . . v 8 A 1 72 (x, s) w 3 v 3 . . . w 8 v 8 . . . . A 6 72 (x, s) w 6 3 v 3 . . . w 6 8 v 8

+ · · · +

v 2 . . . v 7 A 78 (x, s) w 2 v 2 . . . w 2 v 7 A 1 78 (x, s) . . . . w 6 2 v 2 . . . w 6 2 v 7 A 6 78 (x, s)

.

(47)

Àíàëîãè÷íî îðìóëàì (41)(47) ìîæíî âû÷èñëèòü îïðåäåëèòåëè

D 8k (x, s) (k = 1, 2, . . . , 8)

èç (17)(18):

D 8k (x, s) = (as) 21

D 8k,0 (x, s) − D 8k,7 (x, s) 8a 7 s 7 + O

1 s 14

, k = 1, 2, . . . , 8,

(48)

D 8k,0 (x, s) = ( − 1) k w k e −aw k sx , k = 1, 2, . . . , 8,

(49)

ïðè ýòîì âåëè÷èíû

D 8k,7 (x, s)

âûïèñûâàþòñÿ â âèäå ñóììû îïðåäåëèòåëåé àíàëîãè÷íî âåëè÷èíå

D 81,7 (x, s)

èç(47).

Èñïîëüçóÿ îðìóëû (7)(12), (42)(50), (23)(27), (37), (39), âåêòîðû-ñòîëáöû

(u 1k ; u 2k ) (k = 1, 2, 3)

èç îðìóëû(40)ïðèâåäåì êñëåäóþùåìó âèäó:

u 11 u 21

=

w n 1 1 e aw 1 A

n 1 71 (π,s)

8a 7 s 7 + αe 8a aw 7 s 1 7 sb R(π; s; n 1 ) w n 1 2 e aw 1 A

n 2 71 (π,s)

8a 7 s 7 + αe 8a aw 7 s 1 7 sb R(π; s; n 2 )

 ,

(50)

R(π; s; n, k) =

8

X

m=1

w m w n m k e aw m sx

x

Z

0

r(t)e −aw m st dt rm , k = 1, 2;

(51)

(12)

u 12 u 22

= 

w 2 n 1 e aw 2 A 72 8a 7 (π,s) s 7 + αe 8a 7 s 2 7 R(π; s; n 1 ) w 2 n 2 e aw 2 A

n 2 72 (π,s)

8a 7 s 7 + αe 8a aw 7 s 2 7 sb R(π; s; n 2 )

 ,

(52)

u 13 u 23

=

w 3 n 1 e aw 3 A

n 1 73 (π,s)

8a 7 s 7 + αe 8a aw 7 s 3 7 sb R(π; s; n 1 ) w 3 n 2 e aw 3 A

n 2 73 (π,s)

8a 7 s 7 + αe 8a aw 7 s 3 7 sb R(π; s; n 2 )

 ,

(53)

ïðè÷åì äëÿ ñåêòîðà 1) â âåëè÷èíàõ

A n 7m k (π, s)

èç (10), (11) è

R(π; s; n k ) (k = 1, 2

;

m = 1, 2, 3)

èç(51) íåîáõîäèìî îñòàâëÿòü òîëüêî ýêñïîíåíòû

e aw 1

,

e aw 2

è

e aw 3

.

Ïðèìåíÿÿ îðìóëû (50)(53), óðàâíåíèå(40) ìîæíî ïåðåïèñàòüâ ñëåäóþùåì âèäå:

g 1 (s) = g 1,0 (s) − g 1,7,1 (s)

8a 7 s 7 + g 1,7,2 (s) 8a 7 s 7 + O

1 s 14

= 0,

(54)

g 1,0 (s) =

w n 1 1 e aw 1 w n 2 1 e aw 2 w n 1 2 e aw 1 w n 2 2 e aw 2

w n 2 1 e aw 2 w 3 n 1 e aw 3 w n 2 2 e aw 2 w 3 n 2 e aw 3

z M 6 ,

(55)

g 1,7,1 (s) =

A n 71 1 (π, s) w 2 n 1 e aw 2 A n 71 2 (π, s) w 2 n 2 e aw 2 1

+

w 1 n 1 e aw 2 A n 72 1 (π, s) w 1 n 2 e aw 2 A n 72 2 (π, s) 2

A n 72 1 (π, s) w n 3 1 e aw 3 A n 72 2 (π, s) w n 3 2 e aw 3 3

z M 6

w n 2 1 e aw 2 A n 73 1 (π, s) w n 2 2 e aw 2 A n 73 2 (π, s) 4

z M 6 ,

(56)

g 1,7,2 (s) =

αe aw 1 sb R(π; s; n 1 ) w n 2 1 e aw 2 αe aw 1 sb R(π; s; n 2 ) w n 2 2 e aw 2 5

+

w 1 n 1 e aw 1 αe aw 2 sb R(π; s; n 1 ) w 1 n 2 e aw 1 αe aw 2 sb R(π; s; n 2 ) 6

αe aw 2 sb R(π; s; n 1 ) w 3 n 1 e aw 3 αe aw 2 sb R(π; s; n 2 ) w 3 n 2 e aw 3 7

z M 6

w n 2 1 e aw 2 αe aw 3 sb R(π; s; n 1 ) w n 2 2 e aw 2 αe aw 3 sb R(π; s; n 2 ) 8

z M 6 .

(57)

Ïðèìåíÿÿ ñâîéñòâà îïðåäåëèòåëåé, óíêöèþ

g 1,0 (s)

èç(55) ïðèâåäåì êâèäó

g 1,0 (s) =

w n 1 1 w 2 n 1 w n 1 2 w 2 n 2

e a(w 1 +w 2 )sπ

w n 2 1 w n 3 1 w n 2 2 w n 3 2

e a(w 2 +w 3 )sπ z M 6 ,

(58)

ïðèýòîì áëàãîäàðÿîðìóëàì(5)èìååì

w 1 n 1 w n 2 1 w 1 n 2 w n 2 2

=

1 n 1 z n 1 1 n 2 z n 2

= z n 2 − z n 1 = E 2 ;

w n 2 1 w n 3 1 w n 2 2 w n 3 2

=

z n 1 z 2n 1 z n 2 z 2n 2

= z n 1 z n 2 E 2 = z N 2 E 2 , N 2 = n 1 + n 2 .

(59)

Âû÷èñëèì îïðåäåëèòåëü

| . . . | 1

èç(56), ïðèìåíÿÿîðìóëû(10),(11), (59)èñâîéñòâà

(13)

îïðåäåëèòåëåé

| . . . | 1 =

w 1 w n 1 1 v 1 π

R

0

. . .

a11

+ w 2 w n 2 1 v 2 π

R

0

. . .

a12

+ w 3 w n 3 1 v 3 π

R

0

. . .

a13

w n 2 1 w 1 w n 1 2 v 1

π R

0

. . .

a11

+ w 2 w n 2 2 v 2 π

R

0

. . .

a12

+ w 3 w n 3 2 v 3 π

R

0

. . .

a13

w n 2 2

e aw 2

= e aw 2

 w 1 v 1

Z π

0

. . .

a11

w n 1 1 w n 2 1 w n 1 2 w n 2 2

+ w 2 v 2 Z π

0

. . .

a12

w n 2 1 w n 2 1 w n 2 2 w n 2 2

+ w 3 v 3 Z π

0

. . .

a13

w n 3 1 w 2 n 1 w n 3 2 w 2 n 2

(60) = w 1 E 2 e a(w 1 +w 2 )sπ Z π

0

. . .

a11

− w 3 E 2 z N 2 e a(w 2 +w 3 )sπ Z π

0

. . .

a13

,

(60)

ãäåáûëè ââåäåíû îáîçíà÷åíèÿ

v k = e aw k (k = 1, 2, . . . , 8)

.

Àíàëîãè÷íûì îáðàçîì âûâîäÿòñÿ îðìóëû äëÿ îïðåäåëèòåëåé

| . . . | 2 , | . . . | 3

è

| . . . | 4

èç (56):

| . . . | 2 = e aw 1

w n 1 1 w 1 w 1 n 1 v 1 π

R

0

. . .

a21

+ w 2 w n 2 1 v 2 π

R

0

. . .

a22

+ w 3 w n 3 1 v 3 π

R

0

. . .

a23

w n 1 2 w 1 w 1 n 2 v 1 π

R

0

. . .

a21

+ w 2 w n 2 2 v 2 π

R

0

. . .

a22

+ w 3 w n 3 2 v 3 π

R

0

. . .

a23

= w 2 E 2 e a(w 1 +w 2 )sπ

π

Z

0

q(t)dt a22 ;

(61)

| . . . | 3 = w 2 E 2 z N 2 e a(w 2 +w 3 )sπ Z π

0

. . .

a22

;

| . . . | 4 = − w 1 E 2 e a(w 1 +w 2 )sπ Z π

0

. . .

a31

+ w 3 E 2 z N 2 e a(w 2 +w 3 )sπ Z π

0

. . .

a33

.

(62)

Äàëåå âû÷èñëÿåì îïðåäåëèòåëè

| . . . | m (m = 5, 6, 7, 8)

èç (57):

| . . . | 5 = α

w 1 w n 1 1 v 1 π

R

0

. . .

r1

+ w 2 w n 2 1 v 2 π

R

0

. . .

r2

+ w 3 w n 3 1 v 3 π

R

0

. . .

r3

w 2 n 1 w 1 w n 1 2 v 1

π R

0

. . .

r1

+ w 2 w n 2 2 v 2 π

R

0

. . .

r2

+ w 3 w n 3 2 v 3 π

R

0

. . .

r3

w 2 n 2

× e aw 1 sb e aw 2 = w 1 E 2 αe aw 1 sb e a(w 1 +w 2 )sπ Z π

0

. . .

r1

− αw 3 E 2 z N 2 e aw 1 bs e a(w 2 +w 3 )sπ Z π

0

. . .

r3

;

(63)

参照

関連したドキュメント

In this paper, we study the generalized Keldys- Fichera boundary value problem which is a kind of new boundary conditions for a class of higher-order equations with

After that, applying the well-known results for elliptic boundary-value problems (without parameter) in the considered domains, we receive the asymptotic formu- las of the solutions

[7] , On initial boundary value problem with Dirichlet integral conditions for a hyperbolic equation with the Bessel operator, J.. Bouziani

Ntouyas; Existence results for a coupled system of Caputo type sequen- tial fractional differential equations with nonlocal integral boundary conditions, Appl.. Alsaedi; On a

The motivation comes on the one hand from the study of the hyperanalytic Riemann boundary value problem with continuous coefficients [10] and on the other from the necessary and su

In particular we show, using one of the Crum-type transformations, that it is possible to go up and down a hierarchy of boundary value problems keeping the form of the second-

Turmetov; On solvability of a boundary value problem for a nonhomogeneous biharmonic equation with a boundary operator of a fractional order, Acta Mathematica Scientia.. Bjorstad;

We study a Neumann boundary-value problem on the half line for a second order equation, in which the nonlinearity depends on the (unknown) Dirichlet boundary data of the solution..