Volume 2010, Article ID 208085,23pages doi:10.1155/2010/208085
Research Article
The Boundary Value Problem of the Equations with Nonnegative Characteristic Form
Limei Li and Tian Ma
Mathematical College, Sichuan University, Chengdu 610064, China
Correspondence should be addressed to Limei Li,matlilm@yahoo.cnand Tian Ma,matian56@sina.com
Received 22 May 2010; Accepted 7 July 2010 Academic Editor: Claudianor Alves
Copyrightq2010 L. Li and T. Ma. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
We study the generalized Keldys-Fichera boundary value problem for a class of higher order equa- tions with nonnegative characteristic. By using the acute angle principle and the H ¨older inequali- ties and Young inequalities we discuss the existence of the weak solution. Then by using the inverse H ¨older inequalities, we obtain the regularity of the weak solution in the anisotropic Sobolev space.
1. Introduction
Keldys1studies the boundary problem for linear elliptic equations with degenerationg on the boundary. For the linear elliptic equations with nonnegative characteristic forms, Oleinik and Radkevich2had discussed the Keldys-Fichera boundary value problem. In 1989, Ma and Yu3studied the existence of weak solution for the Keldys-Fichera boundary value of the nonlinear degenerate elliptic equations of second-order. Chen 4 and Chen and Xuan 5, Li 6, and Wang 7 had investigated the existence and the regularity of degenerate elliptic equations by using different methods. In this paper, we study the generalized Keldys- Fichera boundary value problem which is a kind of new boundary conditions for a class of higher-order equations with nonnegative characteristic form. We discuss the existence and uniqueness of weak solution by using the acute angle principle, then study the regularity of solution by using inverse H ¨older inequalities in the anisotropic Sobolev Space.
We firstly study the following linear partial differential operator
Lu
|α||β|m,|γ|m−1−1mDα
aαβxDβubαγxDγu
|θ|,|λ|≤m−1
−1|θ|Dθ
dθλxDλu ,
1.1
wherex∈Ω, Ω⊂ Rnis an open set, the coefficients ofLare bounded measurable, and the leading term coefficients satisfy
aαβxξαξβ≥0. 1.2
We investigate the generalized Keldys-Fichera boundary value conditions as follows:
Dαu|∂Ω0, |α| ≤m−2, 1.3
Nm−1
j1
CijBxDλju|Bi 0, λjm−1, 1≤i≤Nm−1, 1.4
Nm
j1
CMij xDαj−δkju·nkj|M
i 0, ∀δkj ≤αj, 1.5
with|αj|mand 1≤i≤Nm, whereδkj {0, . . . , 1
kj
, . . . ,0}.
The leading term coefficients are symmetric, that is, aαβx aβαx which can be made into a symmetric matrixMx aαiαj. The odd order term coefficientsbθλxcan be made into a matrixBx n
k1bλiλjx·nk,→−n n1, . . . , nnis the outward normal at∂Ω.
{eix}Ni1mand{hix}Ni1m−1are the eigenvalues of matricesMxandBx, respectively.CBijx andCMij xare orthogonal matrix satisfying
CijMxMxCMij x eixδij
i,j1,...,Nm, CBijxBxCijBx
hixδij
i,j1,...,Nm−1.
1.6
The boundary sets are M
i
{x∈∂Ω|eix>0}, 1≤i≤Nm, B
i
{x∈∂Ω|hix>0}, 1≤i≤Nm−1.
1.7
At last, we study the existence and regularity of the following quasilinear differential operator with boundary conditions1.3–1.5:
Au
|α||β|m,|γ|m−1
−1mDα aαβ
x,
u
DβubαγxDγu
|γ||θ|m−1
−1m−1Dγ dγθ
x, u
Dθu
|λ|≤m−1
−1|λ|Dλgλ x,
u ,
1.8
wherem≥2 and
u{Dαu}|α|≤m−2.
This paper is a generalization of3,8–10.
2. Formulation of the Boundary Value Problem
For second-order equations with nonnegative characteristic form, Keldys 1 and Fichera presented a kind of boundary that is the Keldys-Fichera boundary value problem, with that the associated problem is of well-posedness. However, for higher-order ones, the discussion of well-posed boundary value problem has not been seen. Here we will give a kind of boundary value condition, which is consistent with Dirichlet problem if the equations are elliptic, and coincident with Keldys-Fichera boundary value problem when the equations are of second-order.
We consider the linear partial differential operator
Lu
|α||β|m,|γ|m−1
−1mDα
aαβxDβubαγxDγu
|θ|,|λ|≤m−1
−1|θ|Dθ
dθλxDλu ,
2.1
wherex∈Ω, Ω⊂Rnis an open set, the coefficients ofLare bounded measurable functions, andaαβx aβαx.
Let{gαβx}be a series of functions withgαβ gβα,|α||β|k. If in certain order we put all multiple indexesαwith|α| k into a row{α1, . . . , αNk}, then{gαβx}can be made into a symmetric matrixgαiαj. By this rule, we get a symmetric leading term matrix of2.1, as follows:
Mx aαiαjxi,j1,...,Nm. 2.2
Suppose that the matrixMxis semipositive, that is,
0≤aαiαjxξiξj, ∀x∈Ω, ξ∈RNm, 2.3 and the odd order part of2.1can be written as
|α|m,|γ|m−1
−1mDα
bαγxDγu n
i1
|λ||θ|m−1
−1mDλδi
bλθi xDθu
, 2.4
whereδi{δi1, . . . , δin}, δijis the Kronecker symbol. Assume that for all 1≤i≤n, we have
biλθx biθλx, x∈Ω. 2.5
We introduce another symmetric matrix
Bx n
k1
bkλiλjx·nk
i,j1,...,Nm−1
, x∈∂Ω, 2.6
where→−n {n1, n2, . . . , nn}is the outward normal atx ∈ ∂Ω. Let the following matrices be orthogonal:
CMx
CMij x
i,j1,...,Nm
, x∈Ω, CBx
CijBx
i,j1,...,Nm−1, x∈∂Ω, 2.7 satisfying
CMxMxCMx eixδij
i,j1,...,Nm, CBxBxCBx
hixδij
i,j1,...,Nm−1,
2.8
where Cx is the transposed matrix ofCx,{eix}Ni1m are the eigenvalues of Mxand {hix}Ni1m−1are the eigenvalues ofBx. Denote by
M i
{x∈∂Ω|eix>0}, 1≤i≤Nm, B
i
{x∈∂Ω|hix>0}, 1≤i≤Nm−1, C
i
∂Ω\B
i
, 1≤i≤Nm−1.
2.9
For multiple indicesα, β, α≤ βmeans thatαi ≤βi,for all 1≤i≤n. Now let us consider the following boundary value problem,
Lufx, x∈Ω, 2.10
Dαu|∂Ω 0, |α| ≤m−2, 2.11
Nm−1
j1
CijBxDλju|B
i 0, λjm−1, 1≤i≤Nm−1, 2.12
Nm
j1
CijMxDαj−δkju·nkj|Mi 0, 2.13
for allδkj≤αj, |αj|mand 1≤i≤Nm, whereδkj{0, . . . , 1
kj
, . . . ,0}.
We can see that the item 2.13 of boundary value condition is determined by the leading term matrix 2.2, and 2.12is defined by the odd term matrix2.6. Moreover, if the operatorLis a not elliptic, then the operator
Lu
|θ|,|λ|≤m−1
−1|θ|Dθ
dθλxDλu
2.14
has to be elliptic.
In order to illustrate the boundary value conditions2.11–2.13, in the following we give an example.
Example 2.1. Given the differential equation
∂4u
∂x41 ∂4u
∂x12∂x22 ∂3u
∂x32 −Δuf, x∈Ω⊂R2. 2.15
HereΩ {x1, x2∈R2 |0< x1 <1, 0< x2 <1}. Letα1{2,0}, α2{1,1}. α3{0,2}and λ1{1,0}, λ2{0,1}, then the leading and odd term matrices of2.15respectively are
M
⎛
⎜⎜
⎝ 1 0 0 0 1 0 0 0 0
⎞
⎟⎟
⎠,
B 0 0
0 n2
,
2.16
and the orthogonal matrices are
CM
⎛
⎜⎜
⎝ 1 0 0 0 1 0 0 0 1
⎞
⎟⎟
⎠,
CB 1 0
0 1
.
2.17
We can see thatM
1 ∂Ω, M
2 ∂Ω, M
3 φ, andB
1 φ, B
2 as shown inFigure 1.
The item2.12is 2 j1
CB2jDλju|B
2 Dλ2u|B
2 ∂u
∂x2 B
2
0, 2.18
x2
x1 ΣB2
Γ Ω
Figure 1
and the item2.13is 3 j1
CM1jDαj−δkju·nkj|M
1 Dα1−δk1u·nk1|M
1 0,
3 j1
CM2jDαj−δkju·nkj|M
2 Dα2−δk2u·nk2|M
2 0,
2.19
for allδk1≤α1andδk2≤α2. Since onlyδk1{1,0} ≤α1{2,0}, hence we have Dα1−δk1u·nk1|M
1 ∂u
∂x1 ·n1|∂Ω 0, 2.20
however,δk2 {1,0}< α2 {1,1}andδk2{0,1}< α2, therefore,
Dα2−δk2u·nk2|M
2
⎧⎪
⎪⎨
⎪⎪
⎩
∂u
∂x2 ·n1|∂Ω 0,
∂u
∂x1 ·n2|∂Ω 0.
2.21
Thus the associated boundary value condition of2.15is as follows:
u|∂Ω 0, ∂u
∂x2
∂Ω/Γ0, ∂u
∂x1
∂Ω0, 2.22
which implies that∂u/∂x2is free onΓ {x1, x2∈∂Ω|0< x1<1, x20}.
Remark 2.2. In general the matrices Mx and Bx arranged are not unique, hence the boundary value conditions relating to the operatorLmay not be unique.
Remark 2.3. When all leading terms ofLare zero,2.10is an odd order one. In this case, only 2.11and2.12remain.
Now we return to discuss the relations between the conditions 2.11–2.13 with Dirichlet and Keldys-Fichera boundary value conditions.
It is easy to verify that the problem2.10–2.13is the Dirichlet problem provided the operatorLbeing ellipticsee11. In this case,M
i ∂Ωfor all 1≤i≤Nm. Besides,2.13 run over all 1 ≤ i ≤ Nm and δkj ≤ αi, moreoverCBxis nondegenerate for anyx ∈ ∂Ω.
Solving the system of equations, we getDαu|∂Ω 0, for all |α|m−1.
Whenm1, namely,Lis of second-order, the condition2.12is the form
u|B 0, B
x∈∂Ω|n
i1
bixni>0
, 2.23
and2.13is
n j1
CMij xnju|M
i 0, 1≤i≤n. 2.24
Noticing
n i,j1
aijxninj n
i1
eix
⎛
⎝n
j1
CMij xnj
⎞
⎠
2
, 2.25
thus the condition2.13is the form
u|M 0, M
⎧⎨
⎩x∈∂Ω|n
i,j1
aijxninj>0
⎫⎬
⎭. 2.26
It shows that whenm1,2.12and2.13are coincide with Keldys-Fichera boundary value condition.
Next, we will give the definition of weak solutions of2.10–2.13 see12. Let
X v∈C∞ Ω
|Dαv|∂Ω0, |α| ≤m−2, andv satisfy2.13, v2<∞!
, 2.27
where · 2is defined by
v2
⎡
⎣$
Ω
|α|≤m
|Dαv|2dx
$
∂Ω
|γ|m−1
|Dγv|2ds
⎤
⎦
1/2
. 2.28
We denote byX2the completion ofX under the norm · 2and by X1 the completion ofX with the following norm
v1
⎡
⎢⎣
$
Ω
⎛
⎝
|α||β|m
aαβxDαvDβv
|γ|≤m−1
|Dγv|2
⎞
⎠dx
$
∂Ω Nm−1
i1
|hix|
⎛
⎝Nm−1
j1
CBijDγjv
⎞
⎠
2
ds
⎤
⎥⎦
1/2
.
2.29
Definition 2.4. u ∈ X1 is a weak solution of 2.10–2.13if for any v ∈ X2, the following equality holds:
$
Ω
⎡
⎣
|α||β|m,|γ|m−1
aαβxDβubαγxDγu
Dαv
|θ|,|λ|≤m−1
dθλxDλuDθv
⎤
⎦dx
−Nm−1
i1
$
C
i
hix
⎛
⎝Nm−1
j1
CBijDγju
⎞
⎠
⎛
⎝Nm−1
j1
CijBDγjv
⎞
⎠ds
$
Ωfxv dx.
2.30
We need to check the reasonableness of the boundary value problem 2.10–2.13 under the definition of weak solutions, that is, the solution in the classical sense are necessarily the solutions in weak sense, and conversely when a weak solution satisfies certain regularity conditions, it will surely satisfy the given boundary value conditions. Here, we assume that all coefficients ofLare sufficiently smooth.
Letube a classical solution of2.10–2.13. Denote by
Lu, v
$
ΩLu·v dx, ∀v∈X. 2.31
Thanks to integration by part, we have
$
ΩLu·v dx
$
Ω
⎡
⎣
|α||β|m,|γ|m−1
aαβxDβubαγxDγu
Dαv
|θ|,|λ|≤m−1
dθλxDλuDθv
⎤
⎦dx
−
$
∂Ω
⎡
⎣
|α||β|m
aαβxDβuDα−δkv·nk
|λ||θ|m−1
n i1
biλθx·niDθuDλv
⎤
⎦ds.
2.32
Sincev∈X, we have
$
∂Ω
|α||β|m
aαβxDβuDα−δkv·nkds
$
∂Ω Nm
i1
eix
⎛
⎝Nm
j1
CijMDαju
⎞
⎠
⎛
⎝Nm
j1
CMij Dαj−δkjv·nkj
⎞
⎠ds0.
2.33
Becauseusatisfies2.12,
$
∂Ω
|λ||θ|m−1
n i1
biλθx·niDθuDλv ds
$
∂Ω Nm−1
i1
hix
⎛
⎝Nm−1
j1
CBijDγju
⎞
⎠
⎛
⎝Nm−1
j1
CijBDγjv
⎞
⎠ds
Nm−1
i1
$
C i
hix
⎛
⎝Nm−1
j1
CBijDγju
⎞
⎠
⎛
⎝Nm−1
j1
CBijDγjv
⎞
⎠ds.
2.34
From the three equalities above we obtain2.30.
Letu ∈ X1 be a weak solution of2.10–2.13. Then the boundary value conditions 2.11and2.13can be reflected by the spaceX1. In fact, we can show that ifu∈X1, thenu satisfies
Nm
i1
$
M i
eix
⎛
⎝Nm
j1
CMij Dαj−δkju·nkj
⎞
⎠
⎛
⎝Nm
j1
CMij Dαjv
⎞
⎠ds0, ∀v∈X1∩Wm1,2Ω.
2.35
Evidently, whenu∈X, v∈X1∩Wm1,2Ω, we have
$
Ω
|α||β|m
aαβxDβuDαv dx−
$
Ω
|α||β|m Di
aαβxDαv
Dβ−δiu dx. 2.36
If we can verify that for anyu∈X1,2.36holds true, then we get
$
∂Ω
|α||β|m
aαβxDαvDβ−δiu·nids0, 2.37
which means that2.35holds true. SinceXis dense inX1, foru∈X1given, letuk ∈Xand uk → uinX1. Then
klim→ ∞
$
Ω
|α||β|m
aαβDβukDαv dx
$
Ω
|α||β|m
aαβDβuDαv dx,
klim→ ∞
$
Ω
|α||β|m
Di
aαβDαv
Dβ−δiukdx
$
Ω
|α||β|m
Di
aαβDαv
Dβ−δiu dx.
2.38
Due touksatisfying2.36, henceu∈X1satisfies2.36. Thus2.31is verified.
Remark 2.5. When2.2is a diagonal matrix, then2.13is the form
Dγu|M
γ 0, forγm−1, 2.39
where M
γ {x ∈ ∂Ω | n
i1aγδiγδix·ni2 > 0}. In this case, the corresponding trace embedding theorem can be set, and the boundary value condition2.13is naturally satisfied.
On the other hand, if the weak solutionuof2.10–2.13belongs toX1∩Wm,pΩfor some p >1, then by the trace embedding theorems, the condition2.13also holds true.
It remains to verify the condition2.12. Letu0 ∈X1∩Wm1,2Ωsatisfy2.30. Since Wm1,2Ω→X2, hence we have
$
Ω
⎡
⎣
|α||β|m,|γ|m−1
aαβxDβu0bαγxDγu0
Dαu0
|θ|,|λ|≤m−1
dθλxDλu0Dθu0−fu0
⎤
⎦ds
−Nm−1
i1
$
C i
hix
⎛
⎝Nm−1
j1
CBijDγju0
⎞
⎠
2
ds0.
2.40
On the other hand, by2.30, for anyv∈C∞0 Ω, we get
$
Ω
⎡
⎣−
|α||β|m Di
aαβxDαu0
Dβ−δiv
|θ|,|λ|≤m−1
dθλxDλu0Dθv
−fv−Di
⎛
⎝
|θ||γ|m−1
bθγi xDγu0
⎞
⎠Dθv
⎤
⎦dx0.
2.41
Because the coefficients ofLare sufficiently smooth, andC0∞is dense inW0m−1,2Ω, equality 2.41also holds for anyv∈W0m−1,2Ω. Therefore, due tou0∈W0m−1,2Ω, we have
$
Ω
⎡
⎣−
|α||β|m Di
aαβxDαu0
Dβ−δiu0
|θ|,|λ|≤m−1
dθλxDλu0Dθu0
−fu0−Di
⎛
⎝
|θ||γ|m−1
biθγxDγu0
⎞
⎠Dθu0
⎤
⎦dx0.
2.42
From2.36, one drives
−
$
Ω
|α||β|m
Di
aαβxDαu0
Dβ−δiu0dx
$
Ω
|α||β|m
aαβxDαu0Dβu0dx, 2.43
Furthermore,
−
$
ΩDi
⎛
⎝
|θ||γ|m−1
biθγxDγu0
⎞
⎠Dθu0dx
$
Ω
|α|m,|γ|m−1
bαγxDγu0Dαu0dx−Nm−1
i1
$
C
i ∪B
i
hix
⎛
⎝Nm−1
j1
CBijDγju0
⎞
⎠
2
ds.
2.44
From2.30and2.42, one can see that
Nm−1
i1
$
B i
hix
⎛
⎝Nm−1
j1
CBijDγju0
⎞
⎠
2
ds0. 2.45
Noticinghix>0 inB
i, one deduces thatu0satisfies2.12providedu0 ∈X1∩Wm1,2Ω.
Finally, we discuss the well-posedness of the boundary value problem2.10–2.13.
LetXbe a linear space, andX1, X2be the completion ofX, respectively, with the norm · 1, · 2. Suppose thatX1is a reflexive Banach space andX2is a separable Banach space.
Definition 2.6. A mappingG:X1 → X2∗is called to be weakly continuous, if for anyxn, x0∈ X1, xn x0inX1, one has
nlim→ ∞
)Gxn, y* )
Gx0, y*
, ∀y∈X2. 2.46
Lemma 2.7see3. Suppose thatG:X1 → X2∗is a weakly continuous, if there exists a bounded open setΩ⊂X1, such that
Gu, u ≥0, ∀u∈∂Ω∩X, 2.47
then the equationGu0 has a solution inX1.
Theorem 2.8existence theorem. LetΩ ⊂ Rn be an arbitrary open set, f ∈ L2Ω andbαγ ∈ C1Ω. If there exist a constantC >0 andg∈L1Ωsuch that
C
|γ|m−1
ξγ2C|ξi|2−g≤
|λ|,|θ|≤m−1
dθλxξθξλ−1 2
n i1
|γ||β|m−1
Dibγβi xξγξβ, 2.48
whereξαis the component of ξ∈RNm−1corresponding toDαu, then the problem2.10–2.13has a weak solution inX1.
Proof. LetLu, vbe the inner product as in2.31. It is easy to verify thatLu, vdefines a bounded linear operatorL:X1 → X2∗. HenceLis weakly continuoussee3. From2.42, foru∈Xwe drive that
Lu, u
$
Ω
⎡
⎣
|α||β|m
aαβxDαuDβun
i1
|λ||θ|m−1
bλθi xDθuDλδiu
|γ|,|α|≤m−1
dγαxDγuDαu
⎤
⎦dx
−Nm−1
i1
$
C i
hix
⎛
⎝Nm−1
j1
CBijDγju
⎞
⎠
2
ds
$
Ω
⎡
⎣
|α||β|m
aαβxDαuDβu
|γ|,|α|≤m−1
dγαxDγuDαu
−1 2
n i1
|γ||β|m−1
DibiγβxDγuDβu
⎤
⎦dx
1 2
Nm−1
i1
⎡
⎢⎣
$
B i
−
$
C i
hix
⎛
⎝Nm−1
j1
CBijDγju
⎞
⎠
2⎤
⎥⎦ds
≥
$
Ω
⎡
⎣
|α||β|m
aαβxDαuDβuC
|γ|m−1|Dγu|2Cu2−gx
⎤
⎦
1 2
Nm−1
i1
⎡
⎢⎣
$
B i∪C
i
|hix|
⎛
⎝Nm−1
j1
CBijxDγju
⎞
⎠
2⎤
⎥⎦ds.
2.49
Hence we obtain
Lu, u ≥Cu21−C, ∀u∈X. 2.50
Thus by H ¨older inequalitysee13, we have )Lu−f, u*
≥0, ∀u∈X, u1Rgreat enough. 2.51
ByLemma 2.7, the theorem is proven.
Theorem 2.9 uniqueness theorem. Under the assumptions of Theorem 2.8 with gx 0 in 2.48. If the problem 2.10–2.13 has a weak solution inX1 ∩Wm,pΩ∩Wm−1,qΩ1/p 1/q 1, then such a solution is unique. Moreover, ifbαγx 0 inL, for all|α|m, |γ|m−1, then the weak solutionu∈X1of2.10–2.13is unique.
Proof. Letu0 ∈X1∩Wm,pΩ∩Wm−1,q be a weak solution of2.10–2.13. We can see that 2.30holds for allv∈X1∩Wm,p∩Wm−1,qΩ. HenceLu0, u0is well defined. Letu1 ∈X1∩ Wm,p∩Wm−1,qΩ. Then from2.49it follows that< Lu1−Lu0, u1−u0 >0, we obtainu1u0, which means that the solution of2.10–2.13inX1∩Wm,p∩Wm−1,qΩis unique. If all the odd termsbαγxofL, then2.30holds for allv∈X1, in the same fashion we known that the weak solution of2.10–2.13inX1is unique. The proof is complete.
Remark 2.10. In next subsection, we can see that under certain assumptions, the weak solutions of degenerate elliptic equations are inX1∩Wm,pΩ∩Wm−1,qΩ1/p1/q 1.
3. Existence of Higher-Order Quasilinear Equations
Given the quasilinear differential operator
Au
|α||β|m,|γ|m−1
−1mDα aαβ
x,
u
DβubαγxDγu
|γ||θ|m−1
−1m−1Dγ dγθ
x, u
Dθu
|λ|≤m−1
−1|λ|Dλgλ x,
u ,
3.1
wherem≥2 and
u{Dαu}|α|≤m−2.
Letaαβx, ξ aβαx, ξ, the odd order part of3.1be as that in2.4,bαγ∈C1Ω, and B
i
C
i,be the same as those inSection 2. The leading matrix is
Mx, ξ aαiαjx, ξi,j1,...,Nm, 3.2
and the eigenvalues are{eix, ξ}Ni1m. We denoteM
i {x∈∂Ω|eix,0>0}, 1≤i≤Nm.
We consider the following problem:
Aufx, x∈Ω, u|∂Ω 0,
Nm−1
j1
CBijxDλju|Bi 0, λjm−1, 1≤i≤Nm−1,
Nm
j1CMij x,0Dαj−δkju·nkj|M
i 0, ∀δkj ≤αj, with αjm, 1≤i≤Nm, δkj
⎧⎪
⎨
⎪⎩0, . . . , 1
kj
, . . . ,0
⎫⎪
⎬
⎪⎭.
3.3
Denote the anisotropic Sobolev space by W|α|≤kpα Ω +
u∈Lp0Ω|p0≥1, Dαu∈LpαΩ, ∀1≤ |α| ≤k, and pα≥1, orpα0, , 3.4
whose norm is
u
|α|≤k
signpαDαuLpα, 3.5
when allpα pfor|α| k, then the space is denoted byWk,|α|≤k−1p,pα Ω.qθ|θ| ≤kis termed the critical embedding exponent fromWk,|α|≤kpα ΩtoLpΩ, ifqθis the largest number of the exponentpin whereDθu∈LpΩ, for allu∈W|α|≤kpα Ω, and the embedding is continuous.
For example, whenΩis bounded, the spaceX {u∈LkΩ|k ≥1, Diu∈L2Ω,1 ≤ i ≤ n} with norm u ∇uL2 uLk is an anisotropic Sobolev space, and the critical embedding exponents fromXtoLPΩareqi21≤i≤n, andq0max{k,2n/n−2}.
Suppose that the following hold.
A1The coefficients of the leading term ofAsatisfy one of the following two conditions:
1aαβx, η aαβx;
2aαβx, η 0, asα /β.
A2There is a constantM >0 such that
0≤M
|α||β|m
aαβx,0ξαξβ≤
|α||β|m
aαβ
x, η ξαξβ
≤M−1
|α||β|m
aαβx,0ξαξβ.
3.6
A3There are functionsGix, η i0,1, . . . , nwithGix,0 0, for all 1≤i≤n, such that
|γ|m−1
gγ
x,
u
Dγun
i1
DiGi
x,
u G0
x,
u
. 3.7
A4There is a constantC >0 such that
C|ξ|2≤
|α||β|m−1 -
dαβxξαξβ− 1 2
n i1
Dibiαβxξαξβ .
,
C
|λ|≤m−1
signpληλpλ−f1≤
|θ|≤m−2
gθ x, η
ηθG0 x, η
,
3.8
wheref1∈L1Ω, p0>1, pλ>1 orpλ0, for all 1≤ |λ| ≤m−2.
A5There is a constantc >0 such that aαβ
x, η≤C, dγθ
x, η≤C
⎡
⎣
|β|≤m−2
ηβSβ1
⎤
⎦,
gγ
x, η≤C
⎡
⎣
|β|≤m−2
ηβSβ1
⎤
⎦,
3.9
where 1 ≤ Sβ < qβ/2, 1 ≤ Sβ < qβ, qβ is a critical embedding exponent from Wm−1,|λ|≤m−12,pλ ΩtoLPΩ. LetXbe defined by2.27andX1be the completion ofX under the norm
v1
⎡
⎣$
Ω
⎛
⎝
|α||β|m
aαβx,0DαvDβv
|γ|m−1|Dγv|2
⎞
⎠dx
$
∂Ω Nm−1
i1
|hix|
⎛
⎝Nm−1
j1
CBijDγjv
⎞
⎠
2
ds
⎤
⎥⎦
1/2
|γ|≤m−2
signpγDγvLpγ,
3.10