• 検索結果がありません。

The study on the surface-potential characteristic of the solar-cell cover glass irradiated by electron beam Naoki Higashiyama, Rikio Watanabe, Hiroaki Miyake (Tokyo City University),

N/A
N/A
Protected

Academic year: 2021

シェア "The study on the surface-potential characteristic of the solar-cell cover glass irradiated by electron beam Naoki Higashiyama, Rikio Watanabe, Hiroaki Miyake (Tokyo City University), "

Copied!
5
0
0

読み込み中.... (全文を見る)

全文

(1)

㟁Ꮚ⥺↷ᑕࡋࡓኴ㝧㟁ụ࢝ࣂ࣮࢞ࣛࢫࡢ

⾲㠃㟁఩≉ᛶ࡟㛵ࡍࡿ◊✲

ۑᮾᒣ┤⣖㸪Ώ㑓ຊኵ㸪୕Ꮿᘯ᫭(ᮾி㒔ᕷ኱Ꮫ)㸪㧗ᶫ┾ே㸪ዟᮧဴᖹ(JAXA)

The study on the surface-potential characteristic of the solar-cell cover glass irradiated by electron beam Naoki Higashiyama, Rikio Watanabe, Hiroaki Miyake (Tokyo City University),

Masato Takahashi, Teppei Okumura (JAXA) Key Words: space, solar cell, cover glass, electron beam

Abstract

Spacecrafts are charged under plasma environment and radiation environment in space, and it may lead failures and anomalies of spacecrafts when discharge on the spacecraft surface occurs. One of the most important surface materials is cover glass for solar-cells which is a source of an electrical power. The purpose of this paper is to investigate surface-potential characteristics of cover glasses with coatings after electron irradiation. We found that the surface potential on cover glasses becomes positive within a few hours after irradiation. Comparing the surface potential histories of coated cover glass and silica glass revealed that the positive potential of cover glass is due to ionization of metallic atoms in surface coating material. The positive potential is relaxed over several days which will increase a risk of discharge. We conclude it is necessary to select coating materials difficult to ionization by charged particles.

1. ◊✲⫼ᬒ

ேᕤ⾨ᫍࡣࣉࣛࢬ࣐⎔ቃཬࡧᨺᑕ⥺⎔ቃୗ࡛ᖏ㟁 ࡋ㸪ᦚ㍕ᶵჾࡢᨾ㞀ࡸ⾨ᫍࢩࢫࢸ࣒඲యࡢᶵ⬟ࢆ႙ ኻࡍࡿ஦ᨾࢆᘬࡁ㉳ࡇࡋࡓ౛ࡀከࡃሗ࿌ࡉࢀ࡚࠸ࡿ

1)

㸬ࡼࡗ࡚㸪Ᏹᐂᶵࡣタィẁ㝵࠿ࡽṇ☜࡟ᖏ㟁ゎᯒࢆ

⾜࠺ᚲせࡀ࠶ࡿ㸬ேᕤ⾨ᫍ㟁఩ࢆỴᐃ࡙ࡅࡿࡶࡢࡣ㸪 ᮏయཬࡧ⾲㠃ࡢ⤯⦕య࡟ὶධฟࡍࡿṇ㈇㟁Ⲵࡢ཰ᨭ

࡛࠶ࡿ㸬⾨ᫍ⾲㠃ࡢ⤯⦕యࡣ஧ḟ㟁Ꮚᨺฟಀᩘࡢ㐪

࠸࠿ࡽᮏయ࡜ࡣ␗࡞ࡿ㟁఩ࢆᣢࡘࡇ࡜ࡀ࡛ࡁ㸪ࡇࢀ

ࡽࡢ㟁఩ᕪࡀ኱ࡁࡃ࡞ࡿ࡜ᨺ㟁ࡀⓎ⏕ࡍࡿ

2)

㸬ேᕤ⾨

ᫍ⾲㠃ᮦᩱ࡟ࡣ㸪⾨ᫍᮏయ⾲㠃ࡢ⇕ไᚚࢆ⾜࠺ࡓࡵ

࡟ᙇࡾ௜ࡅࡿ㧗ศᏊᮦᩱ⭷ࡸ㟁ຊ※࡜࡞ࡿኴ㝧㟁ụ ࢭࣝࡢ⇕ไᚚ࠾ࡼࡧᨺᑕ⥺㜵ㆤࡢࡓࡵࡢ࢝ࣂ࣮࢞ࣛ

ࢫ࡞࡝ࡀ࠶ࡿ㸬⾨ᫍ஦ᨾࡢ3ศࡢ1௨ୖࡀኴ㝧㟁ụ࡟

࠾࠸࡚Ⓨ⏕ࡋ㸪ࡉࡽ࡟඲஦ᨾࡢ༙ᩘ௨ୖࡀᖏ㟁࣭ᨺ 㟁⌧㇟࡟㉳ᅉࡍࡿ

3)

ࡓࡵ㸪ኴ㝧㟁ụࣃࢿࣝ࡟࠾ࡅࡿᖏ 㟁࣭ᨺ㟁⌧㇟ࡢ≉ᛶࢆ⌮ゎࡍࡿࡇ࡜ࡣ㠀ᖖ࡟㔜せ࡛

࠶ࡿ㸬

⌧ᅾࡲ࡛࡟㸪ኴ㝧㟁ụࢡ࣮࣏ࣥ ( ヨ㦂∦ ) ࢆ⏝࠸ࡓᖏ 㟁࡟㛵ࡍࡿㄪᰝࡣከࡃ⾜ࢃࢀ࡚࠸ࡿ㸬ලయⓗ࡟ࡣ㸪 ኴ㝧㟁ụࢭࣝࡢᨺ㟁࡟ࡼࡿᦆയࡢㄪᰝࡀᣲࡆࡽࢀࡿ

4)

㸬ࡲࡓ㸪࢝ࣂ࣮࢞ࣛࢫ༢య࡛ࡢ㟁Ꮚ⥺↷ᑕᐇ㦂ࡶ⾜

ࢃࢀ࡚ࡁࡓࡀ㸪஧ḟ㟁Ꮚᨺฟಀᩘࡢホ౯

5)

ࡢࡓࡵ࡟ᩘ

eV⛬ࡢప࢚ࢿࣝࢠࡢ㟁Ꮚ⥺ࢆ↷ᑕࡍࡿᐇ㦂ࡀᩓぢࡉ

ࢀࡿ㸬ᴟ㌶㐨ࡸ㟼Ṇ㌶㐨࡛ࡣ㸪 keV ࣮࢜ࢲ࣮ࡢ㧗࢚ࢿ

ࣝࢠ⢏Ꮚࡀᨭ㓄ⓗ࡞㡿ᇦ࡛࠶ࡿࡢ࡛㸪ᆅୖᐇ㦂࡟࠾

࠸࡚࢝ࣂ࣮࢞ࣛࢫ༢య࡟ᑐࡋ࡚ keV ࣮࢜ࢲ࣮ࡢ㟁Ꮚ

⥺ࢆ↷ᑕࡋ㸪⾲㠃㟁఩≉ᛶࢆ⌮ゎࡍࡿࡇ࡜ࡣ㔜せ࡛

࠶ࡿ㸬

2. ◊✲┠ⓗ

ࡑࡇ࡛㸪ᮏ◊✲࡛ࡣ┿✵୰࡛࢝ࣂ࣮࢞ࣛࢫ࡟㟁Ꮚ

⥺ࢆ↷ᑕࡋ㸪↷ᑕᚋࡢ࢝ࣂ࣮࢞ࣛࢫࡢ⾲㠃㟁఩ᒚṔ

ࢆྲྀᚓࡍࡿࡇ࡜࡟ࡼࡾ㸪࢝ࣂ࣮࢞ࣛࢫࡢ⾲㠃㟁఩≉

ᛶࢆゎᯒࡍࡿࡇ࡜ࢆ┠ⓗ࡜ࡍࡿ㸬

3. ィ ࢩࢫࢸ࣒

ィ ࢩࢫࢸ࣒ࡢᵓᡂࡣ㸪⾲㠃㟁఩ィ㸪⾲㠃㟁఩ィ  ࣉ࣮ࣟࣈ㸪࢜ࢩࣟࢫࢥ࣮ࣉ㸪ࣇ࢓ࣥࢡࢩࣙࣥࢪ࢙

ࢿ࣮ࣞࢱ㸪ᚤᑠ㟁ὶィ㸪ヨᩱྎ㸪┿✵ࢳࣕࣥࣂ㸪㟁 Ꮚ㖠㸪⾲㠃㟁఩ ᐃࣉ࣮ࣟࣈ࠾ࡼࡧヨᩱྎࢆ⛣ືࡉ ࡏࡿࡓࡵࡢ㟁ືࣜࢽ࢔ࢻࣛ࢖ࣈ㸪࣌ࣝࢳ࢙⣲Ꮚ㸪࣌

ࣝࢳ࢙ࢥࣥࢺ࣮ࣟࣛ㸪ⓑ㔠  ᢬ᢠయ㸪Ỉ෭ࣄ࣮ࢺ ࢩࣥࢡ㸪෭༷Ỉᚠ⎔⿦⨨࡛࠶ࡿ㸬ᅗ1࡟ࡑࡢィ ࢩࢫ ࢸ࣒ᵓᡂᅗࢆ♧ࡍ㸬

⾲㠃㟁఩ィ ࡣḟࡢὶࢀ࡛⾜ࢃࢀࡿ㸬ࡲࡎ㸪┿✵

ࢳࣕࣥࣂෆࡢヨᩱྎ࡟ィ ヨᩱࢆᅛᐃࡋ㸪Ἔᅇ㌿┿

✵࣏ࣥࣉ࠾ࡼࡧࢱ࣮࣎ศᏊ࣏ࣥࣉࢆ⏝࠸࡚┿✵ᘬࡁ

ࢆ⾜࠺㸬┿✵ࢳࣕࣥࣂෆᅽຊࡀ 10

-4

Pa ௨ୗࡲ࡛పୗࡋ ࡓᚋ㸪㟁Ꮚ㖠ࢆ⏝࠸࡚ヨᩱ࡟㟁Ꮚ⥺ࢆ↷ᑕࡋ㸪ᖏ㟁 ࡉࡏࡿ㸬㟁Ꮚ⥺↷ᑕ⤊஢ᚋ㸪┿✵ࢳࣕࣥࣂእ㒊࠿ࡽ

ࣜࢽ࢔ࢻࣛ࢖ࣈࢆ᧯సࡋ㸪┿✵ࢳࣕࣥࣂෆ㒊ࡢ⾲㠃

(2)

㟁఩ィ ࣉ࣮ࣟࣈࢆヨᩱ๓㠃࡟⛣ືࡉࡏ㸪⾲㠃㟁఩

ࡢィ ࢆ⾜࠺㸬ࡇࡢ⾲㠃㟁఩ィ࡛ࡢ ᐃࢹ࣮ࢱࢆ࢜

ࢩࣟࢫࢥ࣮ࣉ࡛㐺ᐅࢧࣥࣉࣜࣥࢢࢆ⾜࠸㸪⾲㠃㟁఩

ࡢ᫬㛫ᒚṔࢆᚓࡿ㸬

ᅗ 1 ィ ࢩࢫࢸ࣒ᵓᡂᅗ

4. ⾲㠃㟁఩ィ ᐇ㦂 4.1 ᐇ㦂᮲௳

ᐇ㦂ᑐ㇟ヨᩱࡣ࣏ࣜ࢖࣑ࢻࣇ࢕࣒ࣝ Kapton

®

200H 㸪

⾲㠃ࢥ࣮ࢸ࢕ࣥࢢࡀ᪋ࡉࢀࡓኴ㝧㟁ụ࢝ࣂ࣮࢞ࣛࢫ 2 ✀࠾ࡼࡧྜᡂ▼ⱥ࢞ࣛࢫ࡛࠶ࡿ㸬⾲ 1 ࡟ᐇ㦂᮲௳ࢆ

♧ࡍ㸬No.2-4 ࡀኴ㝧㟁ụ࢝ࣂ࣮࢞ࣛࢫ࡛࠶ࡿ㸬

4.2 ࢞ࣛࢫヨᩱ࡟ࡘ࠸࡚

4.2.1 BRR/s 0213

®

BRR/s 0213

®

ࡣ㸪 JDSU(ᪧOCLI)♫ࡢ〇ရ࡛࠶ࡾ㸪⾲

㠃࡟BRRࢥ࣮ࢸ࢕ࣥࢢࡀ᪋ࡉࢀ࡚࠸ࡿ

6)

㸬BRR࡜ࡣ Blue and Red Reflective( ࠶ ࡿ ࠸ ࡣ Blue and Red

Reflector) ࡢ␎࡛࠶ࡾ㸪⣸እග࡜㉥እගࢆ཯ᑕࡍࡿ㸬

ࡇࢀࡽࡢ㛗Ἴ㛗ගࡣኴ㝧㟁ụࡢග㟁ኚ᥮࡟ᐤ୚ࡏࡎ㸪 BRR ࢥ࣮ࢸ࢕ࣥࢢ࡛཯ᑕࡍࡿࡇ࡜࡛ኴ㝧㟁ụࢭࣝࡢ  ᗘୖ᪼ࢆᢚ࠼࡚࠸ࡿ㸬ࣇࢵ໬࣐ࢢࢿࢩ࣒࢘(MgF

2

) ࡢከᒙࢥ࣮ࢸ࢕ࣥࢢࡀ᪋ࡉࢀ࡚࠾ࡾ㸪᭱⾲㠃ࡢࢥ࣮

ࢸ࢕ࣥࢢ๣ࡣ㓟໬ࢪࣝࢥࢽ࣒࢘(ZrO

2

)࡛࠶ࡿ㸬

0213 ࡜ࡣ Corning ♫ࡢ࢞ࣛࢫࡢྡ⛠࡛࠶ࡾ㸪ࢭࣜ

࣒࢘ῧຍ࣍࢘ࢣ࢖㓟࢞ࣛࢫࢆ♧ࡍ㸬ࡇࢀࡣ ETS- ϯࡢ ኴ㝧㟁ụࣃࢻࣝ࡟᥇⏝ࡉࢀࡓ〇ရ࡛ࡶ࠶ࡿ

6)

4.2.2 CMG 100 AR

®

CMG 100 AR

®

ࡣ㸪 Qioptiq( ᪧ Thales) ♫ࡢ〇ရ࡛࠶ࡾ㸪

⾲㠃࡟ AR ࢥ࣮ࢸ࢕ࣥࢢࡀ᪋ࡉࢀ࡚࠸ࡿ

7)

㸬CMG࡜ࡣ Pilkington♫ࡢ࢞ࣛࢫࡢྡ⛠࡛࠶ࡾ㸪࣒࢞ࣜ࢘ࣄ⣲ኴ 㝧㟁ụࡢ⇕⭾ᙇಀᩘ࡟ྜࢃࡏࡓ࢞ࣛࢫࢆ♧ࡍ

8)

㸬⣸እ

⥺㸪㟁Ꮚ㸪ᨺᑕ⥺࠿ࡽኴ㝧㟁ụ⣲Ꮚࢆಖㆤࡋ㸪పయ

✚᢬ᢠ⋡ࢱ࢖ࣉ࡛࠶ࡿ㸬

AR ࡜ࡣ Anti-Reflection ࡢ␎࡛࠶ࡾ㸪཯ᑕࢆ㜵Ṇࡍ

ࡿ㸬ࣇࢵ໬࣐ࢢࢿࢩ࣒࢘(MgF

2

)ࡢከᒙࢥ࣮ࢸ࢕ࣥࢢ ࡀ⏝࠸ࡽࢀ࡚࠸ࡿ

9)

4.2.3 ྜᡂ▼ⱥ࢞ࣛࢫ

ྜᡂ▼ⱥ࢞ࣛࢫ࡜ࡣ㸪໬Ꮫⓗ࡟ྜᡂࡋࡓ୙⣧≀ࡢ ᑡ࡞࠸㸪࡯ࡰ 100 㸣ࡢ஧㓟໬⌛⣲ (SiO

2

) ࠿ࡽᡂࡿ▼ⱥ

࢞ࣛࢫࢆᣦࡍ㸬㏻ᖖ㸪ᾮయᮦᩱ(SiCl

4

➼)࠿ࡽసࡽࢀ

ࡿ㸬ගᏛⓗ࡞ᆒ㉁ᛶࡸ⣸እ⥺ᇦࡸ㏆㉥እ⥺ᇦࡢ㏱㐣

≉ᛶ࡟ඃࢀࡿࡀ㸪⇇⼥㸪ᡂᆺࡀᅔ㞴࡛࠶ࡿ࡜࠸࠺㞴

Ⅼࡀ࠶ࡿ

10)

㸬ࡑࡢࡓࡵ㸪୍⯡ⓗ࡟ࡣ㔠ᒓ୙⣧≀࡞࡝

ࢆῧຍࡋࡓ࢞ࣛࢫࡀ⏝࠸ࡽࢀࡿࡇ࡜ࡶከ࠸㸬 ௒ᅇ౑⏝ࡋࡓࡢࡣ᪫◪Ꮚᰴᘧ఍♫〇ࡢྜᡂ▼ⱥ࢞

ࣛࢫ”AQ”࡛࠶ࡿ㸬

4.3 ᐇ㦂⤖ᯝ

ᅗ 2 ࡟ Kapton

®

200H ࡜ BRR/s 0213

®

ࡢ⾲㠃㟁఩ࡢ

᫬㛫ᒚṔࢆ♧ࡍ㸬ࡲࡓ㸪ᅗ 3 ࡟ Kapton

®

200H ࡜ኴ㝧 㟁ụ࢝ࣂ࣮࢞ࣛࢫ 2 ✀࡟ᑐࡍࡿ⾲㠃㟁఩ࡢ᫬㛫ᒚṔ

ࢆ♧ࡍ㸬

࡝ࡕࡽࡶ⦪㍈ࡣヨᩱ⾲㠃㟁఩ ( ㈇㟁఩ )V[V] ࢆ㸪ᶓ㍈

ࡣ㟁Ꮚ⥺↷ᑕᚋࡢ⤒㐣᫬㛫 t[hour]ࢆ♧ࡍ㸬

Kapton

®

200H ࡢ⾲㠃㟁఩ࡣ㸪ィ ࢆ㛤ጞࡋ࡚ᩘ᫬

㛫ࡣᛴ⃭࡟㟁఩ࡀῶ⾶ࡋ㸪ࡑࡢᚋࡣῶ⾶ࡀ⦆ࡸ࠿࡜

࡞ࡗ࡚࠸ࡿ㸬ࡲࡓ㸪ኴ㝧㟁ụ࢝ࣂ࣮࢞ࣛࢫ 2 ✀ࡣ㟁 Ꮚ⥺↷ᑕᚋࡢᩘ᫬㛫ࡢ࠺ࡕ࡟ṇഃࡢ㟁఩࡟㑄⛣ࡋ࡚

࠸ࡿࡇ࡜ࡀࢃ࠿ࡿ㸬

⾲ 1 ᐇ㦂᮲௳

㻺㼛㻚㻝 㻺㼛㻚㻞 㻺㼛㻚㻟 㻺㼛㻚㻠 㻺㼛㻚㻡

㻱㼚 㼑㼞㼓㼥㻌㼇㼗㼑 㼂㼉 㻝㻡 㻞㻜 㻞㻜 㻞㻜 㻞㻜

㼀㼕㼙㼑㻌 㼇㼟㼑㼏 㼉 㻢㻜 㻢㻜 㻢㻜 㻢㻜 㻢㻜

㻝㻜

㻙㻠

㻝㻜

㻙㻠

㻝㻜

㻙㻢

㻝㻜

㻙㻢

㻝㻜

㻙㻢

㻠㻤㻡 㻢㻟㻥 㻢㻟㻥 㻢㻟㻥 㻢㻟㻥

㻷㼍㼜㼠㼛㼚

㻌㻞㻜㻜㻴 㻮㻾㻾㻛㼟㻌㻜㻞㻝㻟

㻮㻾㻾㻛㼟㻌㻜㻞㻝㻟

㻯㻹㻳㻌㻝㻜㻜㻌㻭㻾

ྜᡂ▼ⱥ䜺䝷䝇

㻡㻜 㻝㻜㻜 㻝㻜㻜 㻝㻜㻜 㻝㻚㻝㻟㼇㼙㼙㼉

㻵㼞㼞㼍㼐㼕㼍㼠㼕㼛㼚

㼂㼍㼏㼡㼡 㼙㻌 㼘㼑㼢㼑㼘㻌㼇㻼㼍㼉 㻯㼡 㼞㼞㼑 㼚㼠㻌㼐㼑㼚 㼟㼕㼠㼥㻌㼇㼚㻭㻛 㼙㼙

㻿㼍㼙㼜㼘㼑

㻿㼍㼙㼜㼘㼑 㻌㼠㼔 㼕㼏㼗㼚㼑 㼟㼟㻌㼇䃛㼙㼉

(3)

ᙜ◊✲ᐊ࡛ࡣ㸪ࡇࢀࡲ࡛࡟㟁Ⲵ⵳✚ἲ

11)

ࢆ⏝࠸࡚

Ᏹᐂᶵ⏝ᮦᩱࡢయ✚᢬ᢠ⋡ࡢྲྀᚓࢆ⾜ࡗ࡚ࡁࡓ㸬㟁 Ⲵ⵳✚ἲ࡜ࡣヨᩱ⾲㠃࡟ㄏ㉳ࡋࡓ㟁఩ࡢ᫬㛫ᒚṔࢆ

ᣦᩘ㏆ఝࡋ㸪ࡑࡢῶ⾶᫬ᐃᩘ࠿ࡽయ✚᢬ᢠ⋡ࢆồࡵ

ࡿᡭἲ࡛࠶ࡿ㸬ࡇࡢ⌮ㄽ࡟ࡼࢀࡤ㸪 Kapton

®

200H ࡢ ῶ⾶᫬ᐃᩘ ࡣ 8.3 ™10

5

[sec]㸪య✚᢬ ᢠ⋡ࡣ 2.8™

10

16

[ȍ 㺃 m] ࡜࡞ࡾ㸪య✚᢬ᢠ⋡ࡣ࣓࣮࢝බ⛠್

12)

࡛࠶

ࡿ 10

15

[ȍ㺃m]ࡼࡾ୍᱆኱ࡁ࠸್࡜࡞ࡗࡓ㸬

ࡲࡓ㸪ኴ㝧㟁ụ࢝ࣂ࣮࢞ࣛࢫࡢ⾲㠃㟁఩ࡣṇഃ࡟

㑄⛣ࡋ࡚࠸ࡿࡓࡵ㸪㟁Ⲵ⵳✚ἲࡢ⌮ㄽࡀ㐺⏝࡛ࡁࡎ య✚᢬ᢠ⋡ࡢྲྀᚓ࡟ࡣ⮳ࡗ࡚࠸࡞࠸㸬ヨᩱ No.2 ࡢ

BRR/s 0213

®

࡟ὀ┠ࡍࡿ࡜㸪㟁Ꮚ⥺↷ᑕࡢ⣙ 17 ᫬㛫

ᚋ࡟ṇ㟁఩ࡀ᭱኱࡜࡞ࡾ㸪ࡑࡢᚋࡣᚎࠎ࡟㟁఩ࡀ 0[V]࡟࡞ࡿࡼ࠺࡟⦆࿴ࡋ࡚࠸ࡿ㸬ࡇࡢ⦆࿴㡿ᇦࡀᣦ

ᩘ㏆ఝ࡛ࡁࡿ࡜௬ᐃࡋ࡚⦆࿴᫬ᐃᩘࢆồࡵࡓ࡜ࡇࢁ㸪

⦆࿴᫬ᐃᩘࡣ 8.3™10

5

[sec]࡜࡞ࡗࡓ㸬ࡇࡇ࡛㸪⦆࿴᫬

ᐃᩘ࡜ࡣ㟁Ⲵ⵳✚ἲࡢῶ⾶᫬ᐃᩘ࡜༊ูࡍࡿࡓࡵ࡟

⏝࠸ࡓゝⴥ࡛࠶ࡿ㸬

ᅗ 2 Kapton

®

200H ࡜ BRR/s 0213

®

ࡢ⾲㠃㟁఩

ᅗ 3 Kapton

®

200H ࡜ኴ㝧㟁ụ࢝ࣂ࣮࢞ࣛࢫ 2 ✀ࡢ

⾲㠃㟁఩ࡢ᫬㛫ᒚṔ

ḟ࡟㸪⾲㠃ࢥ࣮ࢸ࢕ࣥࢢ๣ࡢᙳ㡪ࢆᢕᥱࡍࡿࡓࡵ

࡟㸪ࢥ࣮ࢸ࢕ࣥࢢࡢ᪋ࡉࢀ࡚࠸࡞࠸ྜᡂ▼ⱥ࢞ࣛࢫ

࡜ẚ㍑ࢆࡍࡿ㸬ᅗ 4 ࡟ྜᡂ▼ⱥ࢞ࣛࢫ”AQ”ࡢ⾲㠃㟁

఩ࡢ᫬㛫ᒚṔࢆ♧ࡍ㸬ࡲࡓ㸪ᅗ 5 ࡟ྜᡂ▼ⱥ࢞ࣛ

ࢫ”AQ”࡜ኴ㝧㟁ụ࢝ࣂ࣮࢞ࣛࢫ 2 ✀࡟ᑐࡍࡿ⾲㠃㟁

఩ࡢ᫬㛫ᒚṔࢆ♧ࡍ㸬

࡝ࡕࡽࡶ⦪㍈ࡣヨᩱ⾲㠃㟁఩(㈇㟁఩)V[V]ࢆ㸪ᶓ㍈

ࡣ㟁Ꮚ⥺↷ᑕᚋࡢ⤒㐣᫬㛫 t[hour] ࢆ♧ࡍ㸬

ྜᡂ▼ⱥ࢞ࣛࢫ”AQ”ࡢ⾲㠃㟁఩ࡣ㸪ኴ㝧㟁ụ࢝ࣂ

࣮࢞ࣛࢫࡢࡼ࠺࡟ᩘ᫬㛫ࡢ࠺ࡕ࡟㟁఩ࡀṇഃ࡟㑄⛣

ࡍࡿࡇ࡜࡞ࡃ㸪ᚎࠎ࡟㟁఩ࡀῶ⾶ࡋ࡚࠸ࡿࡢࡀࢃ࠿

ࡿ㸬

ྠᵝ࡟ῶ⾶᫬ᐃᩘ࠾ࡼࡧయ✚᢬ᢠ⋡ࢆồࡵࡓ࡜ࡇ

ࢁ㸪ྜᡂ▼ⱥ࢞ࣛࢫ ”AQ” ࡢῶ⾶᫬ᐃᩘࡣ 2.2×10

8

[sec] 㸪 య✚᢬ᢠ⋡ࡣ 6.1×10

18

[ȍ㺃m]࡜࡞ࡗࡓ㸬〇㐀ඖ࡛࠶ࡿ

᪫◪Ꮚᰴᘧ఍♫ࡢ㈨ᩱ

10)

࡟ࡼࢀࡤ㸪య✚᢬ᢠ⋡ࡣ 200Υࡢ࡜ࡁ 3™10

10

[ȍ㺃m]㸪 300Υࡢ࡜ࡁ 3™10

8

[ȍ㺃m]

࡜࠶ࡿࡀ㸪ᐊ ࡛ࡢࢹ࣮ࢱࡀ࡞ࡃ༢⣧࡟ࡣẚ㍑ࡀ࡛

ࡁ࡞࠸㸬ࡑࡇ࡛㸪୍⯡ⓗ࡞▼ⱥ࢞ࣛࢫࡢయ✚᢬ᢠ⋡

࡜ẚ㍑ࡍࡿࡇ࡜࡟ࡍࡿ㸬ᩥ⊩್

13)

ࡼࡾ㸪▼ⱥ࢞ࣛࢫ ࡢయ✚᢬ᢠ⋡ࡣᐊ ࡛ 10

16

[ȍ㺃m]࡜࠶ࡾ㸪㟁Ⲵ⵳✚ἲ

࡛ồࡵࡓ್ࡣᩥ⊩್ࡼࡾ஧᱆኱ࡁ࠸್࡜࡞ࡗࡓ㸬

ᅗ 4 ྜᡂ▼ⱥ࢞ࣛࢫ”AQ”ࡢ⾲㠃㟁఩ࡢ᫬㛫ᒚṔ

ᅗ 5 ྜᡂ▼ⱥ࢞ࣛࢫ”AQ”࡜ኴ㝧㟁ụ࢝ࣂ࣮࢞ࣛࢫ

2 ✀࡟ᑐࡍࡿ⾲㠃㟁఩ࡢ᫬㛫ᒚṔ

5. ⪃ᐹ

ᅗ 3 ࠾ࡼࡧᅗ 5 ࡼࡾ㸪⾲㠃ࢥ࣮ࢸ࢕ࣥࢢࡀ᪋ࡉࢀ

Ͳ2000 Ͳ1000 0 1000 2000 3000 4000

0 25 50 75 100 125 150

Surfacepotential(negative)V[V]

Timet[hour]

No.2(BRR/s0213®,20keV) No.1(Kapton®200H,20keV)

Ͳ2000 Ͳ1000 0 1000 2000 3000 4000

0 5 10 15 20 25 30 35

Surfacepotential(negative)V[V]

Timet[hour]

No.2(BRR/s0213®,20keV) No.3(BRR/s0213®,20keV) No.4(CMG100AR®,20keV)

No.1(Kapton®200H,20keV)

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

0 50 100 150 200 250 300 350 400

Surfacepotential(negative)V[V]

Timet[hour]

No.5(ྜᡂ▼ⱥ䜺䝷䝇"AQ",20keV)

Ͳ2000 Ͳ1000 0 1000 2000 3000 4000 5000

0 5 10 15 20 25 30 35

Surfacepotential(negative)V[V]

Timet[hour]

No.2(BRR/s0213®,20keV) No.3(BRR/s0213®,20keV) No.4(CMG100AR®,20keV)

No.5(ྜᡂ▼ⱥ䜺䝷䝇"AQ",20keV)

(4)

ࡓኴ㝧㟁ụ࢝ࣂ࣮࢞ࣛࢫࡢ⾲㠃㟁఩ࡢ᫬㛫ᒚṔࡣ㸪 3 ヨᩱ࡜ࡶ㟁Ꮚ⥺↷ᑕࡢᩘ᫬㛫ࡢ࠺ࡕ࡟ṇഃࡢ㟁఩࡟

㑄⛣ࡋ࡚࠸ࡿⅬ࡛㢮ఝᛶࡀ࠶ࡿ㸬ࡲࡓ㸪ࢥ࣮ࢸ࢕ࣥ

ࢢ๣ࡢ᪋ࡉࢀ࡚࠸࡞࠸ྜᡂ▼ⱥ࢞ࣛࢫࡣ㸪ṇᖏ㟁ࡋ

࡚࠸࡞࠸ࡇ࡜࠿ࡽ㸪࢝ࣂ࣮࢞ࣛࢫࡀṇᖏ㟁ࡍࡿࡢࡣ

⾲㠃ࢥ࣮ࢸ࢕ࣥࢢ๣ࡀ኱ࡁࡃ㛵୚ࡋ࡚࠸ࡿ࡜⪃࠼ࡽ

ࢀࡿ㸬

㟁Ꮚ⥺↷ᑕ࡟ࡼࡾ㸪ࢥ࣮ࢸ࢕ࣥࢢ๣࡟ྵࡲࢀࡿ㔠 ᒓඖ⣲ (Mg) ࡀ㟁㞳ࢆ㉳ࡇࡋ㸪஧ḟ㟁Ꮚࢆᨺฟࡍࡿ㸬 㟁Ꮚ⥺↷ᑕ┤ᚋࡣ㸪౪⤥ࡉࢀ⥆ࡅ࡚࠸ࡓධᑕ㟁Ꮚࡀ ほ ࡉࢀ㈇㟁఩࡜࡞ࡿ㸬ࡲࡓ㟁Ꮚ⥺↷ᑕ࡟ࡼࡾ㸪ᨺ ᑕ⥺ㄏ㉳ఏᑟ

14)

(Radiation Induced Conductivity: RIC) ࡀಁ㐍ࡉࢀ㸪ᑟ㟁⋡ࡀୖ᪼ࡍࡿ㸬㟁Ꮚ⥺↷ᑕ⤊஢┤

ᚋ࡟ᛴ⃭࡞㟁఩ῶ⾶ࡀ㉳ࡁ㸪㟁఩ࡀṇഃ࡟㑄⛣ࡋ࡚

࠸ࡿࡢࡣ㸪 RIC ࡢຠᯝ࡟ࡼࡾ㟁Ꮚ⥺↷ᑕ㡿ᇦࡢᑟ㟁

⋡ࡀୖ᪼ࡋ㸪ヨᩱ⾲㠃࡟Ꮡᅾࡍࡿ㟁Ꮚࡀ⾲㠃࡞࠸ࡋ ࡣෆ㒊ࢆ㏻㐣ࡋࢢࣛࣥࢻ࡬࡜ὶฟࡋ㸪஧ḟ㟁Ꮚࡢᨺ ฟ࡟ࡼࡾṧࡉࢀࡓṇᏍࡀほ ࡉࢀࡓࡓࡵࡔ࡜⪃࠼ࡽ

ࢀࡿ㸬

ኴ㝧㟁ụ࢝ࣂ࣮࢞ࣛࢫ࡛࠶ࡿ BRR/s 0213

®

(ヨᩱ

No.2) ࡢṇ㟁఩ࡢ⦆࿴᫬ᐃᩘࡣ 8.3 ™ 10

5

[sec] ࡛࠶ࡗࡓ ࡀ㸪᪥ᩘ࡟┤ࡍ࡜⣙༑᪥࡛࠶ࡿ㸬↷ᑕ࢚ࢿࣝࢠࡀ

20[keV] ࡢ㟁Ꮚ⥺ࢆ 1 ศ㛫↷ᑕࡍࡿࡔࡅ࡛㸪ṇ㟁఩ࡀ

⦆࿴ࡉࢀࡿࡢ࡟༑᪥௨ୖ࠿࠿ࡿࡇ࡜ࡀࢃ࠿ࡿ㸬࢝ࣂ

࣮࢞ࣛࢫࡀṇᖏ㟁ࡍࡿࡇ࡜ࡣ㸪⾨ᫍ㟁఩࡜࢝ࣂ࣮࢞

ࣛࢫ㟁఩ࡢ㛫࡛㏫㟁఩໙㓄ࡀᙧᡂࡉࢀࡸࡍࡃ࡞ࡾ㸪 ᨺ㟁࡟⮳ࡿࣜࢫࢡࢆ㧗ࡵ࡚ࡋࡲ࠺㸬ගᏛⓗ≉ᛶࢆኻ

ࢃࡎ㸪࠿ࡘⲴ㟁⢏Ꮚ࡟ࡼࡗ࡚㟁㞳ࡋ࡟ࡃ࠸ࢥ࣮ࢸ࢕

ࣥࢢ๣ࡢ㑅ᐃࡀᚲせ࡛࠶ࡿ࡜⪃࠼ࡿ㸬

6. ࡲ࡜ࡵ

㧗ศᏊᮦᩱ⭷ Kapton

®

200H㸪⾲㠃ࢥ࣮ࢸ࢕ࣥࢢࡀ

᪋ࡉࢀࡓኴ㝧㟁ụ࢝ࣂ࣮࢞ࣛࢫ 2 ✀࠾ࡼࡧྜᡂ▼ⱥ

࢞ࣛࢫ”AQ”࡟ᑐࡋ࡚㟁Ꮚ⥺↷ᑕࢆ⾜࠸㸪⾲㠃㟁఩ࢆ

ィ ࡋࡓ㸬ࡇࢀ࡟ࡼࡾ௨ୗࡢ⤖ㄽࢆᚓࡓ㸬

y ⾲㠃ࢥ࣮ࢸ࢕ࣥࢢࡀ᪋ࡉࢀࡓኴ㝧㟁ụ࢝ࣂ࣮࢞ࣛ

ࢫࡢ⾲㠃㟁఩ࡢ᫬㛫ᒚṔࡣ㸪 3 ヨᩱ࡜ࡶ㟁Ꮚ⥺↷ᑕ ࡢᩘ᫬㛫ࡢ࠺ࡕ࡟ṇഃࡢ㟁఩࡟㑄⛣ࡋ࡚࠸ࡿⅬ࡛

㢮ఝᛶࡀ࠶ࡿ㸬

y 㟁Ꮚ⥺↷ᑕ࡟ࡼࡾ㸪ࢥ࣮ࢸ࢕ࣥࢢ๣࡟ྵࡲࢀࡿ㔠 ᒓඖ⣲ (Mg) ࡀ㟁㞳ࢆ㉳ࡇࡋ㸪஧ḟ㟁Ꮚࡢᨺฟ࡟ࡼ

ࡾṧࡉࢀࡓṇᏍࡀほ ࡉࢀṇᖏ㟁࡜࡞ࡿ㸬 y RIC ࡟ࡼࡿᑟ㟁⋡ࡢୖ᪼࡟ࡼࡗ࡚㸪⾲㠃ࢥ࣮ࢸ࢕

ࣥࢢࡀ᪋ࡉࢀࡓኴ㝧㟁ụ࢝ࣂ࣮࢞ࣛࢫࡢṇᖏ㟁ࡀ

ಁ㐍ࡉࢀࡿ㸬

y ヨᩱ No.2 ࡢ BRR/s 0213

®

ࡣ㸪㟁Ꮚ⥺↷ᑕࡢ⣙ 17 ᫬

㛫ᚋ࡟ṇ㟁఩ࡀ᭱኱࡜࡞ࡾ㸪ࡑࡢᚋࡣᚎࠎ࡟㟁఩

ࡀ 0[V]࡟࡞ࡿࡼ࠺࡟⦆࿴ࡋ࡚࠸ࡿ㸬⦆࿴᫬ᐃᩘࡣ

8.3×10

5

[sec] ࡜࡞ࡗࡓ㸬

ཧ⪃ᩥ⊩

1) H. C. Koons. et al., “The Impact of the Space Environment on Space Systems”, Proceedings of the 6th Spacecraft Charging Technology Conference, 2000, Air Force Research Laboratory, pp.7-11

2) M. Cho and H. Fujii, “Review on Charging and Discharging Phenomena in Space Environment:

Arcing on High Voltage Solar Array and Future Issues”, Aeronautical and Space Sciences Japan, 2003, Vol.51, pp.140-145

3) ㇏⏣⿱அࡽ , “EL ࢖࣓࣮ࢪࣥࢢ࡟ࡼࡿኴ㝧㟁ụࢭ

ࣝࡢຎ໬ホ౯”, Proceedings of the 3rd Spacecraft Environment Symposium, 2007, pp.99-104

4) ㇏⏣⿱அࡽ, “ࣉࣛࢬ࣐⎔ቃ࡟࠾ࡅࡿኴ㝧㟁ụࢭ

ࣝࡢᨺ㟁࡟ࡼࡿຎ໬ ”, ➨ 50 ᅇᏱᐂ⛉Ꮫᢏ⾡㐃ྜ

ㅮ₇఍, 2006, pp.1979-1984

5) Kawakita, S. et al., “Influence of high energy electrons and protons on secondary electron emission of cover glasses for space solar cells”, Discharges and Electrical Insulation in Vacuum, 2002, 2002. 20th International Symposium on, pp. 84- 87

6) JDSU, “Solar cell coverglass, radiation ̽ resistant glass”

7) Qioptiq Space Technology, “Solar cell cover glasses”

8) Kitchen, C.A., “Teflon bonding of solar cell assemblies using Pilkington CMZ and CMG coverglasses-now a production process”, Photovoltaic Energy Conversion, 1994., Conference Record of the Twenty Fourth. IEEE Photovoltaic Specialists Conference - 1994, 1994 IEEE First World Conference on, 1994, vol.2, pp.2058-2061

9) Ianno, N.J., “Atomic oxygen induced degradation of MGF2 anti-reflective coatings”, Photovoltaic Specialists Conference, 2008. PVSC '08. 33rd IEEE, 2008, pp.1-5

10) ᑠᯘ㔜⩏ࡽ, “ྜᡂ▼ⱥ࢞ࣛࢫ”AQ”ࡢ≉ᛶ”, ᪫◪

Ꮚ◊✲ሗ࿌ , 1986, Vol.36, No.1, pp.149-154

11) John R. Dennison et al., “Methods for High Resistivity Measurements Related to Spacecraft Charging”, Plasma Science, 2006, Vol.34, pp.2191-2203

12) ᮾ࣭ࣞࢹ࣏ࣗࣥᰴᘧ఍♫, “࢝ࣉࢺࣥ⥲ྜ࢝ࢱࣟ

(5)

ࢢ ”

13) ᅜ❧ኳᩥྎ, “⌮⛉ᖺ⾲ᖹᡂ 22 ᖺ(ᮘୖ∧)”, ୸ၿ

ᰴᘧ఍♫ , 2009, 1041p

14) Yang, G.M., Sessler, G.M., “Radiation-induced

conductivity in electron-beam irradiated insulating

polymer films”, Electrical Insulation, IEEE

Transactions on , 1992, vol.27, no.4, pp.843-84

参照

関連したドキュメント

So, the aim of this study is to analyze, numerically, the combined effect of thermal radiation and viscous dissipation on steady MHD flow and heat transfer of an upper-convected

Proof of Theorem 2: The Push-and-Pull algorithm consists of the Initialization phase to generate an initial tableau that contains some basic variables, followed by the Push and

Proof of Theorem 2: The Push-and-Pull algorithm consists of the Initialization phase to generate an initial tableau that contains some basic variables, followed by the Push and

An easy-to-use procedure is presented for improving the ε-constraint method for computing the efficient frontier of the portfolio selection problem endowed with additional cardinality

On the other hand, when M is complete and π with totally geodesic fibres, we can also obtain from the fact that (M,N,π) is a fibre bundle with the Lie group of isometries of the fibre

Keywords: Convex order ; Fréchet distribution ; Median ; Mittag-Leffler distribution ; Mittag- Leffler function ; Stable distribution ; Stochastic order.. AMS MSC 2010: Primary 60E05

Inside this class, we identify a new subclass of Liouvillian integrable systems, under suitable conditions such Liouvillian integrable systems can have at most one limit cycle, and

This paper develops a recursion formula for the conditional moments of the area under the absolute value of Brownian bridge given the local time at 0.. The method of power series