• 検索結果がありません。

Criteria for Discrete-Time Neural Networks with Time-Varying Delay

N/A
N/A
Protected

Academic year: 2022

シェア "Criteria for Discrete-Time Neural Networks with Time-Varying Delay"

Copied!
23
0
0

読み込み中.... (全文を見る)

全文

(1)

Volume 2009, Article ID 874582,23pages doi:10.1155/2009/874582

Research Article

New Improved Exponential Stability

Criteria for Discrete-Time Neural Networks with Time-Varying Delay

Zixin Liu,

1, 2

Shu Lv,

1

Shouming Zhong,

1

and Mao Ye

3

1School of Applied Mathematics, University of Electronic Science and Technology of China, Chengdu 610054, China

2School of Mathematics and Statistics, Guizhou College of Finance and Economics, Guiyang 550004, China

3School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China

Correspondence should be addressed to Zixin Liu,xinxin905@163.com Received 13 March 2009; Accepted 11 May 2009

Recommended by Manuel De La Sen

The robust stability of uncertain discrete-time recurrent neural networks with time-varying delay is investigated. By decomposing some connection weight matrices, new Lyapunov-Krasovskii functionals are constructed, and serial new improved stability criteria are derived. These criteria are formulated in the forms of linear matrix inequalitiesLMIs. Compared with some previous results, the new results are less conservative. Three numerical examples are provided to demonstrate the less conservatism and effectiveness of the proposed method.

Copyrightq2009 Zixin Liu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1. Introductionn

In recent years, recurrent neural networkssee 1–7, such as Hopfield neural networks, cellular neural networks, and other networks have been widely investigated and successfully applied in all kinds of science areas such as pattern recognition, image processing, and fixed-point computation. However, because of the finite switching speed of neurons and amplifiers, time delay is unavoidable in nature and technology. It can make important effects on the stability of dynamic systems. Thus, the studies on stability are of great significance.

There has been a growing research interest on the stability analysis problems for delayed neural networks, and many excellent papers and monographs have been available. On the other hand, during the design of neural network and its hardware implementation, the convergence of a neural network may often be destroyed by its unavoidable uncertainty due

(2)

to the existence of modeling error, the deviation of vital data, and so on. Therefore, the studies on robust convergence of delayed neural network have been a hot research direction. Up to now, many sufficient conditions, either delay-dependent or delay-independent, have been proposed to guarantee the global robust asymptotic or exponential stability for different class of delayed neural networkssee8–13.

It is worth pointing out that most neural networks have been assumed to be in continuous time, but few in discrete time. In practice, the discrete-time neural networks are more applicable to problems that are inherently temporal in nature or related to biological realities. And they can ideally keep the dynamic characteristics, functional similarity, and even the physical or biological reality of the continuous-time networks under mild restriction.

Thus, the stability analysis problems for discrete-time neural networks have received more and more interest, and some stability criteria have been proposed in literature see 14–

25. In 14, Liu et al. researched a class of discrete-time RNNs with time-varying delay, and proposed a delay-dependent condition guaranteeing the global exponential stability. By using a similar technique to that in21, the result obtained in14has been improved by Song and Wang in15. The results in15are further improved by Zhang et al. in16by introducing some useful terms. In17, Yu et al. proposed a new less conservative result than that obtained in16via constructing a new augment Lyapunov-Krasovskii functional.

In this paper, the connection weight matrix C is decomposed, and some new Lyapunov-Krasovskii functionals are constructed. Combined with linear matrix inequality LMI technique, serial new improved stability criteria are derived. Numerical examples show that these new criteria are less conservative than those obtained in14–17.

Notation 1. The notations are used in our paper except where otherwise specified.·denotes a vector or a matrix norm;R,Rnare real and n-dimension real number sets, respectively;N is nonnegative integer set. I is identity matrix; ∗ represents the elements below the main diagonal of a symmetric block matrix; Real matrixP > 0 < 0denotes thatP is a positive definitenegative definitematrix;Na, b {a, a1, . . . , b};λminλmaxdenotes the minimum and maximum eigenvalue of a real matrix.

2. Preliminaries

Consider a discrete-time recurrent neural network with time-varying delays17described by

Σ:xk1 Ckxk Akfxk Bkfxk−τk J, k 1,2, . . . , 2.1

where xk x1k, x2k, . . . , xnkT ∈ Rn denotes the neural state vector; fxk f1x1k, f2 x2k, . . . , fnxnkT, fxkτk f1x1k − τk, f2x2k − τk, . . . , fnxnk−τkT are the neuron activation functions;J J1, J2, . . . , JnT is the external input vector; Positive integerτk represents the transmission delay that satisfies 0 < τmτk ≤ τM, where τm, τM are known positive integers representing the lower and upper bounds of the delay.Ck C ΔCk,Ak A ΔAk,Bk B ΔBk.

C diagc1, c2, . . . , cnwith|ci|<1 describes the rate with which theith neuron will reset its potential to the resting state in isolation when disconnected from the networks and external inputs; C, A, B ∈ Rn×n represent the weighting matrices; ΔCk,ΔAk,ΔBk denote the

(3)

time-varying structured uncertainties which are of the following form:

ΔCk,ΔAk,ΔBk KFk Ec, Ea, Eb, 2.2

whereK, Ec, Ea, Eb are known real constant matrices with appropriate dimensions,Fkis unknown time-varying matrix function satisfyingFTkFk≤I, for allk∈N.

The nominalΣ0ofΣcan be defined as

Σ0:xk1 Cxk Afxk Bfxk−τk J, k 1,2, . . . , 2.3

To obtain our main results, we need to introduce the following assumption, definition and lemmas.

Assumption 1. For anyx, y∈R,x /y,

σifix−fi

y

xyσi, i 1,2, . . . , n, 2.4

whereσi, σiare known constant scalars.

As pointed out in 16 under Assumption 1, system 2.3 has equilibrium points.

Assume thatx x1, x2, . . . , xnTis an equilibrium point of2.3and letyik xik−xi, giyik fiyik xifixi. Then, system2.3, can be transformed into the following form:

yk1 Cyk Ag yk

Bg

yk−τk

, k 1,2, . . . , 2.5

where yk y1k, y2k, . . . , ynkT, gyk g1y1k, g2y2k, . . . , gnynkT, gykτk g1y1k−τk, g2y2k−τk, . . . , gnynk−τkT. From Assumption 1, for anyx, y ∈ R,x /y, functionsgi·satisfyσi ≤ gix−giy/x−yσi, i 1,2, . . . , n,andgi0 0.

Remark 2.1. Assumption 1is widely used for dealing with the stability problem for neural networks. As pointed out in13,14,16,17,26,27, constantsσi, σi i 1,2, . . . , ncan be positive, negative, and zero. Thus, this assumption is less restrictive than traditional Lipschitz condition.

Definition 2.2. The delayed discrete-time recurrent neural network in 2.5 is said to be globally exponentially stable if there exist two positive scalarsα > 0 and 0 < β < 1 such that

yk ≤α·βk sup

s∈N−τM,0ys, ∀k≥1. 2.6

(4)

Lemma 2.3Tchebychev Inequality 28. For any given vectorsvi ∈ Rn, i 1,2, . . . , n, the following inequality holds:

n

i 1

vi

T n

i 1

vi

n n

i 1

vTivi. 2.7

Lemma 2.4see29. For given matricesQ QT, H, EandR RT >0 of appropriate dimensions, then

QHFEETFTHT <0, 2.8

for allFsatisfyingFTFR, if and only if there is anε >0, such that

−1HHTεETRE <0. 2.9

Lemma 2.5see16. IfAssumption 1holds, then for any positive-definite diagonal matrixD diagd1, d2, . . . , dn>0, the following inequality holds:

g ykT

Dg yk

yTkD

1

2

g yk

yTk

1

D

2

yk≤0, k∈N, 2.10

where

1 diagσ1, σ2, . . . , σn,

2 diagσ1, σ2, . . . , σn.

Lemma 2.6see30. Given constant symmetric matricesΣ1,Σ2,Σ3whereΣT1 Σ1and 0<Σ2

ΣT2, thenΣ1 ΣT3Σ−12 Σ3<0 if and only if Σ1 ΣT3

Σ3 −Σ2

<0, or,

−Σ2 Σ3

ΣT3 Σ1

<0. 2.11

Lemma 2.7see13. LetNandEbe real constant matrices with appropriate dimensions, matrix FksatisfyingFTkFk ≤I, then, for any > 0,EFkNNTFTkET−1EETNTN, k∈N.

3. Main Results

To obtain our main results, we decompose the connection weight matrixCas follows:

C C1C2. 3.1

Then, we can get the following stability results.

(5)

Theorem 3.1. For any given positive scalars 0< τm < τM, then, underAssumption 1, system2.5 without uncertainty is globally exponentially stable for any time-varying delayτksatisfyingτmτkτM, if there exist positive-definite matricesP1, Q1, Q2, Q3, positive-definite diagonal matrices D1, D2, Q4, Q5, Q6, and arbitrary matricesPi, Hi, i 2,3, . . . ,21 with appropriate dimensions, such that the following LMI holds:

Ξ

⎜⎜

⎜⎜

⎜⎜

⎜⎜

⎜⎜

⎜⎜

⎜⎜

⎜⎜

⎜⎜

⎜⎜

⎜⎜

⎜⎝

Ξ11 Ξ12 Ξ13 Ξ14 Ξ15 Ξ16 Ξ17 Ξ18 Ξ19 Ξ1,10

∗ Ξ22 Ξ23 Ξ24 Ξ25 Ξ26 Ξ27 Ξ28 Ξ29 Ξ2,10

∗ ∗ Ξ33 Ξ34 Ξ35 Ξ36 Ξ37 Ξ38 Ξ39 Ξ3,10

∗ ∗ ∗ Ξ44 Ξ45 Ξ46 Ξ47 Ξ48 Ξ49 Ξ4,10

∗ ∗ ∗ ∗ Ξ55 Ξ56 Ξ57 Ξ58 Ξ59 Ξ5,10

∗ ∗ ∗ ∗ ∗ Ξ66 Ξ67 Ξ68 Ξ69 Ξ6,10

∗ ∗ ∗ ∗ ∗ ∗ Ξ77 Ξ78 Ξ79 Ξ7,10

∗ ∗ ∗ ∗ ∗ ∗ ∗ Ξ88 Ξ89 Ξ8,10

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ Ξ99 Ξ9,10

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ Ξ10,10

⎟⎟

⎟⎟

⎟⎟

⎟⎟

⎟⎟

⎟⎟

⎟⎟

⎟⎟

⎟⎟

⎟⎟

⎟⎟

⎟⎠

<0, 3.2

where

Ξ11 2CT1P1C1CT1P12C2CT2P12TC1−2P1H12C2CT2H12T Q2Q3

τMτm1Q1 1τmQ4 1τMQ5 τMτmQ6−2

1

D1

2

,

Ξ12 CT2H13P13T, Ξ13 CT1P1P12H12CT2H14P14P12TC1TP1T, Ξ14 CT1P2H2CT2H15P15T, Ξ15 −CT1P2H2C2TH16P16T,

Ξ16 −CT1P12AH12ACT2H17P17TD1

1

2

,

Ξ17 −CT1P12BH12BCT2H18P18T, Ξ18 −CT1P2H2CT2H19P19T, Ξ19 CT1P2H2CT2H20P20T, Ξ1,10 CT1P2H2CT2H21P21T, Ξ22 −Q1−2

1

D2

2

, Ξ23 P13H13, Ξ24 P3H3,

Ξ25 −P3H3, Ξ26 −P13AH13A,

Ξ27 −P13BH13BD2

1

2

, Ξ28 −P3H3,

(6)

Ξ29 P3H3, Ξ2,10 P3H3,

Ξ33 P12P14H14P12T P14TH14T 2P1, Ξ34 P2P4H4P15TH15T Ξ35 H4P2P4P16TH16T, Ξ36 H14P12P14AP17TH17T, Ξ37 H14P12P14BP18TH18T, Ξ38 H4P2P4P19TH19T, Ξ39 P4P2H4P20TH20T, Ξ3,10 P4P2H4P21TH21T, Ξ44 P5H5P5TH5TQ3, Ξ45 H5P5P6TH6T, Ξ46 H15AP15AP7TH7T, Ξ47 H15BP15BP8TH8T, Ξ48 H5P5P9TH9T, Ξ49 P5H5P10TH10T,

Ξ49 P5H5P11TH11T,

Ξ55 H6P6H6TP6TQ2, Ξ56 H16AP16AH7TP7T, Ξ57 H16BP16BH8TP8T, Ξ58 H6P6H9TP9T, Ξ59 P6H6H10TP10T, Ξ5,10 P6H6H11TP11T, Ξ66 H17AP17AATH17TATP17TD1D1T,

Ξ67 H17BP17BATH18TATP18T,

Ξ68 H7P7ATH19TATP19T, Ξ69 P7H7ATH20TATP20T, Ξ6,10 P7H7ATH21TATP21T,

Ξ77 H18BP18BBTH18TBTP18TD2D2T,

Ξ78 H8P8BTH19TBTP19T, Ξ79 P8H8BTH20TBTP20T, Ξ7,10 P8H8BTH21TBTP21T,

Ξ88 H9P9H9TP9T−1τM−1Q5, Ξ89 P9H9H10TP10T, Ξ8,10 P9H9H11TP11T,

Ξ9,9 P10H10P10TH10T −1τm−1Q4, Ξ9,10 P10H10H11TP11T, Ξ10,10 P11H11P11TH11T −τMτm−1Q6.

3.3

Proof. Construct a new augmented Lyapunov-Krasovskii functional candidate as follows:

Vk V1k V2k V3k V4k V5k V6k, 3.4

(7)

where

V1k 2YTk

⎜⎜

⎜⎜

P1 0 · · · 0 0 0 · · · 0 ... ... ... ... 0 0 · · · 0

⎟⎟

⎟⎟

10n×10n

Yk, 3.5

YTk yTk, yTk − τk, ηTk, yTk − τM, yTk − τm, gTyk, gTyk − τM, k

i k−τMyTi,k

i k−τmyTi,k−τm

i k−τM1yTiT, ηk yk1−C1yk; 0 is zero matrix with appropriate dimensions:

V2k k−1

i k−τk

yTiQ1yi,

V3k k−1

i k−τm

yTiQ2yi k−1

i k−τM

yTiQ3yi,

V4k k−1

j k−τm

k−1

i j

yTiQ4yi k−1

j k−τM

k−1

i j

yTiQ5yi,

V5k k−τm

j k−τM1

k−1 i j

yTiQ1yi,

V6k k−τm

j k−τM1

k−1 i j

yTiQ6yi.

3.6

SetYTk1 yTk 1, yTk−τk, ηTk, yTk−τM, yTk−τm, gTyk, gTyk − τM,k

i k−τMyTi,k

i k−τmyTi,k−τm

i k−τM1yTiT yTkC1T ηTk, ηTk, yTk −τM, yTk − τm, gTyk, gTyk − τM,k

i k−τMyTi, k

i k−τmyTi,k−τm

i k−τM1yTiT. Define ΔVk Vk1−Vk. Then along the solution of system2.5we have

ΔV1k 2YTk1

⎜⎜

⎜⎜

⎜⎝

P1 0 · · · 0 0 0 · · · 0 ... ... ... ... 0 0 · · · 0

⎟⎟

⎟⎟

⎟⎠Yk1−2YTk

⎜⎜

⎜⎜

⎜⎝

P1 0 · · · 0 0 0 · · · 0 ... ... ... ... 0 0 · · · 0

⎟⎟

⎟⎟

⎟⎠Yk

2YTk1

⎜⎜

⎜⎜

⎜⎝

P1 0 · · · 0 0 0 · · · 0 ... ... ... ... 0 0 · · · 0

⎟⎟

⎟⎟

⎟⎠

Yk1−2YTk

⎜⎜

⎜⎜

⎜⎝

P1 0 · · · 0 0 0 · · · 0 ... ... ... ... 0 0 · · · 0

⎟⎟

⎟⎟

⎟⎠Yk

2I1−2I2,

3.7

(8)

I1 YTk

⎜⎜

⎜⎜

⎜⎜

⎜⎜

⎜⎜

⎜⎜

⎜⎜

⎜⎜

⎜⎜

⎜⎜

⎜⎜

⎜⎜

⎜⎜

⎜⎜

CT1 0 0 0 0 0 0 0 0 0 0 I 0 0 0 0 0 0 0 0 I 0 I 0 0 0 0 0 0 0 0 0 0 I 0 0 0 0 0 0 0 0 0 0 I 0 0 0 0 0 0 0 0 0 0 I 0 0 0 0 0 0 0 0 0 0 I 0 0 0 0 0 0 0 0 0 0 I 0 0 0 0 0 0 0 0 0 0 I 0 0 0 0 0 0 0 0 0 0 I

⎟⎟

⎟⎟

⎟⎟

⎟⎟

⎟⎟

⎟⎟

⎟⎟

⎟⎟

⎟⎟

⎟⎟

⎟⎟

⎟⎟

⎟⎟

⎟⎟

⎜⎜

⎜⎜

⎜⎜

⎜⎜

⎜⎜

⎜⎜

⎜⎜

⎜⎜

⎜⎜

⎜⎜

⎜⎜

⎜⎜

⎜⎜

⎜⎜

P1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

⎟⎟

⎟⎟

⎟⎟

⎟⎟

⎟⎟

⎟⎟

⎟⎟

⎟⎟

⎟⎟

⎟⎟

⎟⎟

⎟⎟

⎟⎟

⎟⎟

Yk1

YTk

⎜⎜

⎜⎜

⎜⎜

⎜⎜

⎜⎜

⎜⎜

⎜⎜

⎜⎜

⎜⎜

⎜⎜

⎜⎜

⎜⎜

⎜⎜

⎜⎜

C1T 0 0 0 0 0 0 0 0 0 0 I 0 0 0 0 0 0 0 0 I 0 I 0 0 0 0 0 0 0 0 0 0 I 0 0 0 0 0 0 0 0 0 0 I 0 0 0 0 0 0 0 0 0 0 I 0 0 0 0 0 0 0 0 0 0 I 0 0 0 0 0 0 0 0 0 0 I 0 0 0 0 0 0 0 0 0 0 I 0 0 0 0 0 0 0 0 0 0 I

⎟⎟

⎟⎟

⎟⎟

⎟⎟

⎟⎟

⎟⎟

⎟⎟

⎟⎟

⎟⎟

⎟⎟

⎟⎟

⎟⎟

⎟⎟

⎟⎟

⎜⎜

⎜⎜

⎜⎜

⎜⎜

⎜⎜

⎜⎜

⎜⎜

⎜⎜

⎜⎜

⎜⎜

⎜⎜

⎜⎜

⎜⎜

⎜⎜

P1 P2 P12 0 P3 P13 0 P4 P14

0 P5 P15 0 P6 P16

0 P7 P17

0 P8 P18 0 P9 P19

0 P10 P20

0 P11 P21

⎟⎟

⎟⎟

⎟⎟

⎟⎟

⎟⎟

⎟⎟

⎟⎟

⎟⎟

⎟⎟

⎟⎟

⎟⎟

⎟⎟

⎟⎟

⎟⎟

⎜⎜

yk1 0 0

⎟⎟

.

3.8

On the other hand, since ηkC2ykAgykBgykτk 0, k

i k−τmyik

i k−τMyi k−τm

i k1−τMyiyTk−τm yTk−τM 0, we have

⎜⎜

yk1 0 0

⎟⎟

⎜⎜

⎜⎜

⎜⎜

⎜⎜

C1yk ηk k

i k−τm

yi− k

i k−τM

yi k−τm

i k1−τM

yi−yTk−τm yTk−τM

ηk−C2yk−Ag yk

Bg

yk−τk

⎟⎟

⎟⎟

⎟⎟

⎟⎟

3.9

(9)

⎜⎜

⎜⎝

C1 0 I 0 0 0 0 0 0 0 0 0 0 I −I 0 0 −I I I

−C2 0 I 0 0 −A −B 0 0 0

⎟⎟

⎟⎠Yk, 3.10

I2 YTk

⎜⎜

⎜⎜

⎜⎜

⎜⎜

⎜⎜

⎜⎜

⎜⎜

⎜⎜

⎜⎜

⎜⎜

⎜⎜

⎜⎜

⎜⎜

⎜⎜

P1 H2 H12 0 H3 H13

0 H4 H14

0 H5 H15 0 H6 H16

0 H7 H17 0 H8 H18 0 H9 H19

0 H10 H20 0 H11 H21

⎟⎟

⎟⎟

⎟⎟

⎟⎟

⎟⎟

⎟⎟

⎟⎟

⎟⎟

⎟⎟

⎟⎟

⎟⎟

⎟⎟

⎟⎟

⎟⎟

⎜⎜

yk

0 0

⎟⎟

YTk

⎜⎜

⎜⎜

⎜⎜

⎜⎜

⎜⎜

⎜⎜

⎜⎜

⎜⎜

⎜⎜

⎜⎜

⎜⎜

⎜⎜

⎜⎜

⎜⎜

P1 H2 H12 0 H3 H13

0 H4 H14 0 H5 H15 0 H6 H16

0 H7 H17 0 H8 H18

0 H9 H19

0 H10 H20 0 H11 H21

⎟⎟

⎟⎟

⎟⎟

⎟⎟

⎟⎟

⎟⎟

⎟⎟

⎟⎟

⎟⎟

⎟⎟

⎟⎟

⎟⎟

⎟⎟

⎟⎟

⎜⎜

I 0 0 0 0 0 0 0 0 0 0 0 0 I −I 0 0 −I I I

−C2 0 I 0 0 −A −B 0 0 0

⎟⎟

Yk.

3.11

ΔV2k≤yTkQ1yk−yTk−τkQ1yk−τk k−τm

i k1−τM

yTiQ1yi,

3.12 ΔV3k yTk Q2Q3yk−yTk−τmQ2yk−τmyTk−τMQ3yk−τM. 3.13

(10)

FromLemma 2.3we can obtain

ΔV4k k

j k1−τm

k i j

yTiQ4yi− k−1

j k−τm

k−1 i j

yTiQ4yi

k

j k1−τM

k i j

yTiQ5yi− k−1

j k−τM

k−1

i j

yTiQ5yi

k−1

j k−τm

k i j1

yTiQ4yi− k−1

j k−τm

k−1

i j

yTiQ4yi

k−1

j k−τM

k i j1

yTiQ5yi− k−1

j k−τM

k−1 i j

yTiQ5yi

k−1

j k−τm

yTkQ4yk−yT j

Q4y j

k−1

j k−τM

yTkQ5yk−yT j

Q5y j

≤1τmyTkQ4yk− k

j k−τm

yT j

Q4y j

1τMyTkQ5yk− k

j k−τM

yT j

Q5y j

≤1τmyTkQ4yk− 1 1τm

k

j k−τm

yj

T

Q4

k

j k−τm

y j

1τMyTkQ5yk− 1 1τM

k

j k−τM

yj

T

Q5

k

j k−τM

y j

,

3.14

ΔV5k k1−τm

j k2−τM

k i j

yTiQ1yi− k−τm

j k1−τM

k−1 i j

yTiQ1yi

k−τm

j k1−τM

k i j1

yTiQ1yi− k−τm

j k1−τM

k−1 i j

yTiQ1yi

k−τm

j k1−τM

yTkQ4yk−yT j

Q1y j

τMτmyTkQ1yk− k

j k1−τM

yT j

Q1y j

.

3.15

(11)

Similarly,

ΔV6k τMτmyTkQ6yk− k−τm

j k1−τM

yT j

Q6y j

≤τMτmyTkQ6yk− 1 τMτm

k−τm

j k1−τM

yj

T

Q6

k−τm

j k1−τM

y j

.

3.16

FromLemma 2.5, for any positive diagonal matrixD1, D2, it follows that

2yTk−τkD2

1

2

g

yk−τk

−2gT

yk−τk D2g

yk−τk

−2yTk−τk

1

D2

2

yk−τk≥0

2yTkD1

1

2

g yk

−2gT yk

D1g yk

−2yTk

1

D1

2

yk≥0.

3.17

Combining3.7–3.17, we get

ΔVk≤YTk ΞYk. 3.18

If the LMI3.2holds, it follows that there exists a sufficient small scalarε >0 such that ΔVk≤ −εyk2. 3.19 On the other hand, it can easily to get that

Vk≤2λmP1yk2λmaxQ1 k−1

i k−τk

yi2λmaxQ2 k−1

i k−τm

yi2

λmaxQ3 k−1

i k−τM

yi2λmaxQ4 k

j k−τm

k−1 i j

yi2λmaxQ5 k

j k−τM

k−1

i j

yi2

λmaxQ1 k−τm

j k−τM

k−1 i j

yi2λmaxQ6 k−τm

j k1−τM

k−1

i j

yi2

≤2λmaxPyk2λ k−1 i k−τM

yi2,

3.20

(12)

whereλ λmaxQ1 λmaxQ2 λmaxQ3 1τmλmaxQ4 1τMλmaxQ5 1τMτmλmaxQ1 λmaxQ6. Choose a scalarθ >1 such that−εθ2θ−1λmaxP1 θ−1λ· τMθτM 0. Then by3.19and3.20, we get

θk1Vk1−θkVk θk1ΔVk θkθ−1Vk

ε1θkyk2ε2θk

k−1

i k−τM

yi2,

3.21

where ε1 −εθ2λmaxPθ−1, ε2 λθ−1. Therefore, for arbitrary positive integer NτM1, summing up both sides of3.21from 0 toN−1, we can obtain

θNVN−V0≤ε1

N−1

k 0

θkyk2ε2

N−1

k 0 k−1

i k−τM

θkyi2

ε2τMτM1θτM sup

i∈N−τM,0yi2 ε1ε2τMθτMN−1

k 0

θkyk2. 3.22

Noting that

VN≥λminP1yN2, V0≤λτMmaxP1 sup

i∈N−τM,0

yi2. 3.23

It follows that yN ≤ α · βNsupi∈N−τ

M,0yi, where β

θ−1, α λτMmaxP ε2τMτMτMminP. By Definition 2.2, system 2.5 is globally exponentially stable, which completes the proof ofTheorem 3.1.

Remark 3.2. By constructing the new augmented Lyapunov functional, free-weighting matricesPi, Hi, i 2,3, . . . ,21 are introduced so as to reduce the conservatism of the delay- dependent result. Moreover, the decomposition of matrixC C1C2makes the conservatism of the stability criterion reduce further, since the elements of matricesC1, C2are not restricted to−1,1any more.

Remark 3.3. SinceTheorem 3.1holds for arbitrary matricesC1, C2satisfyingC1C2 C, then, whenC1 0 orC2 0, respectively, we can easily obtains the following simplified useful corollaries.

Corollary 3.4. For any given positive scalars 0< τm< τM, then, underAssumption 1, system2.5 is globally exponentially stable for any time-varying delayτksatisfyingτmτkτM, if there exist positive-definite matricesP1, Q1, Q2, Q3, positive-definite diagonal matricesD1, D2, Q4, Q5, Q6,

(13)

and arbitrary matricesPi, Hi, i 2,3, . . . ,21 with appropriate dimensions, such that the following LMI holds:

Ξ

⎜⎜

⎜⎜

⎜⎜

⎜⎜

⎜⎜

⎜⎜

⎜⎜

⎜⎜

⎜⎜

⎜⎜

⎜⎜

⎜⎜

⎜⎜

⎜⎜

⎜⎜

⎜⎜

⎜⎝

Ξ11 Ξ12 Ξ13 Ξ14 Ξ15 Ξ16 Ξ17 Ξ18 Ξ19 Ξ1,10

∗ Ξ22 Ξ23 Ξ24 Ξ25 Ξ26 Ξ27 Ξ28 Ξ29 Ξ2,10

∗ ∗ Ξ33 Ξ34 Ξ35 Ξ36 Ξ37 Ξ38 Ξ39 Ξ3,10

∗ ∗ ∗ Ξ44 Ξ45 Ξ46 Ξ47 Ξ48 Ξ49 Ξ4,10

∗ ∗ ∗ ∗ Ξ55 Ξ56 Ξ57 Ξ58 Ξ59 Ξ5,10

∗ ∗ ∗ ∗ ∗ Ξ66 Ξ67 Ξ68 Ξ69 Ξ6,10

∗ ∗ ∗ ∗ ∗ ∗ Ξ77 Ξ78 Ξ79 Ξ7,10

∗ ∗ ∗ ∗ ∗ ∗ ∗ Ξ88 Ξ89 Ξ8,10

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ Ξ99 Ξ9,10

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ Ξ10,10

⎟⎟

⎟⎟

⎟⎟

⎟⎟

⎟⎟

⎟⎟

⎟⎟

⎟⎟

⎟⎟

⎟⎟

⎟⎟

⎟⎟

⎟⎟

⎟⎟

⎟⎟

⎟⎟

⎟⎠

<0, 3.24

where

Ξ11 −2P1H12CCTH12T Q2Q3 τMτm1Q1 1τmQ4 1τMQ5 τMτmQ6−2

1

D1

2

,

Ξ12 CTH13P13T, Ξ13 CTH14P14P12TH12, Ξ14 CTH15P15TH2, Ξ15 H2CTH16P16T,

Ξ16 H12ACTH17P17TD1

1

2

, Ξ17 H12BCTH18P18T,

Ξ18 H2CTH19P19T, Ξ19 CTH20P20TH2, Ξ1,10 CTH21P21TH2. 3.25

Corollary 3.5. For any given positive scalars 0< τm< τM, then, underAssumption 1, system2.5 is globally exponentially stable for any time-varying delayτksatisfyingτmτkτM, if there exist positive-definite matricesP1, Q1, Q2, Q3, positive-definite diagonal matricesD1, D2, Q4, Q5, Q6, and arbitrary matricesPi, Hi, i 2,3, . . . ,21 with appropriate dimensions, such that the following LMI holds:

参照

関連したドキュメント

Under the assumption that we can reach from any feasible state any feasible sequence of states in bounded time, we show that every e ffi cient solution is also overtaking, thus

Under the assumption that we can reach from any feasible state any feasible sequence of states in bounded time, we show that every e ffi cient solution is also overtaking, thus

Global Stability of Polytopic Linear Time-Varying Dynamic Systems under Time-Varying Point Delays and Impulsive Controls.. de

Keywords: stochastic differential equation, periodic systems, Lya- punov equations, uniform exponential stability..

Therefore, motivated by the impact of topological structures and the delays on the dynamics of the networks, this paper mainly focuses on the effect of delays on inner

By employing the theory of topological degree, M -matrix and Lypunov functional, We have obtained some sufficient con- ditions ensuring the existence, uniqueness and global

Chu, “H ∞ filtering for singular systems with time-varying delay,” International Journal of Robust and Nonlinear Control, vol. Gan, “H ∞ filtering for continuous-time

36 investigated the problem of delay-dependent robust stability and H∞ filtering design for a class of uncertain continuous-time nonlinear systems with time-varying state