• 検索結果がありません。

On the ground states of quantum electrodynamics with cutoffs (Mathematical Aspects of Quantum Fields and Related Topics)

N/A
N/A
Protected

Academic year: 2021

シェア "On the ground states of quantum electrodynamics with cutoffs (Mathematical Aspects of Quantum Fields and Related Topics)"

Copied!
4
0
0

読み込み中.... (全文を見る)

全文

(1)

On

the

ground

states

of

quantum

electrodynamics

with cutoffs

Faculty

of Science and

Engineering

Gunma

University

Toshimitsu Takaesu

This article isashort review ofa

ground

stateofamodel ofquantum

electrodynamics

in

I13].

We

investigate

asystemofa

quantized

Dirac field

coupled

to a

quantized

radiation filed in the

Coulomb gauge: The classical

Lagrangian density

is

given by

\displaystyle \mathrm{C}_{\mathrm{Q}\mathrm{E}\mathrm{D}}=-\frac{1}{4}F^{ $\mu$ v}F_{ $\mu$ v}+\overline{ $\psi$}(i$\gamma$^{ $\mu$}D_{ $\mu$}-M) $\psi$,

where

F^{ $\mu$ v}=\partial^{ $\mu$}\mathrm{A}^{v}-\partial^{v}A^{ $\mu$},

D_{ $\mu$}=\partial_{ $\mu$}-eA_{ $\mu$}

and

\overline{ $\psi$}=$\psi$^{ $\dagger$}$\gamma$^{0}

. Wedefine the Hilbert space for the

system

by

\mathcal{F}_{\mathrm{Q}\mathrm{E}\mathrm{D}}=\mathcal{F}_{\mathrm{D}\mathrm{i}\mathrm{r}\mathrm{a}\mathrm{c}}\otimes T_{\mathrm{r}\mathrm{a}\mathrm{d}}

where

yDirac

isafermion Fock spaceover

L^{2}(\mathbb{R}^{3};\mathbb{C}^{4})

and

3_{\mathrm{r}\mathrm{a}\mathrm{d}}^{\mathrm{i}}

isa

boson Fock spaceover

L^{2}(\mathbb{R}^{3}\times\{1,2\})

.The total Hamiltonian for thesystemis defined

by

H_{\mathrm{Q}\mathrm{E}\mathrm{D}}=H_{\mathrm{D}}\displaystyle \otimes \mathrm{I}+\mathrm{I}\otimes H_{r\mathrm{a}\mathrm{d}}+$\kappa$_{\mathrm{I}}\sum_{j=1}^{3}\int_{\mathrm{R}^{3}}$\chi$_{\mathrm{I}}(\mathrm{x})($\psi$^{ $\dagger$}(\mathrm{x})$\alpha$^{j} $\psi$(\mathrm{x})\otimes A_{j}(\mathrm{x}))d\mathrm{x}

+$\kappa$_{\mathrm{I}\mathrm{I}}\displaystyle \int_{\mathrm{R}^{3}\mathrm{x}\mathrm{R}^{3}}\frac{$\chi$_{\mathrm{I}\mathrm{I}}(\mathrm{x})$\chi$_{1\mathrm{I}}(\mathrm{y})}{|\mathrm{x}-\mathrm{y}|}($\psi$^{ $\dagger$}(\mathrm{x}) $\psi$(\mathrm{x})$\psi$^{ $\dagger$}(\mathrm{y}) $\psi$(\mathrm{y})\otimes \mathrm{I})

dxdy,

where

H_{\mathrm{D}^{=\sum_{s=\pm 1/2}\int_{\mathrm{R}^{3}} $\dagger \dagger$}}$\omega$_{M}(\mathrm{p})(b_{s}(\mathrm{p})b_{s}(\mathrm{p})+d_{s}(\mathrm{p})d_{s}(\mathrm{p}))d\mathrm{p},

H_{\mathrm{r}\mathrm{a}\mathrm{d}}=\displaystyle \sum_{r=12}, $\omega$(\mathrm{k})a_{r}^{ $\dagger$}(\mathrm{k})a_{r}(\mathrm{k})d\mathrm{k},

with

$\omega$_{M}(\mathrm{p})=\sqrt{\mathrm{p}^{2}+M^{2}},M>0

,and

to(k) =|\mathrm{k}|

. Themomentum

expansions

ofthe fields opera‐

torsare

$\psi$_{T}(\displaystyle \mathrm{x})=\sum_{\mathrm{s}=\pm 1/2}\frac{}{\frac{2$\pi$^{3}1}{()}}\int_{\mathrm{R}^{3}}$\chi$_{\mathrm{D}}(\mathrm{p})(u_{s}^{T}(\mathrm{p})b_{s}(\mathrm{p})e^{i\mathrm{p}\cdot \mathrm{x}}+\sqrt{s}(-\mathrm{p})d_{s}^{\uparrow}(\mathrm{p})e^{-i\mathrm{p}\cdot \mathrm{x}})

d\mathrm{p}

,

A_{j}(\displaystyle \mathrm{x})=\sum_{r=12},\frac{}{\frac{2$\pi$^{3}1}{()}}\int_{\mathrm{R}^{3}}\frac{$\chi$_{\mathrm{r}\mathrm{a}\mathrm{d}}(\mathrm{k})\dot{d}_{r}(\mathrm{k})}{\frac{2 $\omega$ \mathrm{k}}{()}}(a_{r}(\mathrm{k})e^{- $\iota$ \mathrm{k}\cdot \mathrm{x}}\wedge+a_{r}^{\uparrow}(\mathrm{k})e^{-i\mathrm{k}\cdot \mathrm{x}})

d\mathrm{k},

respectively.

数理解析研究所講究録

(2)

Thecanonicalanti‐commutation relationsare

\{b_{s}(\mathrm{p}),b_{s}^{ $\dagger$},(\mathrm{p}').\}=\{d_{s}(\mathrm{p}),d_{s}^{ $\dagger$},(\mathrm{p}')\}=$\delta$_{s,s'} $\delta$(\mathrm{p}-\mathrm{p}')

,

\{b_{s}(\mathrm{p}),b_{s'}(\mathrm{p}')\}=\{d_{s}(\mathrm{p}),

(\mathrm{p}')\}_{\backslash }=0,

\{b_{s}^{\uparrow}(\mathrm{p}),b_{s}^{ $\dagger$},(\mathrm{p}')\}=\{ffi_{s}(\mathrm{p}),d_{s}^{\mathrm{t}},(\mathrm{p}')\}.=\{b_{s}(\mathrm{p}),d_{s}^{$\dagger$_{l}}(\mathrm{p}')\}=0,

where

\{X, Y\}=X\mathrm{Y}+YX

.The canonical commutation relationsare

[\^{a}_{r}(k),a_{f}^{ $\dagger$}(\mathrm{W})]=$\delta$_{r,\text{〆}} $\delta$(\mathrm{k}-\mathrm{k}'),\cdot

[a_{r}(\mathrm{k}),a

(1d)]=[a_{r}^{ $\dagger$}(\mathrm{k}),a_{r}^{ $\dagger$},(\mathrm{W})]=0,

where

[X, \mathrm{Y}]=X\mathrm{Y}-\mathrm{Y}X.

Assume the

following

conditions:

(A.l

;Ultraviolet cutoffsforDirac

fleld)

\displaystyle \int_{\mathrm{R}^{3}}|$\chi$_{\mathrm{D}}(\mathrm{p})|^{2}d\mathrm{p}<\infty.

(A.2

:Ultraviolet cutoffs forradiation

field)

\displaystyle \int_{\mathrm{R}^{3}}\frac{|$\chi$_{\mathrm{r}\mathrm{a}\mathrm{d}}(\mathrm{k})|^{2}}{ $\omega$(\mathrm{k})^{l}}d\mathrm{k}<\infty, l=1,2.

(A.3

:

Spatial cutoffs)

\displaystyle \int_{\mathrm{R}^{3}}|$\chi$_{\mathrm{I}}(\mathrm{x})|d\mathrm{x}<\infty,

\displaystyle \int_{\mathrm{R}^{3}\mathrm{x}\mathrm{R}^{3}}\frac{|$\chi$_{\mathrm{I}\mathrm{I}}(\mathrm{x})$\chi$_{1\mathrm{I}}(\mathrm{y})|}{|\mathrm{x}-\mathrm{y}|}

dxdy

<\infty.

Then

H_{\mathrm{Q}\mathrm{E}\mathrm{D}}

isa

self‐adjoin

on

\mathcal{D}(H_{0})

. We areinterested in the existence of the

ground

stateof

H_{\mathrm{Q}\mathrm{E}\mathrm{D}}

. LetHbea

self‐adjoint

operatoron aHilbert space. We say that H hasa

ground

stateif

the bottom of thespectrum ofHis

eigenvalue,

i.e.,

E_{0}(H)=\dot{\mathrm{m}}\mathrm{f} $\sigma$(H)\in$\sigma$_{\mathrm{p}}(H)

. It is seenthat

H_{0}(H)=H_{\mathrm{D}}\otimes \mathrm{I}+\mathrm{I}\otimes H_{\mathrm{r}\mathrm{a}\mathrm{d}}

hasa

ground

state. Since themass of the

photon

iszero,

E_{0}(H_{0})

is

embedded inacontinuousspectrum.

Dimassi‐Guillot

[6]

andBrouxbaroux‐Dimassi‐Giollot

[3]

considera

QED

model with gener‐

alized

perturbations,

and

proved

the existence of the

ground

statefor

sufficiently

small values of

couplin

\mathrm{g} constants. In

[11],

the existenceofthe

ground

state

H_{\mathrm{Q}\mathrm{E}\mathrm{D}}

wasproven for

sufficiently

small

valuesof

coupling

constants. The main purpose in the paper

[13]

istoprove the existence of the

ground

state

H_{\mathrm{Q}\mathrm{E}\mathrm{D}}

for all values of

coupling

constants.

(3)

(A.4:

Momentum

regularization

ofDirac

fleld)

\displaystyle \int_{\mathrm{R}^{3}}|\partial_{P^{v}}$\chi$_{\mathrm{D}}(\mathrm{p})|^{2}d\mathrm{p}<\infty, \int_{\mathrm{R}^{3}}|$\chi$_{\mathrm{D}}(\mathrm{p})\partial_{p^{ $\nu$}}u_{s}^{l}(\mathrm{p})|^{2}d\mathrm{p}<\infty, \int_{\mathrm{R}^{3}}|\dot{ $\chi$}_{\mathrm{D}}(\mathrm{p})\partial_{p^{v}}v_{s}^{l}(-\mathrm{p})|^{2}d\mathrm{p}<\infty.

(A.5:

Momentum

regularization

of radiation

field)

\displaystyle \int_{\mathrm{R}^{3}}\frac{|$\chi$_{\mathrm{m}\mathrm{d}}(\mathrm{k})|^{2}}{|\mathrm{k}|^{5}}d\mathrm{k}<\infty, \int_{\mathrm{R}^{3}}\frac{|\partial_{k^{v}}$\chi$_{\mathrm{r}\mathrm{a}\mathrm{d}}(\mathrm{k})|^{2}}{|\mathrm{k}|^{3}}d\mathrm{k}<\infty, \int_{\mathrm{R}^{3}}\frac{|$\chi$_{\mathrm{r}\mathrm{a}\mathrm{d}}(\mathrm{k})\partial_{k^{v}}e_{r}^{j}(\mathrm{k})|^{2}}{|\mathrm{k}|^{3}}d\mathrm{k}<\infty.

(A.6 :Spatial localization)

\displaystyle \int_{\mathrm{R}^{3}}|\mathrm{x}||$\chi$_{\mathrm{I}}(\mathrm{x})|d\mathrm{x}<\infty,

\displaystyle \int_{\mathrm{R}^{3}\times \mathrm{R}^{3}}\frac{|$\chi$_{\mathrm{I}\mathrm{I}}(\mathrm{x})$\chi$_{\mathrm{I}\mathrm{I}}(\mathrm{y})|}{|\mathrm{x}-\mathrm{y}|}|\mathrm{x}|

dxdy

<\infty.

The main theorem in

[13]

isasfollows:

Theorem

([13];Theorem

2.1)

Assume

(\mathrm{A}.1)-\langle \mathrm{A}.6).

Then

H_{\mathrm{Q}\mathrm{E}\mathrm{D}}

hasa

ground

state. In

particular,

its

multiplicity

is

finite.

[Remaining Problemsl

(i)

Self‐adjointness

without cutoffs

Itisseenthat undermomentumcutoffs

(A.I),(A.2)

and

spatial

cutoffs

(A.3),

H_{\mathrm{Q}\mathrm{E}\mathrm{D}}

is

self‐adjoint.

Forthe Nelson

model,

which describes the non‐relativistic

particles coupled

toascalar

field,

itwas

proven that

by

subtracting

momentum

divergence

termsfrom the

Hamiltonian,

thereisan

unique

self‐adjoint

Hamiltonian

[10].

(ii)

Infrared

divergence

The condition

\displaystyle \int_{\mathrm{R}^{3}}\frac{$\chi$_{ $\alpha$ \mathrm{d}}(\mathrm{k})|^{2}}{|\mathrm{k}|^{5}}d\mathrm{k}<\infty

in

(A.5)

isstrongerthan the standard infrared

regularity

condition.

Non‐relativistic

QED

model

[2, 7]

and

spin‐boson

model

[8]

have the

ground

statewithout infrared

cutoffs. On the other

hand,

the non‐existence of the

ground

statefor massless Nelson‐model

(see

e.g.,[5])

and the Generalized

spin‐boson

model

[1]

were

investigated.

(iii)

Multiplicity

Weseethat

multiplicity

of the

ground

stateof

H_{\mathrm{Q}\mathrm{E}\mathrm{D}}

is finite for all values of

coupling

constants. In

[9],

the

multiplicity

of the

ground

statefor variousquantumfiled modelswas

investigated

for

sufficiently

small values of

coupling

constants.

(1v) Asymptotic Completeness

In

[11],

the existence of

asymptotic

field forthe Dirac field and the radiation fieldswasproven,

however its

asymptotic completeness

hasnotbeen shown

(see

e.g.

[4])

(4)

References

[1] A.Arai,M.Hirokawa andH.Hiroshima,Onthe absence ofeigenvectorsofHamiltonians inaclass of

masslessquantumfield models without infraredcutoff,J. Funct. Anal. 168

(1999),

470‐497.

[2] VBach,J.Fröhlich and \mathrm{L} M.

Sigal,

Spectral analysisforsystemsofatomsand molecules

coupled

to

the

quantized

radiationfield,Comm. Math.Phys.207

(1999)

249‐290.

[3] J. ‐M.Barbaroux,M.Dimassi,and J.‐C.Guillot, Quantum electrodynamicsofrelativisticboundstates

withcutoffs, JHyper

Differ.

Equa.1

(2004)

271‐314.

[4] J.Derezin’ski and C.Gérard, Asymptotic completeness inquantumfield

theory.

MassivePauli‐Fierz

Hamiltonian,Rev. Math.

Phys.

11(1999)383‐450.

[5] J.Derezi’ski and C.Gérard, Scattering

theory

ofinfrared

divergent

Pauli‐FierzHamiltonians,Ann. H

Poincaré,5(2004)523‐577.

[6] M.Dimassi and J. ‐C.Guillot,Thequantumelectrodynamicsofrelativistic boundstateswithcutoffs.I,

Appl.Math. Lett. 16(2003)551‐555.

[7] M.Griesemer,E. Lieband M.Loss,Groundstatesin non‐relativisticquantum

electrodynamics,

Invent.

Math. 145(2001)557-595.

[8] D.Haslerand I.Herbst,Groundstatesin the

spin

bosonmodel,Ann. HenriPoincaré 12(2011)621‐

677.

[9] F.Hiroshima,

Multiplicity ofground

statesinquantumfieldmodels;

applications

of

asymptotic

fields,

J. Funct.Anal. 224(2005),431‐470.

[10] E.Nelson,Interaction ofnonrelativistic

particles

witha

quantized

scalarfield,J.Math.Phys.5(1964),

1190‐1197

[11] T.Takaesu,On thespectral

analysis

ofquantum

electrodynamics

with

spatial

cutoffs.\mathrm{L}JMath.Phys.

50(2009)06230.

[12] T.Takaesu,Existence ofa

groumd

statesofa model ofrelativisticquantum

electrodynamics

withcutoffs

for all values

ofcoupling

constants,RIMSKokyuroku1975(2015)23‐30.

[13] T.Takaesu,Groundstateofquantum

electrodynamics

withcutoffs,

(arxiv:

1509.0613)

参照

関連したドキュメント

We describe a generalisation of the Fontaine- Wintenberger theory of the “field of norms” functor to local fields with imperfect residue field, generalising work of Abrashkin for

Remarkably, one ends up with a (not necessarily periodic) 1D potential of the form v(x) = W (x) 2 + W 0 (x) in several different fields of Physics, as in supersymmetric

Here we will show that a generalization of the construction presented in the previous Section can be obtained through a quantum deformation of sl(2, R), yielding QMS systems for

— The statement of the main results in this section are direct and natural extensions to the scattering case of the propagation of coherent state proved at finite time in

Using the language of h-Hopf algebroids which was introduced by Etingof and Varchenko, we construct a dynamical quantum group, F ell GL n , from the elliptic solution of the

Thus, it follows from Remark 5.7.2, (i), that if every absolutely characteristic MLF is absolutely strictly radical, then we conclude that the absolute Galois group Gal(k/k (d=1) )

Kashiwara and Nakashima [17] described the crystal structure of all classical highest weight crystals B() of highest weight explicitly. No configuration of the form n−1 n.

Ogawa, Quantum hypothesis testing and the operational interpretation of the quantum R ´enyi relative entropies,