• 検索結果がありません。

1 1 x y = y(x) y, y,..., y (n) : n y F (x, y, y,..., y (n) ) = 0 n F (x, y, y ) = 0 1 y(x) y y = G(x, y) y, y y + p(x)y = q(x) 1 p(x) q(

N/A
N/A
Protected

Academic year: 2021

シェア "1 1 x y = y(x) y, y,..., y (n) : n y F (x, y, y,..., y (n) ) = 0 n F (x, y, y ) = 0 1 y(x) y y = G(x, y) y, y y + p(x)y = q(x) 1 p(x) q("

Copied!
15
0
0

読み込み中.... (全文を見る)

全文

(1)

■第1回

1

常微分方程式

本章では特に指定した場合を除き、xを独立変数、y = y(x)を従属変数(未知関数)、y′, y′′, . . . , y(n):をその(n 階)導関数とする。 定義  y 及びそれらの導関数が満たす関係式 F (x, y, y′, . . . , y(n)) = 0 をn階常微分方程式と呼ぶ。特に F (x, y, y′) = 0は1階微分方程式。これらの関係式からy(x)の関数形を求めるこ とを「微分方程式を解く」という。 目的 「自然法則」、「いろいろな数理モデル」は微分方程式により記述されることが多い。したがって、これらをど のように解くか=「解」を求めるか、を知ることは、 自然界の原理の理解、過去の推定、未来の予測 のために本質的な重要性をもつ。

1.1

1

階微分方程式

本節では特にy′について明示的に表せている y′= G(x, y) の形の方程式を考える。この形の方程式を正規形という。方程式がどのような形をしていればこれは解けるだろ うか? 1.1.1 1階線形微分方程式 さらに制限して、y, y′についての1次式(線形関係式) y′+ p(x)y = q(x) を考える。これを「1階線形常微分方程式」という。ここでp(x)およびq(x)xについての既知関数であり、特に 非斉次項がない(q(x) = 0)場合、 y′+ p(x)y = 0 のようにyについての1次式となる。これを斉次方程式という。 斉次方程式  まずは斉次方程式の解法から考えよう。 y′+ py = 0 y y =−p ⇔ (log y) =−p したがって、 log y =x p(x′)dx′=−P (x) + ˜C ⇔ y = C e−xp(x)dx のように1回積分することにより 、p(x)の不定積分を用いて解が求まる。ここで、P (x)p(x)の原始関数、また C(= eC˜)は積分定数である。 このように、微分の階数分の任意定数を含む解を「一般解」と呼ぶ。いくつか注釈: このように微分方程式を有限回の不定積分で求める操作を「求積法」という。 積分定数Cは、例えば初期条件y(0) = y0が与えられれば確定する。任意定数が確定した解を「特解」あるい は「特殊解」という。 不定積分∫xp(x′)dx′が既知関数として求まる保証はない(当然だが)。しかし、数値積分は任意精度で可能だ から実用上の問題はない。

(2)

例:

y′− 2xy = 0 ⇔ (log y)′= 2x ⇔ log y =x 2x′dx′ = x2+ ˜C ∴ y = Cex2 これが一般解。さらに初期条件y(0) = y0を満たす特解はC = y0により与えられる。 例 放射性元素の崩壊: 一定時間に崩壊する放射性の原子核数は、その時点の原子核数に比例する。つまり、原子核 数が倍になれば崩壊する原子核数も倍になる。これは、ある原子核の崩壊と他の核の崩壊は独立に起こるということ を示している。 ある時刻tにおける原子核数をN (t)とすれば、その満たすべき微分方程式は dN dt =−λN と書ける。ここでλ > 0は核種ごとに異なる崩壊定数である。これは斉次方程式なので、初期条件をN (0) = N0と おけば N (t) = N0e−λt と解ける。特にN (t0) = N0/2となるt0を、その原子核の「半減期」という。半減期と崩壊定数の関係は、 N0 2 = N0e −λt0 ⇔ e−λt0 =1 2 である。 演習 1.1放射性同位体137Csおよび131Iの半減期はそれぞれ30 [year]および8.04 [day]である。これらの 同位体の崩壊定数を求めよ(log 2≃ 0.6931とする)。さらにこの崩壊定数を用いて、2011年3月に福島第一 原発から放出された 137Csのうち現在約何%が崩壊せずに残っているかを見積もってみよ。指数関数exp(−t) のグラフは以下のように与えられる。 0.00 0.02 0.04 0.06 0.08 0.10 0.92 0.94 0.96 0.98 1.00

(3)

非斉次方程式   次に非斉次方程式 y′+ py = qの解法を考える。斉次方程式がなぜ解けたかを再考してみると、 (log y)′ =−pの形に直せたことが本質的だった。つまり、方程式を d dx( · · · ) =    の形にもっていければ解ける。非斉次方程式の左辺は一般にy′+ py = ( · · · )′の形にできるとは限らないのは明 らかだが、方程式の両辺に未知関数µ(x)をかければ µ y′+ µp y = µ q のようになり、もしµp = µ′なら

(左辺) = µy′+ µ′y = (µy)′, ∴ (µy)′ = µq

となり、左辺は「完全微分形」になる!したがって、µ(x)がわかれば求積できるがµ′= pµは斉次方程式だから、こ れは先ほどの方法によって µ = expx p(x′)dx′ と簡単に求まる。このµ(x)を「積分因子」という。 こうして求めた積分因子を用いれば µy =x µqdx′+ C ⇔ y = 1 µ (∫ x µqdx′+ C ) = e−xp(x′)dx′ (∫ x e−x′p(x′′)dx′′q(x′)dx′+ C ) | {z } =C(x) のように一般解が求まる。 定数変化法 最終的な結果は y = C(x)e−xp(x′)dx′ のように書くことができるが、これは斉次方程式の積分定数Cを「関数」C(x)と見做したものになっている。した がって実際上はy = C(x)e−xp(x′)dx′とおいて非斉次方程式に代入し、C(x)を求めればよい。これを「定数変化法」 という。実際、 y′ = C′e−xp(x′)dx′− py ⇔ y′+ py = C′e−xp(x′)dx′ = q となるから C′ = exp(x′)dx′q ⇒ C(x) =x ex′p(x′′)dx′′q(x′)dx′+ C と同様の結果になる。 例: y′+ y = 1 まず斉次方程式y′+ y = 0を解くとy = Ce−xだから、Cを関数C(x)と考えて y′ =−y + C′e−x, ∴ C′e−x= 1⇔ C′= ex⇒ C(x) = ex+ C したがって y = (ex+ C) e−x= 1 + Ce−x が一般解となる。 演習 1.2次の微分方程式の一般解を求めよ。 (1) dy dx+ y cos x = 0 (2) dy dx+ y = xe x (3) dy dx+ 2x 1 + x2y = 1 1 + x2 (4) dy dx+ x 2y = 1

(4)

■第2回 1.1.2 変数分離形 同様に正規形の1階微分方程式y′= F (x, y)を考える。F (x, y)が陽にxによらない場合、 y′= f (y) dy f (y) = ∫ dx さらにF (x, y)yの関数f (y)xの関数g(x)の積の形になっている場合、 y′= f (y)g(x) dy f (y) = ∫ g(x)dx となり、いずれも求積法で解くことができる。前者は明らかに後者の特別な場合であるから、これらをまとめて「変 数分離形微分方程式」ということにしよう。 例: y′= 2xy2 dy y2 = 2 ∫ xdx ⇔ −1 y = x 2+ C ⇔ y = −1 x2+ C 例 人口曲線: 閉じた生態系に住む生物の個体数p(t)の時間変化率 dp dt を考える。 (1) 個体密度が低いとき、出生率・死亡率に対して他の個体の存在の影響はほぼ無いと考えられる。したがって、(放 射性元素の崩壊の例からもわかるように)個体数の時間変化率はその時点の個体数に比例する。 dp dt = ap, ただし a∼ (出生率)− (死亡率) これより、a > 0ならばpは単調に増加する。 (2) 個体密度が高くなると環境が悪化し、 dp dt に負の影響が現れる。この影響はp 2、つまり個体同士が出会う割合に 比例すると考えられる。 以上の考察から、個体数の時間変動はlogistic方程式 dp dt = ap− bp 2 に従うと考えられる。ここでa, bはそれぞれ人口係数と呼ばれる正の定数である。 演習 2.1次の微分方程式の一般解を求めよ。 (1) dy dx = 3x 2y (2) (1 + x2)dy dx = 1 + y

2, (加法定理tan(α + β) = tan α + tan β

1− tan α tan β が有効に使える。) 演習 2.2たとえば地球上の総人口のような、閉じた生態系における個体数p(t)の変化は、ロジスティック方 程式 dp dt = ap− bp 2によって近似的に予測される。ここで正の定数a, bは人口係数と呼ばれる定数である。こ の方程式によれば、初期(t = 0)の人口をp0としたとき、十分に時間が経った後の人口はある上限値に近づく ことになる。方程式を解き、解が確かにこの上限値に収束することを示せ。またある統計によれば、地球上の 人口増加はa = 0.029, b = 2.695× 10−12によってよく近似されている。地球の総人口の上限値を推定せよ。

(5)

1.1.3 同次形 正規形の1階微分方程式がy′ = f (y x ) の形をしているとき、同次形という。この場合、v := y/xとおけば v′= y x− y x2 ⇔ y =x2v′+ y x = xv + v であるから、元の方程式は xv′+ v = f (v) ⇔ v′ =f (v)− v x となり、これはvについての変数分離型方程式であり、 ∫ dv f (v)− v = ∫ dx x のように求積できる。 例: y′= −x + 2y 2x + y = −1 + 2v 2 + v ⇔ v =1 + v2 2 + v 1 x ∴ ∫ v + 2 1 + v2dv =− log x + ˜C ⇔ 2 tan −1v +1 2log(1 + v 2) =− log x + ˜C 整理すると 4 tan−1 (y x ) + log(x2+ y2) = C となる。この式はyについて明示的に解くことはできないが、yの値は数値計算により任意精度で計算できる。 1.1.4 Bernoulli形

正規形1階微分方程式がy′+ p(x)y = q(x)ynの形をしているとき、Bernoulli形という。n = 0のとき、これは線

形非斉次方程式、n = 1のとき、線形斉次方程式であるから、n̸= 0, 1の場合を考える。なおnは必ずしも整数であ る必要はない。 Bernoulli 形 微 分 方 程 式 は 以 下 の 手 続 き に よ っ て 線 形 方 程 式 に 変 形 で き る 。ま ず 、両 辺 を yn で 割 る と y′ yn + p 1 yn−1 = q となる。ここでu = 1/y n−1とおけばu= (1− n)y′ yn であるから、 y′ yn + p 1 yn−1 = q u′ 1− n+ pu = q ⇔ u + (1− n)pu = (1 − n)q となり、uについての線形非斉次方程式に帰着する。 例: 2xy′+ y = 2x2(x + 1)y3 ⇔ y′+ 1 2xy = x(x + 1)y 3 これはn = 3のBernoulli形方程式であるから、u = 1/y2とおけば線形方程式に帰着する。実際、 u′−1 xu =−2x(x + 1) となるからp(x) =−1/xおよびq =−2x(x + 1)の線形微分方程式となり、u(x) = C(x)e−xpdx′ とおいて定数変 化法を適用する。 ∫ x pdx =−xdx x′ =− log x ⇒ e xpdx = elog x = x C(x) =x 1 x′(−2)x (x+ 1)dx=−2x(x+ 1)dx=−x2− 2x ∴ u(x) = (−x2− 2x + C)x = −x3− 2x2+ Cx 1 u= y 2= −1 x3+ 2x2− Cx 演習 2.3次の微分方程式の一般解を求めよ。 (1) dy dx = x2+ y2 2xy (2) x3dy dx − xy − y 2= 0

(6)

■第3回

1.1.5 完全微分形

正規型の1階微分方程式をxyについて対称な形に表現すれば

P (x, y)dx + Q(x, y)dy = 0 (⇔ P (x, y) + Q(x, y)y′= 0)

のようになる。これは明らかに正規形の方程式の最も一般的な形である。この方程式が求積できるための条件を求め よう。 もし左辺がある関数ϕ(x, y)の完全微分(全微分)になっていたとする。このときこの方程式は dϕ(x, y) = ∂ϕ ∂xdx + ∂ϕ ∂ydy = 0 と書くことができて、明らかに ϕ(x, y) = C が解である。ここでCは積分定数。したがって、正規形の方程式が解けるための条件は左辺がある関数ϕの完全微 分になっていることである。ただし以前の例でも見た通り、これは必ずしもy(x)について明示的に書けるとは限ら ない。 以上の書き方が何となく気持ち悪い人のため、少々解説する。完全微分形の方程式にはdxdyが陽に現れている が、これは本来積分の中だけで許される記法である。もし方程式の解がパラメーターtによって(x(t), y(t))のように 書けていたとすれば、の積分は ∫ dϕ = ∫ ( ∂ϕ ∂xdx + ∂ϕ ∂ydy ) = ∫ ( ∂ϕ ∂x dx dt + ∂ϕ ∂y dy dt ) | {z } =0 dtxy平面の線積分の形になる。もしdϕ = 0ならば、0の積分は定数であるからϕ = C となりこれが解である。完 全微分形の方程式は、この積分記号の中の関係式と見るべきである。 例: 方程式2xdx + 2ydy = 0は正規形x + yy′ = 0⇔ yy′=−xに直すことができ、これは変数分離形である。あ えて線積分を実行すれば 2xdx + 2ydy = x2+ y2= C2 となり、ϕ(x, y) = x2+ y2であることがわかる。これはxy平面の円であるからx = C cos t, y = C sin tのようにパ ラメーター表示もできる。 さて、方程式P dx + Qdy = 0が完全微分形であるための条件を調べよう。見てきたように完全微分形の方程式の 背後には2変数関数ϕ(x, y)が隠れている。したがって、もし完全微分形なら P (x, y) = ∂ϕ ∂x(x, y), Q(x, y) = ∂ϕ ∂y(x, y) でなければならない。さらに、偏微分が順序に依らないことを用いると、 ∂P ∂y = 2ϕ ∂y∂x = 2ϕ ∂x∂y = ∂Q ∂x したがって ∂P ∂y = ∂Q ∂x が方程式が完全微分形であるための条件である。実際上の例ではP = x, Q = yであるから、∂P ∂y = ∂Q ∂x = 0のよう に完全微分形であり、これが解けた根拠であることがわかる。 例: a > 0は定数とする。

(3x2− 3ay)dx + (3y2− 3ax)dy = 0, 初期条件(x, y) = (0, 0)

P = 3x2− 3ay, Q = 3y2− 3axだから、

∂P

∂y =−3a, ∂Q

(7)

となり、これは完全微分形である。P = ∂ϕ∂xと考え、xで積分すれば、ϕ =(3x2− 3ay)dx = x3− 3axy + φ(y) なる。したがって、

∂ϕ

∂y =−3ax + φ

(y) = 3y2− 3ax ⇔ φ(y) = y3

でありϕ(x, y) = x3− 3axy + y3= Cが一般解である。初期条件をみたす解はC = 0により与えられる。 積分因子 方程式P dx + Qdy = 0がいつでも完全微分形であるとは限らないのは明らかである。しかし、両辺に 関数µ(x, y)をかければµ(P dx + Qdy) = 0だから、もし関数µ ∂y(µP ) = ∂x(µQ) ⇔ µ ( ∂P ∂y ∂Q ∂x ) = ∂µ ∂xQ− ∂µ ∂yP を満たしていればµ(P dx + Qdy) = 0は完全微分形になる。このようなµを以前と同様に「積分因子」と呼ぶ。ある 方程式を完全微分形にするようなµを求めるのは一般に大変困難である。 ここでは特にQ(x, y) = 1であるような場合を考えよう。このとき積分因子がxのみに依存すると仮定すれば、み たすべき方程式は ∂P ∂yµ = dx µ′ µ = ∂P ∂y であり、∂P ∂yyに依らないことがわかる。したがってP (x, y)として許される形はP = p(x)y + q(x)だけであり、 元の方程式に代入すると (p(x)y + q(x))dx + dy = 0 dy dx =−(py + q) となり、これは1階線形微分方程式だから求積可能である。つまり1階線形微分方程式はそのままでは完全微分形で はないが、ある積分因子をかければ完全微分形になる。これが1階線形微分方程式が求積できた理由である。 演習 3.1次の微分方程式が完全微分形であることを示し、一般解を求めよ。さらに、初期条件y(e) =−1を 満たす解を求めよ。 ( 1 x− 1 y ) dx +x− 1 y2 dy = 0 演習 3.2演習1.2で与えられた以下の線形微分方程式の積分因子を求め、完全微分形にせよ。 (1) dy dx+ y cos x = 0 (2) dy dx+ y = xe x (3) dy dx+ 2x 1 + x2y = 1 1 + x2 (4) dy dx+ x 2y = 1

1.2

2

階微分方程式

次に2階微分方程式F (x, y, y′, y′′) = 0を考えよう。たとえばニュートン力学の運動方程式など、物理学において 2階微分方程式が現れる場面は非常に多いから、その一般的性質および解法について考察することは物理の理解にお いても大変有意義である。 なお、方程式がyによらない場合(F (x, y′, y′′) = 0)には、y′ = pとおけば元の方程式はpに関する1階微分方程 式となる。一方、方程式がxによらない場合(F (y, y′, y′′) = 0)にもy′ = pとおくと、 y′′= p′= ∂p ∂y dy dx = ∂p ∂y p であるから、方程式は F ( y, p,∂p ∂y p ) = 0 となり、これはyを独立変数、p(y)を従属変数とした1階微分方程式とみることができる。したがって、以下の考察 ではこれらの場合は除外する。

(8)

1.2.1 2階線形微分方程式 同様に正規形の方程式y′′= G(x, y, y′)を考え、さらに線形微分方程式 y′′+ p(x)y′+ q(x)y = r(x) に限定する。r(x) = 0のとき斉次方程式、そうでないときを非斉次方程式と呼ぶのは1階微分方程式の場合と同様で ある。これらを求積する一般的な方法はないが、解の性質はある程度調べることができる。 基本解 まず斉次方程式 y′′+ p(x)y′+ q(x)y = 0 を考える。一般論より(証明はしないが)ある区間でp(x)およびq(x)が連続だとすれば、その区間において初期条 件y(x0) = y0, y′(x0) = y0 をみたす解がただ一つ存在することが示せる。 もしy1およびy2がある区間においてそれぞれ斉次方程式の解であり、y1y′2− y1′y2 ̸= 0であるとする。このとき C1およびC2を任意定数として、y = C1y1+ C2y2 は斉次方程式の一般解であることが以下のように示せる。 まず、x = x0においてy(x0) = y0= C1y1(x0) + C2y2(x0)およびy′(x0) = y′0= C1y1′(x0) + C2y2′(x0)であるか ら、これら2式を行列表記すれば、 ( y1(x0) y2(x0) y1′(x0) y2′(x0) ) ( C1 C2 ) = ( y0 y0 ) となる。条件y1y2 − y1′y2̸= 0から、左辺の2× 2行列に逆行列が存在することに注意すれば、 ( C1 C2 ) = 1 y1(x0)y′2(x0)− y1′(x0)y2(x0) ( y′2(x0) −y2(x0) −y′ 1(x0) y1(x0) ) ( y0 y′0 ) のように定数C1, C2が決まる。したがって、y1y2 − y′1y2̸= 0をみたす2つの解があれば、ある初期条件をみたす解 を構成できることがわかった。ここでy0, y0 は任意に与えられるから、これは一般に2つの定数C1, C2は任意に選 べることを示している。したがって、線形結合 y = C1y1+ C2y2 は斉次方程式の一般解である。線形結合により一般解を構成できるような2つの解のことを基本解と呼ぶ。

(9)

■第4回 独立性の判定条件 逆行列の形からわかるように、基本解であるための条件は行列式 W [y1, y2] := y1 y2 y′1 y′2 = y1y′2− y′1y2 が0でないという条件に他ならない。この行列式W [y1, y2]をWronskianと呼ぶ。行列式の性質からy2がy1の定 数倍ならばWronskianは0になるので、Wronskianが0でないという条件はy1とy2が線形独立である条件と等価 であることがわかる。 Wronskianは次のように1階線形微分方程式をみたす。

W′[y1, y2] = (y1y2 − y1′y2)′= y1y2′′− y1′′y2= y1(−py′2− qy2)− (−py1 − qy1)y2 =−p(x)(y1y2 − y′1y2) =−p(x)W [y1, y2] ここでy1, y2が斉次方程式の解であることを用いた。この1階線形方程式を前節の方法で解けば、 W [y1, y2] = Cexp(x)dx となり、C = 0の場合を除き恒等的に0にはならないことがわかる。 例: 振動の方程式y′′+ y = 0は2階線形斉次方程式である。y1= sin xおよびy2= cos xがこの方程式の解である ことは簡単に確かめられるが、これらが線形独立かどうかを調べよう。 W [sin x, cos x] = y1 y2 y1 y2 = sin x cos x cos x − sin x = −1 ̸= 0 であるから、y1とy2は線形独立であることが確かめられた。したがって、y′′+ y = 0の一般解はy = C1sin x + C2cos xで与えられる。 演習 4.1微分方程式2x2y′′+ 3xy− y = 0を考える。 (1) y1=√xおよびy2= 1/xx > 0において解であることを示せ。 (2) y1y2は線形独立であることを示せ。 (3) 初期条件y(1) = 2, y′(1) = 1をみたす解を求めよ。

演習 4.2斉次方程式の解y1, y2が一次独立であるとき、αy1+ βy2とγy1+ δy2も一次独立であるための、

定数α, . . . , δ に対する条件を求めよ。その結果を用いて、基本解の組み合わせは無数にありうるかどうか判定

せよ。

線形独立な解の構成 もし斉次方程式y′′+ p(x)y′+ q(x)y = 0の解のうちの一方がわかっていたとする。これを

y1としよう。このとき、y1 と線形独立なもう一方の解は次のようにして見つけることができる。まず、見つけるべ き解をy2= y1vのように書く。ここでv(x)はこれから定める未知関数である。方程式に代入すると、

y2′′+ py2 + qy2= (y1′′v + 2y′1v′+ y1v′′) + p(y′1v + y1v′) + q(y1v) = (2y′1+ y1p)v′+ y1v′′= 0

であるから、u := v′は1階線形微分方程式y1u′+ (2y1 + y1p)u = 0を満たすことがわかる。ここでy1は斉次方程 式をみたすことを用いた。これは前節の方法により u′ = ( 2y1 y1 + p ) u ⇔ log u = −2 log y1x pdx′+ C ⇔ u = C y2 1 e−xpdx′ のように解くことができ、さらに不定積分をすればv =xudx′のように未知関数vが定まる。こうしてもう一方の 解はy2= y1x udx′の形をしていることがわかったが、これを用いてWronskianを計算すれば W [y1, y2] = y1y′2− y′1y2= e−xpdx となって前述の結果を再現し、Wronskianは恒等的に0にはならないことが確かめられる。したがってy1とy2は線 形独立であることが確かめられた。

(10)

例: 斉次方程式x2y′′− 6y = 0は簡単にわかるように解y 1= x3およびy2 = x−2をもつ。y1からy2を構成して みよう。この場合p(x) = 0であるからu = C/y2 1となり、u = x−6がわかる。したがって、y2= y1 ∫ xdx x′6 = x −2 であることが確かめられる。 演習 4.3 2階微分方程式xy′′− (3x + 1)y′+ (2x + 1)y = 0を考える。 (1) この方程式はy = exを解としてもつことを確かめよ。 (2) これと線形独立なもう一方の解を求めよ。(y = (x− 1)e2x) 非斉次方程式 次に非斉次項を含んだ方程式y′′+ py′+ qy = rを考える。この場合も1階線形方程式の場合と同様 に、定数変化法が適用できる。前節で見たように斉次方程式y′′+ py′+ qy = 0のある基本解をy1, y2とすれば、一 般解は任意定数C1, C2を用いて、 y(x) = C1y1(x) + C2y2(x) とかける。ここで、任意定数をxの関数とみなし、yを微分していくと y′′= C1y1′′+ 2C1′y′1+ C1′′y1+ C2y2′′+ 2C2′y′2+ C2′′y2 py′ = p(C1y1 + C1′y1) + p(C2y′2+ C2′y2) qy = q C1y1+ q C2y2 となるから、これらを足してy1, y2が斉次方程式の解であることを使えば、非斉次方程式は 2C1′y1 + C1′′y1+ 2C2′y2 + C2′′y2+ p(C1′y1+ C2′y2) = r と等価であることがわかる。ここで、C1, C2を決定するために、もう一つの条件 C1′y1+ C2′y2= 0 微分 −−−→ C′′ 1y1+ C2′′y2+ C1′y′1+ C2′y2 = 0 を付け加えよう。この最後の条件式より、yが非斉次方程式の解であるための条件は C1′y1 + C2′y′2= r であることがわかる。したがって、 { C1′y1+ C2′y2= 0 C1′y′1+ C2′y′2= r ⇔ ( y1 y2 y1 y2 ) ( C1 C2 ) = ( 0 r ) を満たすような関数C1, C2がわかればよい。右式の左辺の2× 2行列の行列式はy1とy2のWronskian W [y1, y2] であることに注意すれば、Cramerの公式より C1 = 1 W [y1, y2] 0 y2 r y2 = −ry2 W [y1, y2] , C2 = 1 W [y1, y2] y1 0 y1 r = ry1 W [y1, y2] がわかる。したがって、未知関数は C1(x) = ∫ x −ry 2 W [y1, y2] dx′, C2(x) = ∫ x = ry1 W [y1, y2] dx′ のように求まる。

例:  線形非斉次方程式 y′′+ y = cos xの一般解を求める。斉次方程式の一般解をC1sin x + C2cos xとおけば、

W [sin x, cos x] =−1だから C1 =− cos 2x −1 ⇒ C1= 1 2 ∫ x (1 + cos 2x′)dx′ =1 2 ( x +1 2sin 2x ) + ˜C1 C2 =−cos x sin x −1 ⇒ C2=x cos x′sin x′dx′= 1 2cos 2x + ˜C 2 のように関数C1, C2が求まり、一般解は2つの任意定数を改めてC˜1, ˜C2と書いて

y(x) = ˜C1sin x + ˜C2cos x + 1 2 ( x + 1 2sin 2x ) sin x +1 2cos 3x = C 1sin x + C2cos x + 1 2x sin x となる(最後の等号では任意定数を改めて置きなおした)。この例からわかるように、非斉次方程式の一般解は対応し た斉次方程式の一般解と非斉次方程式の特解の和の形になる。

(11)

■第5回 代入法 定数変化法による非斉次方程式の解法では、C1, C2の公式に現れる不定積分は一般に容易ではない。ここ では非斉次項r(x)の関数形から、非斉次方程式の特解を推測する方法を考える。 例 非斉次項が多項式の場合:  非斉次方程式y′′+ y′+ y = x2の特解を求める。右辺の形からy = a 0+ a1x + a2x2 とおいて方程式に代入すると、

2a2+ (a1+ 2a2x) + (a0+ a1x + a2x2) = x2 ⇔ (2a2+ a1+ a0) + (2a2+ a1)x + (a2− 1)x2= 0

であるから、これが恒等的に成立するには各次の係数が0であればよい。したがって、a2= 1, a1=−2, a0= 0がわ かるから y =−2x + x2 が非斉次方程式の特解である。これに斉次方程式の一般解を加えたものが非斉次方程式の一般解となる。 例 非斉次項が指数関数の場合:  非斉次方程式y′′− 2y′+ 4y = e2xの特解を求める。右辺の形からy = ae2x おいて方程式に代入すると、 (4a− 4a + 4a)e2x= e2x ⇔ 4a = 1 ⇔ a = 1 4 となりy = e2x/4が非斉次方程式の特解である。 例 非斉次項が三角関数の場合:  非斉次方程式y′′+ 4y = sin 3xの特解を求める。右辺の形からy = a sin 3xとお いて方程式に代入すると、

(−9a + 4a) sin 3x = sin 3x ⇔ a = −1 5 となりy =−15sin 3xが非斉次方程式の特解である。 これらの方法は、斉次方程式の解と非斉次項に特別な関係がある場合には注意が必要である。前回の最後の例を参 照のこと(y′′+ y = cos x)。 1.2.2 定数係数の2階線形微分方程式 この節ではyおよびその導関数の係数が全て定数である場合の2階線形微分方程式を考えよう。この形の方程式は 一般にy′′+ 2ay′+ by = rのように書くことができる。ここで、a, bは定数、rは与えられた関数である。 特性方程式  まず斉次方程式y′′+ 2ay′+ by = 0を考える。どのような関数がこの方程式の解になり得るだろう か?たとえばy = xmのような関数は、この方程式の解にならないことはすぐにわかる。なぜなら、このような場 合3つの項y, y′, y′′の次数はすべて異なり、項の打ち消し合いは決して起こらないから。ここでもしy が指数関数 y = eλxの形であればy = λeλx, y′′= λ2eλxとなるから、各項とも同じ関数形になり3項間の打ち消し合いが起こ る可能性がある。実際、

y′′+ 2ay′+ by = (λ2+ 2aλ + b)eλx= 0

となるが、指数関数は恒等的に0にはならないからλλ2+ 2aλ + b = 0 をみたせばy = eλxは斉次方程式の解になっていることがわかる。このときλはこの2次方程式を解くことによって λ±:=−a ±a2− b のように決定される。この2次方程式を、線形斉次方程式の特性方程式という。特性方程式の解は一般に実数とは限 らないから、もし微分方程式の実数解が必要な場合には注意が必要である。 重解をもたない場合  まず、特性方程式が重解をもたない場合、つまりa2− b ̸= 0の場合を考えよう。このとき 斉次方程式の基本解はy1= eλ+x, y2= eλ−xで与えられる。実際、Wronskianを計算するとλ+̸= λ−であるから W [eλ+x, eλ−x] = (λ −− λ+)e(λ++λ−)x̸= 0 となってy1, y2は線形独立であることが確かめられる。したがって、斉次方程式の一般解は y(x) = C1+x+ C2eλ−x である。

(12)

例:  斉次方程式y′′− y′− 6y = 0の一般解を求める。特性方程式はλ2− λ − 6 = 0だから、これは簡単に (λ + 2)(λ− 3) = 0と因数分解できる。つまり、基本解はλ = 3,−2によって与えられるので y = C1e3x+ C2e−2x が一般解である。 例 複素数解:  斉次方程式y′′+ 2y′+ 4y = 0の一般解を求める。特性方程式はλ2+ 2λ + 4 = 0だから、解は λ±=−2 ±√3iである。したがって、基本解の一方は y1= e(−2+

3i)x= e−2x(cos3x + i sin3x)であり、もう 一方はy1 = e(−2−

3i)x= e−2x(cos3x− i sin3x)となる。一般解はこれらの線形結合だから、任意係数C 1, C2 を用いて、 y = (C1cos 3x + C2sin√3x)e−2x のように書くことができる。 重解をもつ場合  次に特性方程式が重解を与える場合を考えよう。このときa2− b = 0であるから、斉次方程式 およびその特性方程式は y′′+ 2ay′+ a2y = 0 ⇒ λ2+ 2aλ + a2= 0 ⇔ (λ + a)2= 0 の形になり、解として許されるのはλ =−aのみであることがわかる。したがってこの場合、斉次方程式の基本解の 一方がy1= e−axであることまではわかった。もう一方は前節の方法により決めることができるが、定数係数の方程 式なのでこれは容易である。実際、もう一方の解をy2= y1vとおけば、u = v′としてuの満たす方程式は u′= ( 2y1 y1 + p ) u であったが、今の場合p(x) = 2aであり2y1′/y1= 2aだから、この式の右辺は恒等的に0となりu′ = 0、したがって v′′= 0 がvのみたすべき方程式である。解は1次関数であるが、定数項は不要なのでv = Cxのようにvが定まり、基本解 のもう一方はy2= xy1= xe−axである。結局、特性方程式が重解をもつ場合の一般解は y = C1e−ax+ C2xe−ax であることがわかった。 演習 5.1次の微分方程式の一般解を求めよ。 (1) 6y′′− 7y′+ y = 0 (2) y′′− 3y′+ y = 0 (3) y′′+ y′+ y = 0 (4) y′′− 6y + 9y = 0 演習 5.2次の微分方程式の一般解を求めよ。 (1) y′′+ 3y = x3− 1 (2) y′′+ 2y′− 15y = cos 3x (3) y′′− 2y′− 3y = e3x(y = C1e−x+ C2e3x+ xe3x/4)

(13)

■第6回 Euler形方程式 斉次方程式y′′+ py′+ qy = 0においてp(x)∝ 1/xかつq(x)∝ 1/x2のような形の方程式を考え る。全体にx2をかければ、この斉次方程式は y′′+α xy + β x2y = 0 ⇔ x 2y′′+ αxy+ βy = 0 のように書くことができる。このような形の方程式をEuler形方程式と呼ぶ。 Euler形方程式はx = etのような独立変数変換をすると、tについての定数係数微分方程式になることが示せる。 実際、 x = et ⇔ t = log x ⇔ dt dx = 1 x だから、x微分は d dx = dt dx d dt = 1 x d dt および、 d2 dx2 = d dx ( 1 x d dt ) =1 x2 d dt+ 1 x 1 x d2 dt2 = 1 x2 ( d2 dt2 d dt ) のようにt微分に変換され x2y′′+ αxy′+ βy = 0 d 2y dt2 + (α− 1) dy dt + βy = 0 がわかる。したがって、これまでの考察より(α− 1)2− 4β ̸= 0のとき、特性方程式λ2+ (α− 1)λ + β = 0の解を λ±とすれば、tについての方程式の一般解は y(t) = C1+t+ C2eλ−t であることがわかり、x2y′′+ αxy+ βy = 0の一般解は変数をxに直して y(x) = C1++ C2xλ− と得られる。また、(α− 1)2− 4β = 0のとき特性方程式は重解λ =−α + 1をもち、一般解は y(t) = C1eλt+ C2teλt であるから、元の方程式の解は y(x) = C1xλ+ C2xλlog x であることがわかる。

Euler形方程式x2y′′+ αxy′+ βy = 0の各項の係数部分を見ると微分によって下がった階数を回復する形になっ ているから、この方程式がべき関数を解にもつことは自然であり、特性方程式が重解をもつ場合を除き、実際これが 確かめられたことになる。 1.2.3 級数解 前述の通り、2階線形微分方程式を求積する一般的な方法はないが、べき級数の形の解であれば求まる場合がある。 本節では、この級数解法を考える。 確定特異点 Euler形方程式は係数関数としてp(x) = α/xq(x) = β/x2をもつのような2階線形方程式であっ た。これを一般化して、係数関数がある点x0の周りで p(x) = p−1 x− x0 + p0+ p1(x− x0) +· · · , q(x) = q−2 (x− x0)2 + q−1 x− x0 + q0+ q1(x− x0) +· · · のように展開されるような場合を考えよう。これは(x− x0)p(x)と(x− x0)2q(x)x = x0においてTaylor展開可 能であることを意味しているが、このときx = x0をこの線形方程式の確定特異点といい、このような展開ができな い場合、不確定特異点という。特にp(x)およびq(x)自身がx = x0においてTaylor展開可能なとき、x = x0を通 常点という。詳細はこの講義の程度を超えるので述べないが、微分方程式とその解の主要な性質は確定特異点におけ る級数解に出現する。ここでは主に確定特異点、あるいは通常点の周りで定義された級数解を求める手続きを考える。

(14)

例: 方程式y′′+ 2xy′+ 2y = 0の基本解をx = 0の周りで求める。p(x) = 2x, q(x) = 2であるからx = 0はこの 方程式の確定特異点(実際は通常点)である。基本解を求めるために、解の形を y = a0+ a1x + a2x2+· · · = n=0 anxn の形において、微分すると y′= a1+ 2a2x + 3a3x2+· · · = n=1 nanxn−1, y′′= 2a2+ 6a3x +· · · = n=2 n(n− 1)anxn−2 であるから、添え字を調整してからこれらを方程式の左辺に代入して y′′+ 2xy′+ 2y = 2a2+ 2a0+ n=1

(2an+ 2nan+ (n + 2)(n + 1)an+2) xn

が得られる。この右辺が0ならば方程式が満たされるが、そのためにはxnの各係数が0でなければならない。した

がって、

a2+ a0= 0, (2n + 2)an+ (n + 2)(n + 1)an+2= 0 ⇔ a2=−a0, an+2=

2 n + 2an のように、2つ刻みの漸化式になりnが偶数の系列と奇数の系列が独立に現れる。まずn = 2kの場合、 a2=−a0, a2k+2= 1 k + 1a2k であるから、a2k= (−1)k k! a0が帰納的に証明できる。特にa0= 1の場合の解をy0と書くと y0= k=0 (−1)k k! x 2k = e−x2 がわかる。指数関数になることからわかるように、この関数は実軸上で収束する。一方、n = 2k + 1のとき a2k+3= 2 2k + 3a2k+1 であるから、a2k+1= (−1)k2k (2k + 1)!!a0もわかり、やはりa1= 1の場合の解をy1と書くと y1= k=0 (−1)k2k (2k + 1)!!x 2k+1 となり、y1はよく知られた関数では書けないが、実軸上で収束することが確かめられる。任意定数を改めてC0, C1 と書くことにすれば、一般解はy = C0y0+ C1y1と書くことができ、この方程式の基本解はy0, y1で与えられること がわかった。 例Bessel関数: 方程式x2y′′+ xy+ (x2− ν2)y = 0Besselの微分方程式と呼ばれ、物理学の様々な場面で出現 する重要な方程式である。全体をx2で割ればp(x) = 1/xおよびq(x) = 1− (ν/x)2であるから、x = 0はこの方程 式の確定特異点である。 ここでは特にν = 1/2の場合を考える。確定特異点の周りでは解がTaylor展開できる保証はないから、まず y = xλ n=0 anxn のようにおいてみる。ここで指数λは複素定数である。前例と同様に、これを微分すると y′ = λxλ−1 n=0 anxn+ xλ n=1 nanxn−1, y′′= λ(λ− 1)xλ−2 n=0 anxn+ 2λxλ−1 n=1 nanxn−1+ xλ n=2 n(n− 1)anxn−2

(15)

であるから、 x2y′′= λ(λ− 1)xλ n=0 anxn+ 2λxλ n=1 nanxn+ xλ n=2 n(n− 1)anxn, xy′= λxλ n=0 anxn+ xλ n=1 nanxn, ( x21 4 ) y = xλ n=2 an−2xn− 1 4x λ n=0 anxn がわかる。したがって、x2y′′+ xy′+ (x214)y = 0が成り立つにはxnの各係数が0、すなわち ( λ21 4 ) a0= 0, ( λ2+ 2λ +3 4 ) a1= 0 および an−2+ { (λ + n)21 4 } an= 0 (n≥ 2) が成り立てばよいことがわかる。a0の係数に関する最初の条件式によりλが定まるが、この条件式を元の微分方程式 の決定方程式、λを特性指数と呼ぶ。この場合、特性指数はλ =±1/2のように定まるが、この例からわかるように、 確定特異点における級数解の特性指数は一般に整数値を取るとは限らない。 演習 6.1方程式(x2y′′+ xy+ (x21 4)y = 0の級数解を求める。 (1) 特性指数λ = 1/2のとき、a0= 1とおけば、a2n+1= 0, a2n= (−1)n (2n + 1)! であることを示せ。これを用 いれば、解はy1= 1 xsin xで与えられることを示せ。 (2) 特性指数λ =−1/2のとき、a0 = 1とおき、さらにa1= 0と定めれば、もう一方の解はy2= 1 xcos x で与えられることを示せ。

演習 6.2方程式(1− x2)y′′− 2xy′+ α(α + 1)y = 0はLegendreの微分方程式とよばれ、数学や物理学の多 くの分野に現れる(電磁気学演習I 7.4 参照)。

(1) x =±1はこの方程式の確定特異点であることを示せ。

(2) α = n(整数)のとき、Legendreの微分方程式はn次の多項式解をもつことを示せ。

(3) α = nのとき、多項式解でPn(1) = 1を満たすものをLegendre多項式という。P0(x), P1(x), P2(x), P3(x) を求めよ。

参照

関連したドキュメント

In the second section, we study the continuity of the functions f p (for the definition of this function see the abstract) when (X, f ) is a dynamical system in which X is a

We study a Neumann boundary-value problem on the half line for a second order equation, in which the nonlinearity depends on the (unknown) Dirichlet boundary data of the solution..

Lang, The generalized Hardy operators with kernel and variable integral limits in Banach function spaces, J.. Sinnamon, Mapping properties of integral averaging operators,

のようにすべきだと考えていますか。 やっと開通します。長野、太田地区方面  

Algebraic curvature tensor satisfying the condition of type (1.2) If ∇J ̸= 0, the anti-K¨ ahler condition (1.2) does not hold.. Yet, for any almost anti-Hermitian manifold there

In this paper, for each real number k greater than or equal to 3 we will construct a family of k-sum-free subsets (0, 1], each of which is the union of finitely many intervals

Global transformations of the kind (1) may serve for investigation of oscilatory behavior of solutions from certain classes of linear differential equations because each of

Some of the known oscillation criteria are established by making use of a technique introduced by Kartsatos [5] where it is assumed that there exists a second derivative function