volume 6, issue 3, article 67, 2005.
Received 27 September, 2004;
accepted 04 May, 2005.
Communicated by:J. Sándor
Abstract Contents
JJ II
J I
Home Page Go Back
Close Quit
Journal of Inequalities in Pure and Applied Mathematics
AN EXPLICIT MERTENS’ TYPE INEQUALITY FOR ARITHMETIC PROGRESSIONS
OLIVIER BORDELLÈS
2 allée de la combe La Boriette
43000 Aiguilhe, France.
EMail:borde43@wanadoo.fr
c
2000Victoria University ISSN (electronic): 1443-5756 172-04
An Explicit Mertens’ Type Inequality for Arithmetic
Progressions Olivier Bordellès
Title Page Contents
JJ II
J I
Go Back Close
Quit Page2of24
J. Ineq. Pure and Appl. Math. 6(3) Art. 67, 2005
http://jipam.vu.edu.au
Abstract
We give an explicit Mertens type formula for primes in arithmetic progressions using mean values of Dirichlet L-functions ats= 1.
2000 Mathematics Subject Classification:11N13, 11M20
Key words: Mertens’ formula, Arithmetic progressions, Mean values of Dirichlet L−functions.
Contents
1 Introduction and Main Result . . . 3 2 Notation . . . 6 3 Sums with Primes . . . 7 4 The Polyá-Vinogradov Inequality and Character Sums with
Primes. . . 8 5 Mean Value Estimates of DirichletL−functions. . . 12 6 Proof of the Theorem . . . 21
References
An Explicit Mertens’ Type Inequality for Arithmetic
Progressions Olivier Bordellès
Title Page Contents
JJ II
J I
Go Back Close
Quit Page3of24
J. Ineq. Pure and Appl. Math. 6(3) Art. 67, 2005
http://jipam.vu.edu.au
1. Introduction and Main Result
The very useful Mertens’ formula states that Y
p≤x
1− 1
p
= e−γ logx
1 +O
1 logx
for any real number x ≥ 2, where γ ≈ 0.577215664. . . denotes the Euler constant. Some explicit inequalities have been given in [4] where it is showed for example that
(1.1) Y
p≤x
1−1
p −1
< eγδ(x) logx, where
(1.2) δ(x) := 1 + 1
(logx)2.
Let 1 ≤ l ≤ k be positive integers satisfying (k, l) = 1. The aim of this paper is to provide an explicit upper bound for the product
(1.3) Y
p≤x p≡l(modk)
1−1
p −1
.
In [2,5], the authors gave asymptotic formulas for(1.3)in the form Y
p≤x p≡l(modk)
1− 1
p
∼c(k, l) (logx)−1/ϕ(k),
An Explicit Mertens’ Type Inequality for Arithmetic
Progressions Olivier Bordellès
Title Page Contents
JJ II
J I
Go Back Close
Quit Page4of24
J. Ineq. Pure and Appl. Math. 6(3) Art. 67, 2005
http://jipam.vu.edu.au
where ϕ is the Euler totient function and c(k, l) is a constant depending on l and k. Nevertheless, because of the non-effectivity of the Siegel-Walfisz the- orem, one cannot compute the implied constant in the error term. Moreover, the constantc(k, l)is given only for some particular cases in [2], whereas K.S.
Williams established a quite complicated expression ofc(k, l)involving a prod- uct of Dirichlet L−functionsL(s;χ)and a function K(s;χ)at s = 1, where K(s;χ)is the generating Dirichlet series of the completely multiplicative func- tionkχdefined by
kχ(p) :=p (
1−
1−χ(p)
p 1− 1
p
−χ(p))
for any prime number p and any Dirichlet character χ modulo k. The author then gave explicit expressions ofc(k, l)in the casek = 24.
It could be useful to have an explicit upper bound for(1.3)valid for a large range ofkandx.Indeed, we shall see in a forthcoming paper that such a bound could be used to estimate class numbers of certain cyclic number fields. We prove the following result:
Theorem 1.1. Let 1 ≤ l ≤ k be positive integers satisfying (k, l) = 1 and k ≥37,andxbe a positive real number such thatx > k.We have:
Y
p≤x p≡l(modk)
1− 1
p −1
An Explicit Mertens’ Type Inequality for Arithmetic
Progressions Olivier Bordellès
Title Page Contents
JJ II
J I
Go Back Close
Quit Page5of24
J. Ineq. Pure and Appl. Math. 6(3) Art. 67, 2005
http://jipam.vu.edu.au
< e2(γ−B) v u u
tζ(2)Y
p|k
1− 1
p2
·
eγϕ(k) k logx
ϕ(k)1
·Φ (x, k),
where
Φ (x, k) := exp ( 2
logx 2√
klogk ϕ(k)
X
χ6=χ0
L0 L (1;χ)
+ 2√
klogk+E−γ
!) ,
B ≈0.261497212847643. . .andE ≈1.332582275733221. . .
The restrictionk ≥ 37is given here just to use a simpler expression of the Polyá-Vinogradov inequality, but one can prove a similar result withk ≥9only, the constants inΦ (x, k)being slightly larger.
An Explicit Mertens’ Type Inequality for Arithmetic
Progressions Olivier Bordellès
Title Page Contents
JJ II
J I
Go Back Close
Quit Page6of24
J. Ineq. Pure and Appl. Math. 6(3) Art. 67, 2005
http://jipam.vu.edu.au
2. Notation
pdenotes always a prime,1 ≤ l ≤ k are positive integers satisfying(k, l) = 1 andk≥37, x > kis a real number,
γ := lim
n→∞
n
X
k=1
1
k −logn
!
≈0.5772156649015328. . .
is the Euler constant and γ1 := lim
n→∞
n
X
k=1
logk
k − (logn)2 2
!
≈ −0.07281584548367. . . is the first Stieltjes constant. Similarly,
E := lim
n→∞ logn−X
p≤n
logp p
!
≈1.332582275733221. . . and
B := lim
n→∞
X
p≤n
1
p −log logn
!
≈0.261497212847643. . .
χdenotes a Dirichlet character modulokandχ0 is the principal character mod- ulok.For any Dirichlet characterχmodulokand anys ∈Csuch thatRes >1, L(s;χ) := P∞
n=1 χ(n)
ns is the Dirichlet L− function associated to χ. P
χ6=χ0
means that the sum is taken over all non-principal characters modulo k. Λ is the Von Mangoldt function and f ∗g denotes the usual Dirichlet convolution product.
An Explicit Mertens’ Type Inequality for Arithmetic
Progressions Olivier Bordellès
Title Page Contents
JJ II
J I
Go Back Close
Quit Page7of24
J. Ineq. Pure and Appl. Math. 6(3) Art. 67, 2005
http://jipam.vu.edu.au
3. Sums with Primes
From [4] we get the following estimates:
Lemma 3.1.
X
p
logp
∞
X
α=2
1
pα =E−γ and X
p
∞
X
α=2
1
αpα =γ−B.
An Explicit Mertens’ Type Inequality for Arithmetic
Progressions Olivier Bordellès
Title Page Contents
JJ II
J I
Go Back Close
Quit Page8of24
J. Ineq. Pure and Appl. Math. 6(3) Art. 67, 2005
http://jipam.vu.edu.au
4. The Polyá-Vinogradov Inequality and Character Sums with Primes
Lemma 4.1. Letχbe any non-principal Dirichlet character modulok≥37.
(i) For any real numberx≥1,
X
n≤x
χ(n)
< 9 10
√
klogk.
(ii) LetF ∈C1([1; +∞[, [0; +∞[)such thatF(t) &
t→∞
0.For any real num- berx≥1,
X
n>x
χ(n)F (n)
≤ 9
5F (x)√
klogk.
(iii) For any real numberx > k,
X
p>x
χ(p) p
< 2 logx
2√
klogk
L0 L (1;χ)
+ 1
+E−γ
.
Proof.
(i) The result follows from Qiu’s improvement of the Polyá-Vinogradov in- equality (see [3, p. 392]).
(ii) Abel summation and (i).
An Explicit Mertens’ Type Inequality for Arithmetic
Progressions Olivier Bordellès
Title Page Contents
JJ II
J I
Go Back Close
Quit Page9of24
J. Ineq. Pure and Appl. Math. 6(3) Art. 67, 2005
http://jipam.vu.edu.au
(iii) Letχ6=χ0be a Dirichlet character modulok ≥37andx > kbe any real number.
(a) Sinceχ(µ∗1) =εwhereε(n) =
( 1, ifn= 1
0, otherwise and1(n) = 1, we get:
X
d≤x
µ(d)χ(d) d
X
m≤x/d
χ(m) m = 1 and hence, sinceχ6=χ0,
X
d≤x
µ(d)χ(d)
d = 1
L(1;χ)
X
d≤x
µ(d)χ(d) d
X
m>x/d
χ(m) m + 1
and thus, using (ii), (4.1)
X
d≤x
µ(d)χ(d) d
≤
9 5
√klogk+ 1
|L(1;χ)| < 2√ klogk
|L(1;χ)|. (b) Sincelog = Λ∗1, we get:
X
n≤x
χ(n) Λ (n)
n =X
d≤x
µ(d)χ(d) d
X
m≤x/d
χ(m) logm m
=
X
d≤x/e
+ X
x/e<d≤x
X
m≤x/d
χ(m) logm m
An Explicit Mertens’ Type Inequality for Arithmetic
Progressions Olivier Bordellès
Title Page Contents
JJ II
J I
Go Back Close
Quit Page10of24
J. Ineq. Pure and Appl. Math. 6(3) Art. 67, 2005
http://jipam.vu.edu.au
= X
d≤x/e
µ(d)χ(d) d
X
m≤x/d
χ(m) logm
m + χ(2) log 2 2
X
x/e<d≤x
µ(d)χ(d) d
=−L0(1;χ) X
d≤x/e
µ(d)χ(d)
d − X
d≤x/e
µ(d)χ(d) d
X
m>x/d
χ(m) logm m + χ(2) log 2
2
X
x/e<d≤x
µ(d)χ(d) d
and, by using (ii), (4.1)and the trivial bound for the third sum, we get:
X
n≤x
χ(n) Λ (n) n
(4.2)
<√ klogk
2
L0 L (1;χ)
+ 9 5x
X
d≤x/e
logx d
+ log 2 2
1 + e
x
≤√ klogk
2
L0 L (1;χ)
+18
5e + log 2 2
1 + e
37
<2√ klogk
L0 L (1;χ)
+ 1
sincex > q ≥37.
An Explicit Mertens’ Type Inequality for Arithmetic
Progressions Olivier Bordellès
Title Page Contents
JJ II
J I
Go Back Close
Quit Page11of24
J. Ineq. Pure and Appl. Math. 6(3) Art. 67, 2005
http://jipam.vu.edu.au
(c) By Abel summation, we get:
X
p>x
χ(p) p
≤ 2
logxmax
t≥x
X
p≤t
χ(p) logp p
.
Moreover, X
p≤t
χ(p) logp
p =X
n≤t
χ(n) Λ (n)
n −X
p
∞
X
α=2 pα≤t
χ(pα) logp pα
and then:
X
p≤t
χ(p) logp p
≤
X
n≤t
χ(n) Λ (n) n
+X
p
logp
∞
X
α=2
1 pα
=
X
n≤t
χ(n) Λ (n) n
+E−γ
<2√ klogk
L0 L (1;χ)
+ 1
+E−γ by(4.2).This concludes the proof of Lemma4.1.
An Explicit Mertens’ Type Inequality for Arithmetic
Progressions Olivier Bordellès
Title Page Contents
JJ II
J I
Go Back Close
Quit Page12of24
J. Ineq. Pure and Appl. Math. 6(3) Art. 67, 2005
http://jipam.vu.edu.au
5. Mean Value Estimates of Dirichlet L−functions
Lemma 5.1.
(i) For any positive integersj, k,
jk
X
n=1 (n,k)=1
1
n = ϕ(k) k
log (jk) +γ +X
p|k
logp p−1
+ c0(j, k) 2ω(k) jk whereω(k) :=P
p|k1and|c0(j, k)| ≤1.
(ii) For any positive integerk ≥9, k
ϕ(k) 2
ζ(2)Y
p|k
1− 1
p2
+2γ1+γ+π2 3 −
logk+X
p|k
logp p−1
2
≤0.
(iii) For any positive integerk ≥9, Y
χ6=χ0
|L(1;χ)|1/ϕ(k) ≤p
ζ(2)Y
p|k
1− 1
p2 12
.
Proof.
(i)
jk
X
n=1 (n,k)=1
1
n =X
d|k
µ(d) d
X
n≤jk/d
1
n =X
d|k
µ(d) d
log
jk d
+γ+ε(d)d jk
An Explicit Mertens’ Type Inequality for Arithmetic
Progressions Olivier Bordellès
Title Page Contents
JJ II
J I
Go Back Close
Quit Page13of24
J. Ineq. Pure and Appl. Math. 6(3) Art. 67, 2005
http://jipam.vu.edu.au
where|ε(d)| ≤1and hence:
jk
X
n=1 (n,k)=1
1
n ={log (jk) +γ}X
d|k
µ(d) d −X
d|k
µ(d) logd
d + 1
jk X
d|k
ε(d)µ(d)
and we conclude by noting that X
d|k
µ(d)
d = ϕ(k) k , X
d|k
µ(d) logd
d =−ϕ(k) k
X
p|k
logp p−1
and
X
d|k
ε(d)µ(d)
≤X
d|k
µ2(d) = 2ω(k).
(ii) Define
A(k) :=
k ϕ(k)
2
ζ(2)Y
p|k
1− 1
p2
+ 2γ1 +γ+ π2 3 −
logk+X
p|k
logp p−1
2
.
An Explicit Mertens’ Type Inequality for Arithmetic
Progressions Olivier Bordellès
Title Page Contents
JJ II
J I
Go Back Close
Quit Page14of24
J. Ineq. Pure and Appl. Math. 6(3) Art. 67, 2005
http://jipam.vu.edu.au
Using [1] we check the inequality for 9 ≤ k ≤ 513 and then suppose k≥514.Since
k
ϕ(k) =Y
p|k
p
p−1 ≤Y
p|k
pp−11 we have taking logarithms
X
p|k
logp p−1 ≥log
k ϕ(k)
≥log k
k−1
and from the inequality ([4]) k
ϕ(k) < eγlog logk+ 2.50637 log logk valid for any integerk ≥3,we obtain
A(k)≤ζ(2)
eγlog logk+ 2.50637 log logk
2
+ 2γ1+γ+π2 3 −
log
k2 k−1
2
<0 ifk ≥514.
(iii) First,
X
χ6=χ0
|L(1;χ)|2 = lim
N→∞S(N)
An Explicit Mertens’ Type Inequality for Arithmetic
Progressions Olivier Bordellès
Title Page Contents
JJ II
J I
Go Back Close
Quit Page15of24
J. Ineq. Pure and Appl. Math. 6(3) Art. 67, 2005
http://jipam.vu.edu.au
where
S(N) :=
N k
X
m,n=1
χ(n)χ(m)
nm −
N k
X
n=1 (n,k)=1
1 n
2
.
Following a standard argument, we have using (i):
S(N)
=ϕ(k)
N k
X
m6=n=1 m≡n(modk) (n,k)=(m,k)=1
1 mn−
N k
X
n=1 (n,k)=1
1 n
2
=ϕ(k)
N k
X
n=1 (n,k)=1
1
n2 +ϕ(k)
N k
X
m6=n=1 m≡n(modk) (n,k)=(m,k)=1
1 mn −
N k
X
n=1 (n,k)=1
1 n
2
≤ϕ(k)ζ(2)Y
p|k
1− 1
p2
+ 2ϕ(k)
N
X
j=1 (N−j)k
X
n=1 (n,k)=1
1
n(n+jk)−
N k
X
n=1 (n,k)=1
1 n
2
An Explicit Mertens’ Type Inequality for Arithmetic
Progressions Olivier Bordellès
Title Page Contents
JJ II
J I
Go Back Close
Quit Page16of24
J. Ineq. Pure and Appl. Math. 6(3) Art. 67, 2005
http://jipam.vu.edu.au
=ϕ(k)ζ(2)Y
p|k
1− 1
p2
+2ϕ(k) k
N
X
j=1
1 j
(N−j)k
X
n=1 (n,k)=1
1 n −
N k
X
n=1+jk (n,k)=1
1 n
−
N k
X
n=1 (n,k)=1
1 n
2
≤ϕ(k)ζ(2)Y
p|k
1− 1
p2
+ 2ϕ(k) k
N
X
j=1
1 j
jk
X
n=1 (n,k)=1
1 n −
N k
X
n=1 (n,k)=1
1 n
2
=ϕ(k)ζ(2)Y
p|k
1− 1
p2
+2ϕ(k) k
N
X
j=1
1 j
ϕ(k)
k
log (jk) +γ+X
p|k
logp p−1
+ c0(j, k) 2ω(k) jk
−
ϕ(k)
k
log (N k) +γ+X
p|k
logp p−1
+c0(N, k) 2ω(k) N k
2
.
We now neglect the dependance ofc0 ink.Since
M
X
m=1
1
m = logM +γ +c1(M) M
An Explicit Mertens’ Type Inequality for Arithmetic
Progressions Olivier Bordellès
Title Page Contents
JJ II
J I
Go Back Close
Quit Page17of24
J. Ineq. Pure and Appl. Math. 6(3) Art. 67, 2005
http://jipam.vu.edu.au
and
M
X
m=1
logm
m = (logM)2
2 +γ1+ c2(M) logM
M ,
where0< c1(M)≤ 12 and|c2(M)| ≤1, we get:
S(N)≤ϕ(k)ζ(2)Y
p|k
1− 1
p2
+
ϕ(k) k
2
(logN)2+ 2γ1+2c2(N) logN N + 2
logk+γ+X
p|k
logp p−1
logN +γ+c1(N) N
−
log (N k) +γ+X
p|k
logp p−1
2
+2ω(k)+1ϕ(k) k2
( N X
j=1
c0(j) j2
−c0(N) N
log (N k) +γ+X
p|k
logp p−1
− 22ω(k)c20(N) N2k2
An Explicit Mertens’ Type Inequality for Arithmetic
Progressions Olivier Bordellès
Title Page Contents
JJ II
J I
Go Back Close
Quit Page18of24
J. Ineq. Pure and Appl. Math. 6(3) Art. 67, 2005
http://jipam.vu.edu.au
=ϕ(k)ζ(2)Y
p|k
1− 1
p2
+
ϕ(k) k
2
2γ1+γ−
logk+X
p|k
logp p−1
2
+2c1(N) N
logk+γ+X
p|k
logp p−1
+2c2(N) logN N
+2ω(k)+1ϕ(k) k2
( N X
j=1
c0(j) j2
−c0(N) N
log (N k) +γ+X
p|k
logp p−1
− 22ω(k)c20(N) N2k2 and then
N→∞lim S(N)≤ϕ(k)ζ(2)Y
p|k
1− 1
p2
+
ϕ(k) k
2
2γ1+γ−
logk+X
p|k
logp p−1
2
+2ω(k)ϕ(k)π2 3k2
An Explicit Mertens’ Type Inequality for Arithmetic
Progressions Olivier Bordellès
Title Page Contents
JJ II
J I
Go Back Close
Quit Page19of24
J. Ineq. Pure and Appl. Math. 6(3) Art. 67, 2005
http://jipam.vu.edu.au
and the inequality2ω(k) ≤ ϕ(k) (valid for any integerk ≥ 3 and 6= 6) implies
N→∞lim S(N)≤ϕ(k)ζ(2)Y
p|k
1− 1
p2
+
ϕ(k) k
2
2γ1+γ+π2 3 −
logk+X
p|k
logp p−1
2
= (ϕ(k)−1)ζ(2)Y
p|k
1− 1
p2
+
ϕ(k) k
2
k
ϕ(k) 2
ζ(2)Y
p|k
1− 1
p2
+2γ1+γ+π2 3 −
logk+X
p|k
logp p−1
2
≤(ϕ(k)−1)ζ(2)Y
p|k
1− 1
p2
ifk ≥9by (ii). Hence 1 ϕ(k)−1
X
χ6=χ0
|L(1;χ)|2 ≤ζ(2)Y
p|k
1− 1
p2
.
An Explicit Mertens’ Type Inequality for Arithmetic
Progressions Olivier Bordellès
Title Page Contents
JJ II
J I
Go Back Close
Quit Page20of24
J. Ineq. Pure and Appl. Math. 6(3) Art. 67, 2005
http://jipam.vu.edu.au
Now the IAG inequality implies:
Y
χ6=χ0
|L(1;χ)|ϕ(k)1 = exp ( 1
2ϕ(k) X
χ6=χ0
log|L(1;χ)|2 )
≤exp
(ϕ(k)−1
2ϕ(k) log 1 ϕ(k)−1
X
χ6=χ0
|L(1;χ)|2
!)
≤
ζ(2)Y
p|k
1− 1
p2
ϕ(k)−1 2ϕ(k)
≤
ζ(2)Y
p|k
1− 1
p2
1 2
.
An Explicit Mertens’ Type Inequality for Arithmetic
Progressions Olivier Bordellès
Title Page Contents
JJ II
J I
Go Back Close
Quit Page21of24
J. Ineq. Pure and Appl. Math. 6(3) Art. 67, 2005
http://jipam.vu.edu.au
6. Proof of the Theorem
Lemma 6.1. Ifχ0 is the principal character modulokand ifx > k,then:
Y
p≤x
1− 1
p
−χ0(p)
< eγϕ(k)δ(x)
k ·logx, whereδis the function defined in(1.2).
Proof. Sincex > k, Y
p≤x p|k
1−1
p
=Y
p|k
1−1
p
= ϕ(k) k
and then
Y
p≤x
1−1
p
−χ0(p)
= Y
p≤x p-k
1− 1
p −1
=Y
p≤x
1− 1
p −1
Y
p≤x p|k
1− 1
p
= ϕ(k) k
Y
p≤x
1−1
p −1
and we use(1.1).
An Explicit Mertens’ Type Inequality for Arithmetic
Progressions Olivier Bordellès
Title Page Contents
JJ II
J I
Go Back Close
Quit Page22of24
J. Ineq. Pure and Appl. Math. 6(3) Art. 67, 2005
http://jipam.vu.edu.au
Proof of the theorem. Let 1 ≤ l ≤ k be positive integers satisfying(k, l) = 1 andk≥37,andxbe a positive real number such thatx > k.We have:
Y
p≤x p≡l(modk)
1− 1
p −ϕ(k)
=Y
p≤x
1−1
p
−χ0(p)
· Y
χ6=χ0
Y
p≤x
1− 1
p
−χ(p)!χ(l)
:= Π1×Π2
withΠ1 < eγϕ(k)δ(x)
k ·logxby Lemma6.1. Moreover, Π2 = exp
( X
χ6=χ0
χ(l) −X
p≤x
χ(p) log
1− 1 p
!)
= exp X
χ6=χ0
χ(l)X
p≤x
∞
X
α=1
χ(p) αpα
!
= exp (
X
χ6=χ0
χ(l) X
p≤x
χ(p)
p +X
p≤x
∞
X
α=2
χ(p) αpα
!)
and ifχ6=χ0,we have L(1;χ) = Y
p
1−χ(p) p
−1
= exp X
p≤x
χ(p)
p +X
p>x
χ(p)
p +X
p
∞
X
α=2
χ(pα) αpα
!
An Explicit Mertens’ Type Inequality for Arithmetic
Progressions Olivier Bordellès
Title Page Contents
JJ II
J I
Go Back Close
Quit Page23of24
J. Ineq. Pure and Appl. Math. 6(3) Art. 67, 2005
http://jipam.vu.edu.au
and thus Π2 = Y
χ6=χ0
L(1;χ)χ(l)
×exp (
X
χ6=χ0
χ(l) −X
p>x
χ(p)
p +X
p≤x
∞
X
α=2
χ(p) αpα −X
p
∞
X
α=2
χ(pα) αpα
!)
and hence
|Π2| ≤ Y
χ6=χ0
|L(1;χ)| ·exp (
X
χ6=χ0
X
p>x
χ(p) p
+ 2 (ϕ(k)−1)X
p
∞
X
α=2
1 αpα
)
=e2(ϕ(k)−1)(γ−B) Y
χ6=χ0
|L(1;χ)| ·exp (
X
χ6=χ0
X
p>x
χ(p) p
!)
and we use Lemma 4.1 (iii) and Lemma 5.1 (iii). We conclude the proof by noting that, ifx >37, e2(γ−B)δ(x) <1.
An Explicit Mertens’ Type Inequality for Arithmetic
Progressions Olivier Bordellès
Title Page Contents
JJ II
J I
Go Back Close
Quit Page24of24
J. Ineq. Pure and Appl. Math. 6(3) Art. 67, 2005
http://jipam.vu.edu.au
References
[1] PARI/GP, Available by anonymous ftp from the URL: ftp://megrez.
math.u-bordeaux.fr/pub/pari.
[2] E. GROSSWALD, Some number theoretical products, Rev. Colomb. Mat., 21 (1987), 231–242.
[3] D.S. MITRINOVI ´C ANDJ. SÁNDOR (in cooperation with B. CRSTICI), Handbook of Number Theory, Kluwer Acad. Publishers, ISBN: 0-7923- 3823-5.
[4] J.B. ROSSER AND L. SCHŒNFELD, Approximate formulas for some functions of prime numbers, Illinois J. Math., 6 (1962), 64–94.
[5] K.S. WILLIAMS, Mertens’ theorem for arithmetic progressions, J. Number Theory, 6 (1974), 353–359.