• 検索結果がありません。

Equations and

N/A
N/A
Protected

Academic year: 2022

シェア "Equations and"

Copied!
25
0
0

読み込み中.... (全文を見る)

全文

(1)

Photocopying permitted by licenseonly licensebyGordon and Breach Science Publishers Printed in Malaysia

Radial Solutions of Equations and Inequalities Involving the p-Laplacian

WOLFGANG REICHEL

and

WOLFGANG WALTER

MathematischesInstitut

I,

Universit&tKarlsruhe, D-76128 Karlsruhe,

Germany

(Received31July1996)

Severalproblemsfor the differentialequation

Lu=g(r,u) with

Lpu=r-(rlu’lP-2u’)

are considered.Forot N-1, theoperator

L

isthe radiallysymmetric p-Laplacianin

JR".

For variousuniquenessconditions the initial valueproblemwith given datau(ro) uo u’(ro) u

andcounterexamplestouniqueness aregiven. Forthe case where g isincreasingin u,asharp comparisontheorem is established; it leadstomaximal solutions, nonuniqueness anduniqueness results,amongothers.Usingtheseresults, astrong comparison principlefor theboundaryvalue problemand a number ofpropertiesofblow-upsolutionsareprovedunder weak assumptions onthenonlinearity g(r, u).

Keywords: p-Laplacian;radial solutions;uniqueness;comparisonprinciple; blow-upsolutions.

AMS1991 SubjectClassification: Primary 34L30, 34C11, 35J60,Secondary35J05

1 INTRODUCTION

Thisworkisdevoted to thestudy ofthe nonlinearsecondorderoperator

Lu r-U(rUlu’lP-2u’)’= lu’l

p-2 (p-

1)u" +-u’ (1)

r and to initial andboundary value problems for equationsoftheform

Lpu f (u)

and

Lpu

g(r,

u).

It

is always assumedthat p > 1 ando > 0.

For

afunction u depending

N-1 isthe p-Laplacian

ApU

onlyonr

Ix I,

x

IR N,

the operator

L

p

div(IVulP-2Vu)

in

IRN;

inparticular,

LN2-1u

u’f

+ (N 1)u’/r

isthe

47

(2)

radialLaplacian

(we

usethe same letteruasa functionof x 6

..N

and as a functionofr

Ix[

6

IR). In

the linear case p 2we simplywrite

L

in

place of L.

With this notation,

ot u p-2

Lpu

(p-

1)1 L

u, where ot/(p-

1).

A

description of the contents of the

paper

follows.

In

the theorems the nonlinearityis

always

ofthe formg(r,u), butin this overviewwe formulate someoftheresultsonlyfor thespecialcase

f (u).

The firstsignificantnewresultis giveninTheorem 2.

It

statesthatthe initialvalue

problem

Lu f (u), u(ro)

uo,

u!(ro)

u0

(2)

isuniquelysolvable if

f

ismerelycontinuous, at least in the case

u

0,

0. The

consequences

r0 > 0 and also in some cases wherer0 0, u0

can be summed

up

in the statement that the usual assumption that

f

belongs

to

C

canoften be

replaced by

continuity of

f.

Uniquenessfor the

generalinitialvalueproblem

(3)

isasubtleproblem.Thisbecomesalready

(r)u

e-

h(r). In

manifest in the simple "p-linear" equation

Lpu +

k (- 1)

thehomogeneouscaseh 0 the initial valueproblemisalways uniquely solvable

(cf. [13]),

whereas in theinhomogeneouscase this is not true, see Section 2.

An

extensive listofuniquenessconditions is givenin Section2, togetherwithexamples ofnon-uniqueness.Theorem 3 is a refined version of a comparison theorem for

problem (3),

where g(r,

u)

is increasing in u.

It

givesriseto maximaland minimal solutions, equippedwith classical properties.Section3contains astrongcomparison theorem fortheboundary value

problem

withoutthe usualhypothesisofnon-vanishing gradients; e.g., if 1 < p < 2andg(r,

u)

is

locally

Lipschitzian and (weakly) increasingin u, thenstrong comparison holds.

In

Section4

blow-up

problems ofthe form

(r, u),

(r)

--+ --+

R

Lpu

g u o as r

are discussed. UsingCorollary

(e)

of Theorem3, it can beshown that the asymptoteof a

blow-up

solution of

(3)

depends continuously andstrictly Thishas immediate

consequences

ontheuniqueness monotoneonu0andu0.

ofradial

blow-up

solutionsof

Apu f (u)

in aballin

IR N.

Theseresults are obtainedunderweak assumptionson

f

andg;inparticular, differentiability

(3)

is notrequired. Both for the strong comparison theorem and theblow-up problemextensiveuse ismade of earlier results on the initial value

problem.

Our

resultsapplyalso to radial and convex

Ca-solutions

of

Monge-Ampbre

equations det

D2u g’(Ixl, u),

since they satisfy

utt(u’/r)

N-1

(r,

u),

i.e.,

LON

g(r,

u), u’(0)

0 with g(r,

s)

rN-l

fi, (r, s).

NOTATION

For

simplicity, we write the odd powerfunction in the form s(q)

]slq-ls

[slqsign s (q

real);

ithastheproperties

s(q)t(q) (St)(q), 1Is

(q)

(1/s)(q), (--S)

(q)

_s(q),

[slq, s(qz) s(q,+q2) Ls(q qlslq_

d

ds ds

Islq qs(q-1)

The inverse functionofS(q)isS(l/q)

Monotonicity isused in the weak sense, i.e.,

f

is increasing ifu < v

implies

f(u)

<

f(v),

andstrictly increasingif u < vimplies

f(u)

<

f(v).

For

asolution u in an interval

J

C [0,

cx)

werequirethat u and

ru

t(p-1)

belongtoC

I(j);

thisimpliesthat

u"

is continuousaslongasu 0.

2

EXISTENCE, UNIQUENESS, CONTINUOUS DEPENDENCE For

the reader’s convenience we state and prove an existence theorem of

Peano

typefor the initial valueproblem

(r,u), u(ro)--uo,

u’(ro)

Lpu

g uo.

(3)

TheOREM 1(Existence).

Assume

thatg(r,

s)

is continuousandboundedin the strip

S J

x

IR,

where

J

[0,

b]

in thecase

ro

0and

J

[a,b]in

thecase0 <a <

ro <_

b. Then the initial valueproblem

(3)

has- under the 0 in the case

ro

0-asolution existing in

J.

provisionthatuo

COROLLARY Assume

that gis continuousin

G,

where

G

isarelatively open subset

of

[0,

oe)

x

IR,

andthat(ro,

uo)

G. Thenproblem

(3)

has a local solution

u(r)

in someinterval.

It

canbeextended

(as

asolution)toamaximal interval

of

existence [0,

fl+)

or

(fl_, fl+)

with0 <_ fl_ <

fl+ <_

oe, where

the secondcase applies only

if ro

>

O;

the extended solutiontends to the boundary

of

Gas r --+fl_ andr --+

fl+.

(4)

Proof It

followsfrom

(3)

that

ru’(r)

(p-l)

--ru

p-l)

p

g(p, u(p)) dp.

(3’) Hence

problem

(3)

isequivalenttothe fixedpoint equationu

Su,

where

frf { (rO)utO(p-1) frl (p)a

(Su)(r) uo + + 7

g(p, u(p)) dp

at.

We apply

Schauder’s fixedpointtheorem in the Banachspace X

C(J).

Obviously,

S

maps

X

intoitselfand is continuous inthe maximum norm, i.e.,

u

--+ u uniformlyin

J

implies

Su --

Su uniformlyin J. Furthermore, sinceg and the functions

(ro/t)

and (p/t) arebounded,

[(Su)[

<

K

for u 6

X

andr 6

J. Hence S(X)

is arelatively compact subset of

X,

and Schauder’stheorem shows that a fixedpointexists.The

corollar3,

is derived in astandard way from Theorem 1.

THEOREM 2 (Uniqueness).

Assume

thatG C

S

[0,

o)

x

IR

isrelatively openin

S

andg(r,

s)

is continuousin

G

andlocally Lipschitzianwith respect tos orr.

If (ro, uo)

Gand

ro

>

O, Uo O,

thenproblem

(3)

hasaunique

local solution. Theextension

u(r)

remains uniqueaslongas

u(r)

O.

Proof

If g(r,

s)

islocally Lipschitzianin s, notice that as

long

as u

#

0

the differentialequationcanbe written in the form

u" ,(r,

u,u

)

where

,(r,

s,s

)

is locally Lipschitzian in s,s in G x

(IR \ {0}).

Uniqueness then follows form a well known classical theorem.

Now

let g be locally Lipschitzianinr.

A

solution u satisfies u

(r0) #

0;therefore it has an inverse function

r(u)

of class

C

2in aneighborhoodofu0.

It

followsfrom

u

r --1,

u

r 2+u r ---0

and r >0,

where

r’ dr(u)/du,

u

u’(r(u))

that

r(u)

isa solutionofthe initial valueproblem

(p-

1)r"= r ’2- r’(p+l)

g(r(u),u),

r(uo)

ro,

r’(uo) 1/Uo

Sincetherighthand side of the differentialequationislocally Lipschitzian inras

long

as

Ir[

> 0, thetheoremfollows.

It

iswell known that existence anduniqueness implycontinuousdepen- denceontheinitialdata.

We

formulatethisresult for

problem (3),

usingthe notation

u(r;

ro,uo,

Uo)

for a solutionof

(3).

(5)

COROLLARY Let

g be asinTheorem2andlet

u(r)

u(r; ro,uo,

Uo)

bea

solutionin acompact interval

I

[a, b],where 0 < a <

ro <_

band u

56

0

in

I.

Then,given e >

O,

thereexists 3 > 0such that

for [ro fo[

< 3,

fo

E

I, luo ol

< 3,

lUo o1

< 3the solutionfi(r) u(r;

o, tTo, tT)

existsin

I

andisuniquelydetermined, and

lu(r)

fi(r)l < e,

lu’(r) fi’(r)l

< eand fit

Oin I.

For

proof,onechangesg

(r, s)

outside aneighbourhood

N

of the solution uin such awaythatgbecomes bounded and continuous in

I

x

IR;

onemay take

N {(r, s)

r E

I, Is u(r)l

_<

’}

C G.Thenthesetofall solutions u(r;

f0,

iT0,

fi),

where the parameters satisfy the above inequalities with 3 1,is arelatively compactsubset of

X

C

(I)

(everysolution exists in

I).

For

every

sequence (r, u, Uo k)

-, (ro,u0,

u)

thecorresponding sequence (uk)of solutions has auniformly convergentsubsequencewith limitu, and itfollows from

(3 t)

that the sequence ofderivativesconverges uniformlyto u(u(r),

t. Let ut(r)) . (0,

rio,

tT)

and ) (r0,u0,

u).

Then(u(r;

.)), u’(r; .))

-,

uniformlyinIas)

..

The rest iseasy.

In

the next theorem we usethenotation

v(a+)

<

w(a+) (or

v < w at

a+)

if there exists e > 0such that v < w in(a,a

+ e). For

v, w

C 1,

this

relationholds if

v(a)

<

w(a)

or if

v(a) w(a)

and

vt(a)

<

wt(a).

THEOREM 3 (Comparison).

Let

I [a,b] and

Io

(a, b]

(0

< a <

b).

Assume

v, w C

(I)

withVt(p-1) tOt(p-1) C

(I0)

satisfy

v(a+)

< w(a+),

v’(a)

<_

wt(a), Lpv-g(r, v)

<

Lpw-g(r, w)

in

Io,

whereg(r,

s)

isincreasingin s. Then

v

t<_w

in

I,

whichimplies v<w in

Io.

If

(i) gisstrictlyincreasing ins or(ii)v <

w’

ata

+

or(iii)the

differential

inequalityis strict at a

+,

then v < w in

Io.

The theorem remains true in the case

I

[b, a]

(0

< b <

a)

is an intervaltothe

left of

a

if

theinequalities involving v

t,

w are reversed and

Io

is the interval [b,

a)"

The

differential

inequalityand

v(a-)

<

w(a-), vt(a)

>_

wt(a)

implyv > w and v < win

Io,

andthe cases(ii), (iii)have tobe changed accordingly.

Proof Let

v < w inI [a,c],wherecis maximal.Then

[r

a(w

’p-1)

vt(p-1))] >_ r[g(r, w)

g(r,

v)]

> 0 in

I t. (*)

(6)

It

follows that w v

>_

0in

I

whichimpliesthat w v ispositiveand increasingin

(a, c].

Thisshowsthat c b.

In

eachofthe cases(i)-(iii)the first term in

(.)

ispositiveat a

+,

whichgivesw > v in

I0.

[]

Remark

It

isclearthatinthe case ofnonuniqueness of problem

(3)

the Comparison Theorem cannothold if in all inequalities of the assumption equalityispermitted.

But

it isremarkablethata strictinequalityinoneplace

(v

<to at

a+)

suffices withoutanyconditions on gexcept monotonicity.

COROLLARIES In

the following propositions

(a)-(h)

it is always assumed that g(r,

s)

is continuous and increasing in s on a set

G c S I

x

IR

which isrelatively

open

in

S,

andthat u,v,w(withgraphs belongingto

G)

satisfythesmoothness assumptionsof thetheorem;asbefore,

I

[a,b]and

I0 (a,

b].The initial value

problem (3a)

isthe

problem (3)

withr0 a.

Similarpropositionshold also to theleft ofa > 0,where

I

[b,

a]

and

I0

[b,a); anexplicitformulation isonly giveninthose cases where the necessarychangesare not obvious.

(a) Upper

andlowersolutions.Iftosatisfiesthe inequality

L

w > g(r,

w)

inI0,then w iscalledanuppersolution

(or

supersolution)tothedifferential equation

Lu

g(r,

u);

it is an

upper

solution to the initial valueproblem Theseinequalities implythat

(3a)

if, in addition,

w(a+)

> uo,

wt(a)

> uo.

to > u and w > u in I0, where u u(r;a,uo,

Uo). A

lower solution (subsolution)v is definedsimilarly,withinequalitiesreversed.

(b)

Maximal and minimal solutions.Problem

(3a)

has a maximal solution t7 fi(r;a,u0,Ul) in a maximal interval of existence [a,

?)

(? <

b)

or [a, b] and a minimal solution

u_ u_(r;

a,u0,

u)

in a maximal interval [a,

c) (c

<

b)

or[a,

b]. For

every othersolution u of

(3a)

theinequalities

u_

< u < fi, u < u <fithold in the intervalofexistenceofboth t7 andu.The maximal solution ficanbe obtained as the limit of thesequence ofsolutions

u(r)

u(r;a,

uo +

1

/

k,

Uo),

which isstrictly decreasing (this followsfrom Theorem

3). A

similarpropositionholds for the minimal solution.

(c)

Comparisonwith maximaland minimal solutions.

If

to

satisfies

Lpw

> g

(r,

w),

w(a) _>

uo,

w’ (a)

> u

0,’

then w

>_ u__

and w > u

t,

whereu

u_(r;

a,uo,

Uo). In

particular,

if

problem

(3a)

has a unique solution u u(r;a, uo,

Uo),

then w > u, w > u

t. In

this case w (withtheabove properties) isalsocalledan

upper

solution forthe

(7)

initial valueproblem. There areagain corresponding statementsforlower solutions v of

(3a)

and

"to

the left".

This follows from

(b)

and Theorem 3, applied to w and u(r;a,

uo :

1/k, uo).

We

nowdescribe twotechniqueswhichgenerateupperandlowersolutions from a solution. The first oneappliesinthe case whereg(r,

s)

isincreasing in r, while the second onerequiressome kindofLipschitz continuityinr.

(d)

Shiftof solutions.

Assume

that u

satisfies

thesmoothnessassumptionsin aninterval

I

[a,b]

(a

>_

O)

and u > 0in

I0

(a, b]. Then the

function u(r) := u(r + 3)

is

defined

in

I I

3, and

(Lu)(r)

>

(Lu)(r +3)

for > 0 and

(Lua)(r)

<

(L)u(r + 3)

for < 0

(r

6

I0

qh).

(4)

(r, u)and

u’

Ifuis asolutionof

Lpu

g > 0 in

I,

where g isincreasingin

(s

and)r, then

u

is a

super-

or subsolution tothe differentialequationin the case > 0or < 0,

resp.

(e)

Supersolutionsbysubstitution.

Let (r)

be

of

class

C

2 and

w(r)

u((r)).

Then

w’ u’’

and

w" u"

’2

+ u’"

with

tp’ tp’(r), u’ u’((r))

Thisimplies

( )

Lpw

(p-

1)[utb’l

p-2

u"cp

’2

+ u’cp" + --u’q’

with

or’

ct

/

(p

1)

and

(5)

Dw

"=

Lw- (Lu)(qb(r))

(p-

1)]u’lp-2

(u,,(lcp, lp_l)_Fu,.dp,,p_2dp,,_Fot,u,(dp’(p-1)

r

(r) (6)

Thisfoula will be used in thegenerationof asupersolutionfrom a solution (r, u)"

u of

Lpu

g

Lw

g(r,

w) Dw

g(r,

w)

g((r),

w). (7)

(8)

The same equivalence holds for < (in both places) and for strict inequalities.

(f)

Uniquenessunder the conditionuo

(a)

0

(a

>

0).

Thesolution u(r;a, uo,

O) of (3a)

isunique inaneighbourhood

of

a

if

g(a,

uo)

>O, and,

in addition,

(i) g Lip-

(r) for

uniquenesstotheright,

(ii) g Lip

+ (r) for

uniquenesstothe

left (a

>

0).

A

function

(r) belongs

to Lip+ or Lip- if the difference quotient

[(r2) aP(rl)]/(r2

rl) is bounded above orbelow, resp. Obviously, increasing or decreasing functions belong to Lip- or Lip

+,

resp., and Lip Lip

+

fLip-.

(g) Uniqueness of solutions with one sign.

We

consider a solution

>

0(< O)

and, incasebothinitialvalues u(r;a, uo,

Uo) of (3a)

with uo, u0

vanish,g(a,

O)

>

0(< 0).

The solutionisuniquein aneighbourhood

of

a

if furthermore

g(r,

s)/s

p-1 isdecreasing (increasing) ins

for

s > 0(s < O)

if

u >0 (u <

O)

in(a,a

+

E].

For

uniquenessin anintervaltothe

left of

athe

propositionremainsvalid

if

theinequality

for Uo

isreversed.

O. Assume

that g(r,

s)

isincreasing

(h)

Maximal solutions in thecaseu0

in r(e.g., g(r,

s) f (s))

and thatg(r,

uo) O for

a < r < b. Then u

=- uo

is asolution.

Assume

that thereexists asubsolution whichis >

uo

in(a, b].

Then,

for

a <

ro

< b, the maximal solution iT(r;ro, uo,

0)

andno other solution is>

uo for

r >

ro.

Undertheseassumptions, all solutions

of (3a)

aregivenby

u(r)--uo

in [a, ro], u(r)=-ff(r;ro,uo,

O)

in [r0,

b] (a

<

ro <b).

They

fill

the area between the curves s

uo

ands fi(r;a, uo,

0)

in

the r, s-space. When I isan interval[b, a] tothe

left of

a, then g mustbe

decreasing inr,and

ro satisfies

b <

ro

<a.

EXAMPLE

If g (r,

S) >_ Ks

qfors _> 0and 0 < q < p-1,thenthestatement --Oanda > O.

For/z

> (q+l)/(p-q-1) in

(h)

appliesforu0 u0

the function

(r a)/z+l

is asubsolution to therightofa andthe function

(a r)/z+l

isasubsolution to the left ofa(incasea >

O)

for the initial value 0in asmallone-sidedneighbourhoodof

problem Lpu Ku

q

uo

u0

a.The functions arepositivetotherightor left ofa,resp.

(9)

Remarks 1. The statement(f)(i)fails tobetrueunderthe weaker

assump-

tion thatg(r,

uo)

ispositive onlyin

I0 (a,

b]. Theinitialvalueproblem

u" 12,/

u

+

r4

u(0) u’(0)

0

with thesolutions u -r4andu

(1 + ,/)r

4is acounterexample.

2.

It

is notclear whether thestatementin

(h)

about thecharacterization of the maximal solution as the unique positive solution remains true if the monotonicity of

g(r, s)

inr is

replaced

by alocal Lipschitz condition in r.

A

simplecounterexampletothe assertion in

(h)

is

6r for s > r3

u’=g(r,u),

where g(r,s)=

6sir

2 for 0<s

<r

3

0 fors <0.

Solutions are

u(r) .r 3,

0 _< )

_<

1", the function g is continuous in [0,

o) IR,

but notLipschitzianinr.

3. Theexample

u" 12u(1/2)

withthe three solutionsu

(r)

r

4,

0 and -r4 shows thatunderthe assumptionsin

(h)

the solutions

u(r) uo

is in generalnottheminimal solution.

Proof (a)-(e)

are simple. (f)(i)

We

consider the case a 0 and use the notation vl(r)

v2(r)

if

Vl/V2

1 as r 0.

We

use

(e)

with

4(r)

r

+ e(3 +

r),where

,

3 > 0.

Let

g(0,

uo)

> 0.Then,forevery

u’(p-1)

a--i+l"

Since

Lu ,,

it

solutionu,

(rau(e-1)) ray,

hence 7

follows from

(1)

that (p

1)lulp-2u"

--Y--" hencea+l thereisc > 0 such that

(p-

1)[ulP-2u>

Y ":

,

in [0, c].

2(o + 1)

The expression

Dw

in

(6)

consistsof three terms,D1,D2,

D3

where

D2

0

because

4"

0,and

D3

> 0because

q

1

+

e > 1 and

b(r)

> r. The firsttermallows now the estimate

Dw>Dw>Vl[(l+e)

p-l] >qpe aslongas q(r)<c.

Let -L

< 0 bealowerbound forthe differencequotients ofg(r,

s)

in a neighborhood of (0,

u0).

Then the fight side of

(7)

is bounded above by

L((r) r) Le(3 + r)

< 2eL3 ifris restricted to0 < r < 3. Thisshows that for 0 < e < 1the functiontoisanuppersolution in

[0, 3]

iftheconstant 3 >0satisfies

?,p>_2L3 and 33_<c;

(10)

furthermore,w satisfies

w(0) u(eS)

>

u(0)

and

w’(0) u’(eS)(1

-be) >

0

u’(0).

Ifv is another solution, then w > vand, by lettinge --+ 0,u

_>

vin[0, 8].

As

before, itfollows by asymmetric argumentthat u v in an interval [0, ].

In

the case wherea > 0wehave(p

1)lul - " ,

and wemayuse

b(r)

r

+ e(8 + (r a))

for the

proof

which is similar.

(f)(ii)

For

uniquenesstothe leftone usesthesametechniquewith

(r)

r

e(1 + 8(a r) + (a r)e). One

chooses first 8 > 0 so largethat

D1

> 2Le

(L

_>0 is now anupperbound for the differencequotientsofg), then solargethat

De + D3

> 0in a small leftneighbourhoodofawhere r -dp(r) < 2e.

(g) If

uo #

0 or

u

0 thenuhas onesignin(a,a

+

e]. If both uo,u0 vanish, it follows fromg(a,

0)

0and

(3’)

thatuhas onesignin(a,a

+

Let

u, v be two solutions on

I

[a,a -be]forsufficientlysmall e.Ifuo, u0 do not both vanish, then

u/v

isboundedbelowonI byapositiveconstant.

0thenitfollowsfrom

(3")

andthe mean value theorem for Ifu0 u0

integralsthat

u(r)

g(Pl,

bt(Pl))

1/(p-l)

f J(s)

1 ds

v(r)

g(P2,

v(P2))

1

ff J(s)

1 ds --+1 as r-+a,

where

J(s) f

(p/s) dpand01, p2 E [a,r].

In

case u, v arepositivein (a,a -bel,there exists alarge )0 > 1 with)u > v in

I

for all) >_ )0.

Let

)* inf{) > 1 )u > v in

I}

andsupposefor contradiction that)* > 1.

Then, by assumption,g(r,;*u) < )*P- g(r,

U)

onI and hence

Lp(L*u)-g(r,)*u)

>

L* P-l(Lu-g(r,u))

--0=

Lv-g(r, v)

in I.

Sinceg(r,

s)

isincreasinginsand)*u > v ata-b,thecomparisontheorem shows that)*u > v in(a,a

-

e], contradictingtheminimalityof

.*. Hence

)* 1andu > v foranytwosolutionsu, v of

(3a). In

case u, v are negative in (a,a -be], theproofis similar with)* inf{X > 1 )u < v in

I}.

Noticethatnowby assumptiong

(r,)*

u) > )*P- g(r,

u)

onI.

(h)

Ifasolution

u(r)

is > u0inI0,then

us (8

>

0)

satisfies

us(a)

> uo,

us(a )t

>

Uot

0.

As

before, this implies

us

> v for 8 > 0 and every

(11)

solutionv.

Hence

u > v, i.e., u is the maximal solutiontT(r;a,u0,

0) =:

This solutionproduces, accordingto

(d),

asubsolution

v(r) ft(r-(ro-a)).

Hence

tT(r;r0, u0,

0)

>

v(r)

>

uo

forr > r0.Accordingtothereasoning at thebeginningof the

proof,

appliedtor0 a,everyother solution > u0

equalsthe maximal solution.

A Summary on

Uniqueness

THEOREM4 Under each

of

the following conditions, uniqueness

for

the

initialvalueproblem

(a

>

O)

Lu

g(r, u),

u(a)

uo,

u’(a)

u0

isguaranteedinaneighbourhood

of

a.

It

isassumedthat the functions g(r, s), h (r, s),defined in aneighbourhood U(a,

u0)

C [0, o)lR, andk(r),definedinaneigbourhood

U(a)

C [0, cx), are continuous.

We

write g(r,

s)

6 Lip

(s)

if g(r,

s)

islocally Lipschitzian ins on

U

(a, u0); g(r,

s)

6 Lip

(r)

is definedanalogously. The spacesof locally q-H61dercontinuous functionsaredenotedbyLipq

(s) (0

<q <

1).

For

one-sided Lipschitz conditions we use the terms Lip+ or Lip-

(see

Corollary

(f))

if the differencequotientsare(locally)boundedabove orbelow,

resp.

Initial condition validfor Propertiesofg(r,s)

(a)

u

%0 (i) p> g Lip(r)

(hencea >O) (ii) p> g Lip(s)

(iii) <p_<2 g(r,s) Lipq(s),O<q_<

(/)

u

0 (i) p> g(a,u0)>0, g incr.s,g Lip-(r)

(ii) p> g(a,uo)<O,g incr.s,g6 Lip+(r) (iii) <p<2 g6 Lip(s)

(iv) <p<2 g>_ O, g(r, s) Lipp-l(s) (v) p>2 g(a,Uo) O,g Lip (s) (vi) p>2 g(r,s) h(r, s)p-1

+

k,(r),

h,k>O,h6 Lip(s)

(’) Uo,

Uo

]R p> g(r,s) k(r)s(p-I

0 ifa 0 (p-linearcase)

u

(3) Uo

u

0 (i) p> [g(r,s)[ _< Kls[p-1

(ii) p> g(r,s)s <0for =/=O, g(r, O) O, [g(r,s)[ <K[g(r,s)[

In (/)(iv), (vi)thesigncondition ong(r, s)andh(r, s),k(r) maybe reversed.

(12)

Reading guide.Thepropertiesof g as statedapplytotheuniquenesstothe fight;swapLip- and Lip

+

in(fl)(i), (ii)foruniquenessto the left

(the

other cases remainunchanged).

Remark Thecases(ot)(ii)and

(fl)(iii)

and

(v)

haverecently

appeared

in a paperof Franchi, Lanconelli and Serrin

[5]. For

ot 0,DelPino, Manfisevich and Munia[3] have given uniquenessconditions contained in the above list under the overallgrowthcondition[g(r,

s)[

<

Kls[

p-1.

In

order to treat initial value

problems

where thefight handside vanishes atr aweneed thefollowing:

COROLLARY

If

g(r,

s) l(r)(r,

s), where

(r, s) satisfies (fl)(i),

(ii) or

(v), thenthecorrespondinginitialvalueproblemisuniquelysolvabletothe right

of

a (tothe

left of

a

for

a > 0),

if

is continuous in aneighbourhood

of

a,

l(r)

>

O for

r > a

(r

<a)and

if

inthecases(/)(i), (ii) isincreasing (decreasing).

Remark

In

all other cases afactor

(r)

is

already

allowedinthe abovelist.

Proof of

Theorem 4. Since we only prove local uniqueness, we may assumeboundednessof g. The

proofs

areonly givenforuniquenessto the fight.Thechangesforuniquenesstothe left in casea > 0 are obvious.

(or).

Conditions(i),(ii) give uniqueness byTheorem2.

Case

(iii)iseasily reducedtothe case whereu0 0. Theoperator Sin

(3it)

hasthen the form

F

(Su)(r) A(t; u)( ---)

dt

where A(t;

u) (a/t)u

p-l)

+ ft

a

(p/t)

g(p, u(p))dp -->

u

(p-l) 0 as

a.

We

proceedlike in

McKenna,

Reichel, Walter

[9]

andinvestigate the operator

S

on the complete metric

space

C([a,

r0])

with the metric d(u,

v)

max

lu

(q

v(ql.

W.l.o.g. we mayassume

u

> 0 and hence A(t;

u)

>

Uo p-1/2

> 0 for close to a; otherwise we consider-S.

By

the positivityofA(t; u),we obtainthefollowingestimatefor close toa.

We

write

(Su)

(q)

[[U[[

and

(Sv)

(q)

[[V[[,

where

[[.

is the

L1/q-norm

on [a,r], U A(t; u);q-3- andV A(t; v);q--r-l"

(13)

](Su)

(q)-

(Sv)(q)l(r) IIUII- IIVIII IIU- VII

fa

r

IA(t; u)

A(t;

v) [1/q

dt q

fa

q

<

KL(ro- a) [u(t)

(q)

v(t)(q)[

1/qdt

<

KL(ro -a)

q+l

d(u,

v),

where

L

is theq-H61derconstant ofg(r,

s)

and

K

is aLipschitzconstant forS

---r-

near

Uo

(p-

1. Hence

forr0sufficientlyclose to a, theoperator

S

isa contraction on

(C([a,

r0]),

d)

and has auniquefixedpoint.

(/).

Condition

(/)(i)

guarantees uniquenessby Corollary (f)(i)and(ii).

For

(/)(ii) oneneedsto observe that the function fi(r)

-u(r)

satisfies

Lfi (r,

fi) with

(r, s)

-g(r, -s); for

(/)(i)

isapplicable.

Uniqueness under (iii) follows from the observation that s(1/(p-1 is differentiable on

IR

if 1 < p < 2. The proofis then similar to (ot)(iii) by estimating

[__lh

K

[a(t; u)-J

a(t; v)p-lJ <

[A(t;

u) A(t;

v)[,

p-1

where

K ((r0 a)

maxIg(r,

s)[) (2-p)/(p-1),

and using the Lipschitz continuityofg(r,

s)

ins.Conditions(iv)and(vi)are taken from

McKenna,

Reichel and Walter

[9]

and are based on suitable contraction mapping arguments.

For

the

proof

of

(v)

we assume g(a,

u0)

> 0 and observe that the expression

A(t;

u)

g(p, u(p)) dp

g(trl,

u(tT1))

a+l aa+l

a _<O" <t

o+l

ispositivefora < < r0 ifr0 iscloseto abythe assumption.

Hence

by

(t

+1 a

a+l) /t

> a andbythemean-value theorem weget

[A

(t;

u)(---) A (t; v) (7-)1

<

2-p

l

((t-a)

g(a,

uo))

p-’-r

p 1 ot

+

1 2

IA(t; u)

A(t; v)l

(14)

whichresults in

( g(__a, uO) )

2-p

L (ro a)

p/(p-1) max

lu vl

[(Su)(r) (Sv)(r)l

<

\2(or i

a<r<ro

fora < r < r0andr0sufficientlyclose to a; here

L

istheLipschitzconstant ofg. Again S is a contraction operator on C([a, r0]), equipped with the maximum-norm.

Theinvertabilityofthesignconditionimposedon g in(iv), (vi)isevident, since

-S

is a contractionif andonlyif

S

isa contraction.

(?,).

This conditionwasfoundbyWalter

[13]

and isprovedin the context of Sturm-Liouvilleproblems byPrtifer’s transformation.

(3).

Under condition(i)itfollowsfrom

(3")

that a solution u satisfies

lu(r)l

<_

K -- far(t a)

dt

amaX<r<ro lul

andhence u 0 on a sufficientlysmall interval [a e,a

+

e]

(a

>

0)

or[0, e]

(a 0). For

the

proof

of(ii)we define

G(r, s) fg

g(r,

r)

dcr,

which isnon-positiveby assumption,and find

u’Lu ut(P-1)((p- 1)u" +-u’) (lU IP)

-1-

--lU

p

(G(r, u))’

Gr(r, u),

with

,

(p 1)/p. Substituting v

lu’l

p weobtainthelinear first order equation

a ),

?’

(v’

nt-

v) (G(r, u) Gr

(r, u),

v(a)

--0,

with fi

c/t,.

Solvingthisequationfor v >0andintegratingthe first term by parts, weget

far( ) tfi

,v(r)

G(t,

u(t))’

Gr(t,

u(t)

-

dt

fa

r

tt--1 fa

G(r,

u(r)) &

G(t,

u(t))

r--ft-

dt Gr(t,

u(t))--r-g

dt.

(15)

Ifu 0in aneighbourhoodof a, wemaychoose the

sequence rn

--+ asuch

thatG(rn,

u(rn)) min[a,r,]

G(t,

u(t))

< 0.Then weget rn -1

?’V(rn)

<_

IG(rn, U(rn))l(--l+6t r dt+(rn-a)K)

< 0 for n large, in contradiction to v >0.

Hence

v

lu

p

-

0 in aneighbourhoodofa. []

Proof of

the corollary.

We

only indicate where the differences to the original

proofs

are.

Suppose ,(r, s)

satisfies

(/3)0)

and l(r) is increasing.

(r, u), 0 where

We prove

uniqueness to the fight for

Lpu

g uo

g(r,

s) l(r),(r, s). Let

usgo backto the

proof

ofCorollary 3(f)(i) with a 0 and

,(a, u0)

> 0. The estimate for

Dw

nowbecomes

Dw

> ype

l((r))

aslongas

(r)

< c.

If

-L

is a lower bound for the difference quotients of

,(r, s)

in a neighbourhood of (0, u0), thenwehavetheestimate(notice

q (r)

>

r)

g(r,

w)

g((r),

w)

<

l(dp(r))(,(r, w) ,(gp(r), w))

<

l((r))2eLa.

In

order toget

Dw

>g(r,

w) g((r),

w),thefunction/((r)) > 0drops out and the

proof

goes as before.

For

uniqueness to the left the estimate Dw

>_

g(r,

w)

g((r),

w)

is obtainedby usingthedecreasingcharacter of

l(r)

togetherwith

(r)

< r.If

,(r, s)

satisfies

(fl)(ii),

theproofis obtained by considering solutions v -u of

Lpv -l(r),

(r,

-v)

where now

-,(r,-s)

satisfies

(/3)0).

Suppose

now that

,(r, s)

satisfies

(fl)(v)

with g(a,

u0)

> 0. As inthe

proof

of

(v)

thepositivityof

A

(t;

u) ft

a(p

/ t)a

g(p,u(p)dp fora < < r0

follows from the positivity

,(a, u0)

andof/(p) forp > a.

Hence

theestimate A(t;u) >

,(a,

uo)fa (p)o

2

7

l(p) dp

holds for a < <

ro

with

ro

close to a.Denoting

I(t) fta(P/t)l(p)dp

weget bythe mean-value theorem

IA(t; u)(’----)-A(t; v)(’--)l

< p l 1

(I (t) (a’ uo) )

v-1

IA(t; u)-A(t; v)l.

(16)

WiththeLipschitz propertyof

,(r, s)

thisresults in

2-p

I(Sbl)(r)--(SP)(r)l<((a’blO)) p-I-

2

L(ro a)

max[a,r0]

I (t)

max[a,r0]

lu vl.

Thisgivesthe contractionpropertyfor

S

on[a,r0]forr0 close toa.

Remark If,forgiveninitial conditions,g(r,

s)

satisfiesone of theabove uniquenessconditions and is furthermoreincreasingin s, thencomparison between anupperand a lower solution holds even ifequalityispermittedin the initialvalues; cf.Corollary

(c)

toTheorem 3.

We

furnish ourresults with two

Counterexamples.

For

q > 0the

problem

Lu

u(q) 1,

u(O)

1,

u’(O)

0

hasthe trivial solution u _= 1.

For

1 < p < 2 this is theonly solution by (fl)(iii).

For

p > 2 the function

v(r)

1

+

er1+ is a subsolution if F > 2/(p

2)

and e > 0 is sufficiently small.

Hence

the initial value problemhas at least two solutions, since the maximal solutiont7 (r; 0,1,

0)

is> lforr>0.

Thiscounterexample shows,thatuniquenessmayfail if in

(fl)(i),

(ii)and

(v)

onlythe conditiong(a,

u0)

> 0, < 0 and 0,resp.,isviolated and if in(fl)(vi) onlythe condition

k(r)

> 0 isdropped.Furthermore it shows that theequivalentof

(fl)(iii)

does not hold for p > 2. Finallyit shows,that in

(F)

the homogeneityisessential.

IftheLipschitz continuityofg(r,

s)

in(fl)(iii), of

h(r, s)

in

(fl)(vi)

or the p- 1-H6ldercontinuityofg(r,

s)

in(/3)(iv)isdropped, then uniqueness may fail, as shownbytheexample following Corollary

(h),

where

Zu

u(q)

u(a) O, u’(a)

0

has nontrivial solutions for 0 < q < p 1totherightand left(ifa >

0).

Thisexamplealso shows that in(8)(i)thegrowth exponentp 1 cannot be decreased and in (8)(ii) uniquenessfails ifthe signconditiong(r,

s)s

< 0 fors

5

0isreversed. Notice that(8)(ii) gives uniquenessfor

a (q)

Lpu

-u

u(a) O, u’(a)

O.

(17)

3

A STRONG COMPARISON PRINCIPLE

For

an interval 1 [a,

b] (0

< a <

b)

we define

11 (a,

b) ifa > 0

and

11

[0,

b)

ifa 0.

We

considerpairs of functions v, w 6

C1(I),

ra

v,p- 1),

r u,(p-1) C

(11),

whichsatisfy

a (r,w) in

(a,b), (8)

Lpv-

g(r,

v)

>_

Lpw-

g

v(b)

<

to(b)

and

v(a)

<

w(a)

if a > 0,

v’(0) w’(0)

0 if a 0.

(9)

If g(r,

s)

is (weakly) increasing in s, then the well knowncomparison principlestates that v < w in [a, hi; el.Tolksdoff [11], Walter

[12]. Here

weaddress thequestion,under what conditions the weakcomparisonv < to

(WCP)

canbestrengthenedtothestrong comparisonv < toorv to

(SCP).

Remark

For

a > 0 we want thestrong comparisonv < toto hold on(a,

b)

whereasfora 0 it isrequiredtohold on[0,

b). Note

thatforot N 1 the interval(a,

b)

representsanopenannulusand[0,

b)

anopenball in

N-space.

We

formulate the corresponding

Hopf

version

(H)

of

(SCP)

attheboundary pointsb anda

(for

a >

0):

v < w in

I1

and v(b)=w(b) implies

v’(b)> w’(b).

v < w in

I1

and

v(a)= w(a)

implies

v’(a)

<

w’(a). (Ha) In

Walter [12], essentially the following counterexample for p > 2 is given,which shows that

(SCP)

and

(H)

can fail, even if theincreasingfunction g(r,

s)

isLipschitzianas afunction ofs t-l Consider theequation

Lu

u(q) 1

for q > 0.

We

have seen in thecounterexamplesin Section2thatthe initial valueproblemforthe aboveequationwithu0 1,

u

0 has two solutions u 1 and iT(r; 0, 1,

0)

> 1 for r > 0.

By

Corollary

3(h),

the maximal solutiont2(r;a,l,0) is > 1 forr > a

(a

>

0).

Ifwe take v 1 and w

(r;

a,1,

0),

this

example

showsthatboth

(SCP)

and

(Ha)

fail. The followingcondition fromTolksdorf 11 or Walter

12]

isknown toguarantee

(SCP)

[and

(H)]

Case

a >0

v’

0or

w’ 5

0in(a,

b)

[in [a,

b]],

g(r,

s)

isincreasing

andlocally Lipschitzianin s.

(18)

The mainweakness of this result is theassumptiononthenon-vanishing ofthe derivatives, which is ingeneralnotcontrollable.Our approachisbased on thefollowing simpleidea: Since we have the weakcomparisonw > v in

I,

thestrong comparisonto > v in

11

failsonlyifthereexists atouching

pointr0

I1

with

w(ro) v(ro)

and

w’(r0) v’(r0).

Ifwefurthermore supposefor contradiction that w v, then wemaytaker0tobe apointof astrict one-sidedlocal zero-minimum of w v.

We

determine a continuous function q

(r)

which satisfies

a

’ (r,w)

in

I1 (8’)

Lev

g(r,

v)

> q(r) >

Lew

g

and considerthe initial valueproblem

Lu

g(r,u)

+

q(r),

u(ro) v(ro)

w(ro),

u’(ro) v’(ro) w’(ro).

(10)

The function v is asupersolutionand the function w is a subsolutionto thisproblem. Assumingthat

(10)

has auniquesolution in aneighbourhood U ofr0, we obtainfrom Theorem3,Corollary

(c)

that w < u < v, which leads to v w in

U,

acontradiction.Summingup,wehave

TIEOrM 5

Suppose

v, w satisfy

(8)-(9)

andg(r,

s)

iscontinuous in(r,

s)

[a,b]

IR

and increasingin s

IR.

Then

(SCP)

holds

if

allproblems

(10)

with

ro I1

areuniquelysolvable.

In

particular

(SCP)

holds

if

the

function

,

(r,

s)

g(r,

s) +q (r) satisfiesfor

initialvalues

uo v(ro)

anduo

(ro)

auniqueness condition

of

Theorem 4.

The assertions

(Ha), (Hb)

are

proved

by thesameargumentwhere a strict one-sided zero-minimumof w v atr0 aorr0 b with

v’ (r0) w’ (r0)

isled to a contradiction.

We

need q to be defined and continuous in[a,a

+

]

or

[b ,

b], resp.

For

illustration, wegivesomeexplicit assumptionswhichimply

(SCP)

and

(H). We

usethe notationPu

Lu

g(r,u); naturally, g(r,

s)

isincreasing ins.

(a)

1 < p <2, g 6 Lip(s)

(no

conditiononq).

(b)

The p-linearcase, g(r,

s) k(r)s (p-l),

k > O. Takeq(r) 0, i.e.,

P

v >0 >

P

w

(for

q -1,wehave acounterexample)

(c)

g(r,

w(r)) +

q(r)

#

0 inI1,g and q Lip(r).

(d)

1 < p <2,

g(r, w(r)) +

q(r) > 0or < 0inI1,g(r,

s)

Lipp-1

(s).

(e)

p >2, g(r,

w(r)) +

q(r)

5

0in11,g 6 Lip(s).

(19)

(f)

p > 2, g(r,

s) h(r, S)

p-1

+k(r),h

Lip(s),h andk+q non-negative in

11.

(g)

If

v’ 5

0or

w’ 7

0 in

I1 (a

>

0),

then it suffices that g satisfies

(or) (note

that (c)(ii)isthe conditionof Tolksdorfand Walterstated

above).

4

BLOW-UP SOLUTIONS

Our

nexttheorem deals with

blow-up

solutions for theequation

Lu

g(r,

u), u(r) --

cxz as r --+

R, (11)

inparticular

Lu f (u). We

introduce anassumption

(A)

consistingof five parts:

(A1) f (s)

is continuous,nonnegativeandincreasingin[so,

cx).

(A2)

Thegeneralized Kellercondition. The function

F(s) fsSo f(t)dt

satisfies

ds

F(s)I/p

< o.

(12)

(A3)

g(r,

s)

is continuous, nonnegative and increasing in s in the set

I

x [so, x), I [a,b]witha > 0.

(A4)

There exist

f(s)

satisfying

(A1)(A2)

andpositive constants cl,

c:

such that

clf(s)

< g(r,s) <

c2f(s)

in

I

x

(sl,

cxz), where Sl >

so.

(A5)

g satisfies a conditionof Lipschitz type

Ig(rl,

s)

g(r2,

s)l _< Llrl

r2lg(rl,

s)

in

I

x [so,

o).

Remarks 1. Condition

(A2)

has beengivenbyKeller

[6]

in the classical case p 2; it is a necessary condition for blow-up. Under more restrictiveassumptions,butfor

general

N-dimensional domains, theblow-up problemhasrecentlybeen studiedbyBandle and

Marcus

1,2],

Lazer

and

McKenna

[7,

8]

forp 2andbyDiazand Letelier

[4]

forgeneral p > 1.

McKenna,

Reicheland Walter[9]have treated the radial case for

f (u) ]u]

q

andgeneralp > 1.

2.

It

followsfrom

(A)

that lim

f(s)/s

p-1 c and limg(r,

s)/s

p-1 oe for s cx uniformly in

I. For

proofonemay

adapt Lemma A

and

B

in Bandle,

Marcus [2].

(20)

3. The functiong(r,

s) h(r)f(s)

satisfies

(A)

if

f

satisfies

(A1) (A2)

and

his continuousandpositiveand

Ih(rl) h(r2)l

<

Llrl r21.

4. Condition

(A)

is satisfiedfor

f(s)

sq and,more general,for

f(s)

sq

k(s),

ifkis continuous,positiveandincreasingandq > p 1.

It

also holds for g(r,

s)

,ksq

+

k(r,

s)

ifkissuch that

(A)

holds and

k(r, s)s

-q --+ 0as s ouniformlyin

I.

LEMMA If f satisfies (A1) (A2),

then

f(s)

F(s)

--+o as s---o.

Proof In

an interval

J

[Sl,

o)

the function

(s) F(s)

lip hasthe following properties:

E

cl(J),

>

O, 1/r

>

O, 1/r

p convexand ds

O(s)

<

We

havetoprove that

p’ (s)

--, oo ass ---, cxa.

Assume

firstthat

!/

E

C2(j).

Thenconvexityof

7,

pimplies

(app)"

> 0 or

!/taP" +

(p-

1)

’2 >_ 0,which

implies

By

integration,one obtains

1 1

fa

b ds

< (p-

1)

(Sl < a < b).

(*)

"(b) ’(a) (s)

If

p’

werebounded, then

ap

wouldgrowat mostlinearlywiththe effect that

f(1/Tt)ds

x.

Hence

sup

cx.

Let M

bepositiveand leta

J

be such that

ds <--1 and

, (a)

>

M.

ap(s)

M

Then itfollowsfrom theinequality

(.)

that

1 1 p-1 1 p-1

< <

’(s) ’(a) M M M

P

in [a,o).

M

(21)

Thisinequalityshows that

lims ap’(s)

cx.

Now

assumethat isonly

of class C

1. We

approximate

F pP

by smooth functions

Fc,

using the mollifiertechnique:

F(s) J’IR F(s + ott)(t)

dt,

where

q

>0, supp

q

[-1, 1],

q

6

C(IR)

and

fiR

dp(t)dt 1. SinceF

belongstoC differentiationgives

F(s) fiR F’(s +

ott)dp(t) dr.

Due

toconvexity,

F (s)

isincreasing, and thispropertyis inheritedby

F.

Hence

the inequality

(.)

holds for the functions

7z(s) := F(s)

1/p.

In

the limit asot 0+, we get

Fa

--+

F, F f,

hence

7z

--+

7z

and

(P)’ (pP)’,

whichleads easilyto

’.

Thisshows that

(.)

holds

under the assumption of the

Lemma,

whichnow follows as before.

The firstpart of theproofwas contributed byProf. M. Plum, which is gratefully acknowledged.

THEorI

6

Suppose

that,

for

1,2,Ui is asolution

of (11)

in[a,

bi

C

I (a

>

O)

andU (bi) x.

If (A)

holdsand

ul(a+) <

u2(a+)

and

u(a)

<

u2(a), then bl

>

b2.

Proof

Iffollowsfromthecomparisontheorem that theinequalitiesU <

u2,u

it

< u

2

hold in(a,

b2)

and that

bl

>_ b2; furthermore,sinceu2

u +

c

wouldimply thatg is constant in s, we haveu <

u

at apoint

ro

andthen

also in[ro,

b2).

For

theproof bycontradiction, we assume thata <

bl b2

< b,andthat

hold in[a

bl).

The a > b/pand that strictinequalities

u

< u2,u < u2

proofis based on thefollowingidea.

We

considerthe function

v(r)

Ul(q(r)), where q(r)

(1 E)r

and show that for small E > 0 the function v is a subsolution to the differential equation

(11). Because

of the strict inequalities at r a, we

(a). Hence

v < u2 and

v(b’)

cx where have

v(a)

<

u2(a), v’(a)

< u2

q (b ) bl

and therefore

b2

< b <bl,which isthedesired contradiction.

(22)

We

want touse

(7)

and consider theexpression

,, N(r)

}

Dv

(p

1)]u] ]p-2

Ul

((1 E)

p

1) + ot’ul rg)(r)

with

N(r) (1 E)P-I[(1 E)r + bE]

r.

For

E small,

(1 E)

p 1 pEand

(1 E)

p-a 1 (p 1)E,hence

N(r) ,

-pEr

+ (1

(p

1)E)bE

<

E(b-

pr) < 0

becauser > a > b/p. Thusthe second term ofDv isnegative.

Next

we ispositive,sou has an

ttispositivefor u large.The derivativeu showthat u

(r(u))

satisfies inverse function

r(u)

withr

1/u t.

The function

z(u)

u

(withuasindependentvariable andr

r(u))

tt

zt(u

u

u

(p-g(r,u)

1)Z

p-1 r < (p-

c2f(u) 1)Z

p-I’

z (uo) ’o,

where u0

ul(a),

u0

u(a).

Solving the corresponding initial value

problem

fory

(u),

yt

c2

f (u)

(p_ 1)yP_ y(uo)

Uo,

we obtain

/ 1/p

y(u) \p-

,,PC2 (F(u) F(uo)) -+- Uo p)

whichimplies

> z(u),

g(r,u) ot

clf(u)

z

>

(p_

1)yp-1

r (p- 1)yp-1 a

By

the lemma, f(u)/yp-1 -+ o as u -+ o,whichimplies

u]t/u

as r

-- hi. Hence

we mayassume(by moving thepointa tothe right,if

necessary) thatuttispositive andtherefore

Dv

< 0 in[a,bl). Accordingto

(7)

wehave toshowthat

Dv

<g(r,

v)

g(cD(r),

v).

(23)

This isobviouslytrueifg(r,

s)

isdecreasinginr.

In

thiscase, which covers thecasewhereg(r,

s) f(s),

the theorem isproved.

In

thegeneralcase, we take smallandularge,whichimplies

(1 )P

1 -p and

ut/u

tt

O,

hence

1

,iP_Zu,,

1

(Lu)(4)(r))pe

Dv _<

<

--pe(p2 -L(b

a)g(d)(r),

1)lul v)

<<g(r,

-- v) g(cD(r), v).

It

was usedthat

4(r)

r

_<

b-aand

L(b-a)

< p/3

(a

and b canbechosen close to

bl).

Theseinequalitiesshow that v is indeed a lower solution.

COrOLI.ArY We

consider solutions u

(r;

ro, uo,

u) of(3)

undertheassump-

tion

(A).

(a)

Case

ro O. Assume

that the maximal solutionti(r; 0,uo,

0)

(uo >

so)

blowsupatr

bo.

Thenthe initial valueproblem

(3)

has,

for uo

<)<

and

Uo O,

aunique solution u(r; 0,,k,

0)

whichblows upat

bz.

The

function bz

is continuous andstrictly decreasing in) (uo,

cxz)

and

bz

--, 0 as

,k--+ c,bx --+

bo

ask --,

uo.

(b)

Case

ro

a >

O. Assume

that themaximal solution ti(r;a,uo,

u)

(uo

> so, u >_

O)

blowsupat

bo.

Thenthe solutionu(r;a,,k,

IX)

isunique

() IX) (uo, Uo),

anditblows upata point

bx.

The

for

) > uo,lx > uo,

function bx,

is continuousandstrictly decreasing in)andIx, andittendsto aask --+ cxzorIx --+ cx andto

bo

as(),

Ix)

--+ (uo,

Uo).

(c)

Uniqueness

of

blow-upsolution. Under the assumption

of (a)

the

blow-up problem

Lu

g(r,

u)

in J

(0, R), u’(O) O, u(R)

has

for

given

R (0, bo)

oneandonlyonesolution.

If

g(r,

uo) O,

g(r,

s)

> O

for

s > uo,r >0and

if

the maximal solution iT(r; 0,u0,

0)

is u

=-

uo, then the blow-up problem has

for

every

R

> 0a

unique solution.

(d)

Thestatementsin

(a)-(c)

remain true

if

g(r,

s) l(r)(r, s),

where

(r, s) satisfies (A)

andthe assumptions in(a)-(c), iscontinuous,increasing and

(ro+)

>O.

Remark

In

contrast to earlier work [1, 2, 4, 7,

8]

on the general

N-

dimensionalblow-up problem,theabove uniquenessresult is obtainedmerely by monotonicity,Keller’s condition and (inthe nonautonomous

case)

bya Lipschitzcondition withrespecttor.Withoutthis last condition

(A5),

the theoremfails.

For

acounterexample takea

blow-up

solution uof

Lu f (u)

and define gby

参照

関連したドキュメント

In this paper, we study the generalized Keldys- Fichera boundary value problem which is a kind of new boundary conditions for a class of higher-order equations with

Using the T-accretive property of T q in L 2 (Ω) proved below and under additional assumptions on regularity of initial data, we obtain the following stabilization result for the

The reader is referred to [4, 5, 10, 24, 30] for the study on the spatial spreading speeds and traveling wave solutions for KPP-type one species lattice equations in homogeneous

Sun, Optimal existence criteria for symmetric positive solutions to a singular three-point boundary value problem, Nonlinear Anal.. Webb, Positive solutions of some higher

Inside this class, we identify a new subclass of Liouvillian integrable systems, under suitable conditions such Liouvillian integrable systems can have at most one limit cycle, and

We study a Neumann boundary-value problem on the half line for a second order equation, in which the nonlinearity depends on the (unknown) Dirichlet boundary data of the solution..

Inverse problem to determine the order of a fractional derivative and a kernel of the lower order term from measurements of states over the time is posed.. Existence, uniqueness

In this section we apply approximate solutions to obtain existence results for weak solutions of the initial-boundary value problem for Navier-Stokes- type