• 検索結果がありません。

Non commutative Gandhi polynomials and surjectives pistols

N/A
N/A
Protected

Academic year: 2022

シェア "Non commutative Gandhi polynomials and surjectives pistols"

Copied!
21
0
0

読み込み中.... (全文を見る)

全文

(1)

Non commutative Gandhi polynomials and surjectives pistols

V. Vong

Laboratoire d’Informatique Gaspard-Monge – Universit´e Paris-Est Marne-la-Vall´ee

March 26, 2014

(2)

Outline

Background

Gandhi polynomials Surjective pistols Non commutative version

Finite difference operator on words Non commutative Gandhi polynomials The Dumont-Foata polynomials

Commutative version Non commutative version A combinatorial interpretation q-analog

Definition

A combinatorial interpretation

V. Vong (LIGM) Non commutative Gandhi polynomials March 26, 2014 2 / 17

(3)

Gandhi polynomials

Definition of (Cn)n≥1:

C1(x) = 1

Cn+1(x) = ∆(Cn(x)·x2) if n≥1,

where∆(f(x)) =f(x+ 1)−f(x), for any function f. Examples:

C1(x) = 1 C2(x) = 2x+ 1 C3(x) = 6x2+ 8x+ 3

· · ·

Their coefficients are positive integers. Is their a “natural” combinatorial interpretation of these polynomials ?

(4)

Surjective pistols of Dumont

Yes, and it is the surjective pistols of Dumont.

Asurjective pistol p of size 2n is a surjective map from {1,· · · ,2n}

onto{2,· · ·,2n}such that for each i in {1,· · · ,2n},p(i)≥i. The set of surjective pistols of size 2n is denoted byP2n.

Examples:

P2 = {22}

P4 = {2444, 4244, 2244}

P6 = {246666, 264666, 266466, 426666, 624666, 626466, 244666, 246466, 264466, 624466, 424666, 426466, 224666, 226466, 244466, 424466, 224466}

C1(x) = 1 C2(x) = 2x+ 1 C3(x) = 6x2+ 8x+ 3

· · ·

V. Vong (LIGM) Non commutative Gandhi polynomials March 26, 2014 4 / 17

(5)

Non commutative polynomials

Let Abe an alphabet.

R<A> = Free algebra generated by the letter ofA, Linear basis = Finite words overA.

From now on, our alphabet isA={ai, for i ∈N}S {aω}.

Example:

a2a2+a2aω+aωa2.

There is a natural projection Π from R<A>ontoR[x]:

Π(aω) = x,

Π(ai) = 1, for i ∈N,

Π(w1· · ·wn) = Π(w1)· · ·Π(wn).

(6)

Non commutative finite difference operator

The operator Ti:

Ti(aω) = aω+ai,

Ti(aj) = aj, for j in N.

For each positive integeri, we have indeedT ◦Π = Π◦Ti. the operator ∆i: ∆i =Ti −IdR<A>.

Example: w =a2a2aωa4aωaω.

6(w) = a2a2a6a4aωaω+a2a2aωa4a6aω+a2a2aωa4aωa6 +a2a2a6a4a6aω+a2a2aωa4a6a6

+a2a2a6a4aωa6+a2a2a6a4a6a6.

Note that for a wordw, the terms in ∆i(w) are exactly the words obtained by replacing at least one of the aω of w by an ai.

V. Vong (LIGM) Non commutative Gandhi polynomials March 26, 2014 6 / 17

(7)

Non commutative Gandhi polynomials

Let us define the non-commutative Gandhi polynomials as follows:

C1 = 1,

Cn+1 = ∆2n(Cnaωaω), ifn >1.

In particular, we have:

C2 = a2a2+a2aω+aωa2,

C3 = a2a2a4a4+a2a2aωa4+a2a2a4aω+a2a4a4a4+a2aωa4a4

+a2a4aωa4+a2a4a4aω+a2a4aωaω+a2aωa4aω +a2aωaωa4+a4a2a4a4+aωa2a4a4+a4a2aωa4

+a4a2a4aω+a4a2aωaω+aωa2a4aω+aωa2aωa4.

C1(x) = 1 C2(x) = 2x+ 1 C3(x) = 6x2+ 8x+ 3

· · ·

(8)

Bijection between words in C

n

and P

2n

A simple bijection

P2n ←→ Cn

22846688 ←→ a2a2aωa4a6a6

A way to split the set of P2n+2

For a surjective pistol of size 2n, we set

Dp={p0 ∈ P2n+2|p0i =pi, if pi <2n,p0i ≥2n, otherwise}.

For example,

for p = 226466, we have:

Dp = {22846688, 22648688, 22646888, 22848688, 22846888, 2264888, 22646688} .

We have:

P2n+2= [

p∈P2n

Dp.

V. Vong (LIGM) Non commutative Gandhi polynomials March 26, 2014 8 / 17

(9)

Proof of P

2n+2

= S

p∈P2n

D

p

Ifp 6=p0, then Dp∩ Dp0 =∅:

p1· · ·pi· · ·p2n

p10 · · ·pi0· · ·p2n0 , pi <p0i ≤2n.

Let q be in Dp, andq0 be in Dp0. Then:

qi =pi, pi0≤qi0 =⇒qi <qi0.

Let p0 be in P2n+2:

p0 = · · · (2n+ 2) · · ·p0i· · ·p02n(2n+ 2)(2n+ 2)

−→ · · · 2n · · ·p0i· · ·p02n=p.

By construction, p0 ∈ Dp.

(10)

Correspondance between words and surjective pistols

Surjective pistols Words

p = 226466

Dp ={22846688, 22648688, 22646888, 22848688, 22846888, 2264888, 22646688}

w =a2a2aωa4

6(waωaω) =a2a2aωa4a6a6

+a2a2a6a4aωa6 +a2a2a6a4a6aω +a2a2aωa4aωa6 +a2a2a6a4aωaω

+a2a2aωa4a6aω +a2a2a6a4a6a6

For surjective pistols we have:

P2n+2= [

p∈P2n

Dp,

and for words, we have:

Cn+1= X

w∈Cn

2n+2(waωaω).

V. Vong (LIGM) Non commutative Gandhi polynomials March 26, 2014 10 / 17

(11)

The Dumont-Foata polynomials

The classical version

The Dumont-Foata polynomials are defined by induction as follows:

DF1(x,y,z) = 1,

DFn+1(x,y,z) = DFn(x+ 1,y,z)(x+z)(x+y)−DFn(x,y,z)x2,

Since DFn(1,1,1) = #P2n, the different variables x,y and z record some statistics on surjective pistols.

The non commutative version DF1 = 1

DFn+1 =T2n(DFn)(aω+za2n)(aω+ya2n)− DFnaωaω, ifn≥1.

(12)

Dumont-Foata polynomials

The first polynomials are:

DF2 = y z·a2a2+z·a2aω+y·aωa2

DF3 = y2z2·a2a2a4a4+y2z·a2a2aωa4+yz2·a2a2a4aω +yz2·a2a4a4a4+yz2·a2aωa4a4+yz·a2a4aωa4

+z2·a2a4a4aω+ z·a2a4aωaω+z2·a2aωa4aω

+yz·a2aωaωa4+ y2z·a4a2a4a4+y2z·aωa2a4a4 +y2·a4a2aωa4+yz·a4a2a4aω y·a4a2aωaω

+yz·aωa2a4aω+y2·aωa2aωa4.

V. Vong (LIGM) Non commutative Gandhi polynomials March 26, 2014 12 / 17

(13)

Dumont-Foata polynomials

The first polynomials are:

DF2 = yz·a2a2+z·a2aω+y·aωa2

DF3 = y2z2·a2a2a4a4+y2z·a2a2aωa4+yz2·a2a2a4aω +yz2·a2a4a4a4+yz2·a2aωa4a4+yz·a2a4aωa4

+z2·a2a4a4aω+ z·a2a4aωaω+z2·a2aωa4aω

+yz·a2aωaωa4+ y2z·a4a2a4a4+y2z·aωa2a4a4 +y2·a4a2aωa4+yz·a4a2a4aω y·a4a2aωaω

+yz·aωa2a4aω+y2·aωa2aωa4.

(14)

Dumont-Foata polynomials

The first polynomials are:

DF2 = yz·a2a2+z·a2aω+y·aωa2

DF3 = y2z2·a2a2a4a4+y2z·a2a2aωa4+yz2·a2a2a4aω +yz2·a2a4a4a4+yz2·a2aωa4a4+yz·a2a4aωa4

+z2·a2a4a4aω+ z·a2a4aωaω+z2·a2aωa4aω

+yz·a2aωaωa4+ y2z·a4a2a4a4+y2z·aωa2a4a4 +y2·a4a2aωa4+yz·a4a2a4aω y·a4a2aωaω

+yz·aωa2a4aω+y2·aωa2aωa4.

V. Vong (LIGM) Non commutative Gandhi polynomials March 26, 2014 12 / 17

(15)

The Dumont-Foata polynomials

Definitions

Let p be a surjective pistol of size 2n. A position i ≤2n−2 is:

afixed point ifp(i) =i, asurfixed point ifp(i) =i+ 1,

amax point ifp(i)≥p(j) ∀j ∈ {1,· · · ,2n}.

For example:

p = 42468688, 2 and 6 are fixed points, 3 is a surfixed point, and 5 is a max point. And we have: fix(p) = 2, surfix(p) = 1, and max(p) = 1.

Combinatorial interpretations DFn(x,y,z) = X

p∈P2n

xmax(p)yfix(p)zsurfix(p).

(16)

q-analog

Definition

Dn+1(x) =

(1 if n= 0,

q(Dn(x)x2) if n≥1,

where ∆q(f)(x) = f(xq+1)−f1+(q−1)x(x).

Examples

D2 = (q+ 1)x+ 1,

D3 = (q3+ 2q2+ 2q+ 1)x2+ (2q2+ 4q+ 2)x+q+ 2.

In order to obtain a combinatorial interpretation of this q-analog, we have to find a linear map Πq such that (Πq(Cn)) satisfies the same recurrence as (Dn).

V. Vong (LIGM) Non commutative Gandhi polynomials March 26, 2014 14 / 17

(17)

A linear map for q-analog

Strategy

One way, is to find Πq satisfying the following conditions forw corresponding to a surjective pistolp of size 2n:

Πq◦∆2n(waωaω) =∆qq(w)x2), Πq(w) =qs(p)xmax(p),

Πq(waωaω) = Πq(w)x2.

Examples on the first cases for n= 2, D2= (q+ 1)x+ 1:

x 1

1 2444 2244 q 4244

or

x 1

1 4244 2244 q 2444

.

(18)

A linear map for q-analog

For n= 3, D3= (q3+ 2q2+ 2q+ 1)x2+ (2q2+ 4q+ 2)x+q+ 2:

x2 x 1

D2244 224666 224466 1

226466 q

D2444 246666 244666 244466 1

264666 246466 q

264466 q

266466 q2

D4244 426666 424666 424466 q

624666 426466 q2

624466 q2

626466 q3

V. Vong (LIGM) Non commutative Gandhi polynomials March 26, 2014 16 / 17

(19)

A linear map for q-analog

For n= 3, D3= (q3+ 2q2+ 2q+ 1)x2+ (2q2+ 4q+ 2)x+q+ 2:

x2 x 1

D2244 224666 224466 1

226466 q

D2444 246666 244666 244466 1

264666 246466 q

264466 q

266466 q2

D4244 426666 424666 424466 q

624666 426466 q2

624466 q2

626466 q3

(20)

A linear map for q-analog

For n= 3, D3= (q3+ 2q2+ 2q+ 1)x2+ (2q2+ 4q+ 2)x+q+ 2:

x2 x 1

D2244 224666 224466 1

226466 q

D2444 246666 244666 244466 1

264666 246466 q

264466 q

266466 q2

D4244 426666 424666 424466 q

624666 426466 q2

624466 q2

626466 q3

V. Vong (LIGM) Non commutative Gandhi polynomials March 26, 2014 16 / 17

(21)

A linear map for q-analog

Special inversions

A special inversion is a pair (i,j) such thati >j,pi <pj, and i is the rightmost position corresponding to the value pi. We denote bysinv(p) the number of special inversions of a surjective pistol p.

A definition of Πq

Let w be in Cn, andp be the corresponding surjective pistol.

We define:

Πq(w) =qsinv(p)Π(w).

Combinatorial interpretation ofDn

Dn(x) = X

p∈P2n

qsinv(p)xmax(p).

参照

関連したドキュメント

We give several combinatorial characterizations of this property, classify the Coxeter groups with finitely many fully commutative elements, and classify the parabolic

Note that the derivation in [7] relies on a formula of Fomin and Greene, which gives a combinatorial interpretation for the coefficients in the expansion of stable Schubert

If ζ is grounded over all of Spec(R) we will simply say it is grounded. We recall that A ic denotes the class of integrally closed domains, and K ic denotes its limit closure.

We present combinatorial proofs of several non-commutative extensions, and find a β-extension that is both a generalization of Sylvester’s identity and the β-extension of the

In the non-Archimedean case, the spectral theory differs from the classical results of Gelfand-Mazur, because quotients of commutative Banach algebras over a field K by maximal ideals

Subsequently in Section 5, we briefly recall the different Hamiltonian approaches which have previously been pursued for the formulation of classical mechanics in non-commutative

In the non-Archimedean case, the spectral theory differs from the classical results of Gelfand-Mazur, because quotients of commutative Banach algebras over a field K by maximal ideals

R.Brown and J-L.Loday [5] noted that if the second dimension G 2 of a simplicial group G, is generated by the degenerate elements, that is, elements coming from lower dimensions,