# ੱ㑆⊒㆐⑼ቇㇱᢎ᝼ጯᧄᔘਯ ᢙቇ⑼ᢎ⢒ᴺߦ߅ߌࠆᢙᑼಣℂ࠰ࡈ࠻ Mathematica ߩᵴ↪

(1)

## ࠰ࡈ࠻

Mathematicaޠࠍขࠅ਄ߍ㧘ߎߩ࠰ࡈ࠻ߦࠃࠆ⻠⟵ߩ᭎ⷐࠍ␜ߔߎߣߣߔࠆ㧚(1)Mathematica

Mathematica

## ࡯ᵴ↪ࠍขࠅ਄ߍߡ޿ࠆℂ↱ߪએਅߢ޽ࠆ㧚

(1)੹ᣣ㧘ᢙቇᢎ⢒ߦ߅ߌࠆ࠹ࠢࡁࡠࠫ࡯ᵴ↪ߪ

## ᢎᏧߦߣߞߡਇนᰳߥ⢻ജߢ޽ࠆ㧚

(2)࠹ࠢࡁࡠࠫ࡯ᵴ↪ߦࠃߞߡ㧘ᢙቇ᝼ᬺ߇ᦸ߹

## ߒ޿ᣇะ߳ᄌൻߔࠆߎߣ߇ᦼᓙߐࠇࠆ㧚 ⻠⟵ߩ᭎⇛ߪએਅߢ޽ࠆ㧚

(1)ᢙቇᢎ⢒ߦ߅ߌࠆ࠹ࠢࡁࡠࠫ࡯ᵴ↪ߩታᘒ (2)ࠗࡦ࠲࡯ࡀ࠶࠻ࠦࡦ࠹ࡦ࠷ߩᵴ↪

(3)ᐞ૗૞࿑࠰ࡈ࠻Cabri-GeometryΤߩᵴ↪

(4)ᢙᑼಣℂ࠰ࡈ࠻Mathematica

(5)㑐ᢙ࠰ࡈ࠻Grapes

## ߩᵴ↪

(6)ᢙቇᢎ⢒ߦ߅ߌࠆ࠹ࠢࡁࡠࠫ࡯ᵴ↪ߩᜰዉ଀

(7)ᢙቇᢎ⢒ߦ߅ߌࠆ࠹ࠢࡁࡠࠫ࡯ᵴ↪ߩᜰዉ᩺

Mathematica

Mathematica

MAPLE

Mathematica

(2)

Mathematica

N

e

e-iǸ

## ߽ታ㓙ߩ⸘▚ߪ㕙ୟߢ޽ࠆ ߇㧘╵߃ߪ㧝ߢ޽ࠆߎߣ߇◲නߦಽ߆ࠆ㧚

In[1]:=305/177

Out[1]=

305 177

In[2]:=N[305/177]

Out[2]=1.72316384180790960 In[3]:=E

Out[3]=e In[4]:=N[E,45]

Out[4]=2.718281828459045235360287471352 66249775724709

In[5]:=Pi Out[5]=Ǹ In[6]:=N[Pi,45]

Out[6]=3.141592653589793238462643383279 5028841971694

In[7]:=E^(-I*Pi) Out[7]=-1

Mathematica

x

x1

xy

x*y

2) x x 1 x)(

1 (-

1 + + +

-1 x3

1

+

## ߣ㄰ߔߚ߼ߦߪߐࠄߦ೎ߩ㑐ᢙ ࠍ૶߁ᔅⷐ߇޽ࠆ㧚

In[1]:=(2x)^2+(x2)^2+(xy)^2+(x*y)^2

Out[1]= 4x2+x22+xy2+x2y2 In[2]:=(ax)^n

Out[2]= (ax)n

In[3]:=PowerExpand[(ax)^n]

Out[3]= anxn

In[4]:=Apart[1/(x^3-1)]

Out[4]=

x) 3(-1

1

+ +3(-1 x x2) x 2

+ +

In[5]:=Together[1/3(-1+x)+(-2-x)/3(1+x+x^2)]

Out[5]=

2) x x 1 x)(

1 (-

1 + + +

In[6]:=Simplify[1/3(-1+x)+(-2-x)/3(1+x+x^2)]

Out[6]=-1 x3 1 +

2/3

## ߣ㄰ߔ㧚

In[1]:=D[x^n,x]

Out[1]=nx-1+n

In[2]:=Integrate[nx(n-1),x]

Out[2]=xn

In[3]:=Limit[(x^2-1)/(x^3-1),xψ1]

Out[3]=

3 2

## ⴫␜ߐࠇࠆ㧚

In[1]:=Solve[a*x^2+bx+c==0,x]

Out[1]={{x

a 2

ac 4 b b− 2

− },{x

## ψ

a 2

ac 4 b b+ 2

− }}

In[2]:=Solve[x^3-19x+30==0,x]

### 富山大学総合情報基盤センター広報 vol.9 （2012） 4-7頁.

(3)

Out[2]={{xψ-5},{xψ2},{xψ2}}

In[3]:=Solve[x^3-8==0,x]

Out[3]={{xψ2},{xψ-2(-1)1/3},{xψ2(-1)2/3}}

Mathematica

1000

1000

## ⊒↢ߐߖߡ㧘ߘࠇࠍ⴫␜ߔࠆߎߣ߽ߢ߈ࠆ㧚

In[1]:=random=Table[Random[],{1000}];

ListPlot[ran]

200 400 600 800 1000

0.2 0.4 0.6 0.8 1.0

Out[1]=

In[2]:=random2=Table[Random

[Integer,{0,10}],{1000}];ListPlot[random2]

200 400 600 800 1000

2 4 6 8 10

Out[2]=

y=x㨪x5

Mathematica

## ߪ㧘㧟ᰴరߩࠃ߁ߥ㧞ᄌᢙ㑐ᢙ㧔ᇦ

੺ᄌᢙߦࠃࠆ߽ߩ߽฽߻㧕ࠍࠣ࡜ࡈ⴫␜ߢ߈ࠆ

## ߎߣ߇ఝࠇߚ․ᓽߢ޽ࠆ㧚

In[1]:=Plot[Sin[x],{x,-2Pi,2Pi}]

642 2 4 6

1.00.5 0.5 1.0

Out[1]=-Graphics-

In[2]:=Plot[{x,x^2,x^3,x^4,x^5},{x,1,5}]

2 3 4 5

100 200 300 400

Out[2]=-Graphics- In[3]:=ParametricPlot [{Sin[t],Sin[2t]},{t,0,2Pi}]

### 富山大学総合情報基盤センター広報 vol.9 （2012） 4-7頁.

(4)

1.00.5 0.5 1.0

1.00.5 0.5 1.0

Out[3]=-Graphics-

In[4]:=Plot3D[Sin[xSin[y]],{x,0,2Pi},{y,0,2Pi}]

Out[4]=-SurfaceGraphics-

In[5]:=ParametricPlot3D[{(2.5+Cos[t])Cos[s], (2.5+Cos[t])Sin[s],Sin[t]},{t,0,2Pi},{s,0,2Pi}]

Out[5]=-Graphics3D-

## ෳ⠨ᢥ₂

⬒੗ ᢅ(1998)㧚ޟᢙቇ⑼ᢎ⢒ᴺޠߦ߅ߌࠆ߭ߣ

## ߟߩᢎ⢒ታ〣㧚

੩ㇺ↥ᬺᄢቇ⺰㓸࡮⥄ὼ⑼ቇ

♽೉࡮I࡮27,pp.149-158㧚

ᮘญ⑓৻࡮ᯅᧄศᒾ(1994)㧚ᢙቇ⑼ᢎ⢒ᴺ㧙ਛ

## ቇ࡮㜞ᩞᢙቇߦ߅ߌࠆၮ␆࡮ၮᧄ㧙㧚

’㊁ᦠ ᐫ㧚

᭏ේㅴ(1993)㧚ࠃߊࠊ߆ࠆ Mathematica㧚౒┙

## ಴ 㧚

⊕⍹ୃੑ(1995)㧚଀㗴ߢቇ߱Mathematica㨇ᢙ

(2001)㧚ᣂ  ᢙቇᢎ⢒

ศ↰ ⒤(2003)㧚▚ᢙ࡮

## ߣߩ߆߆ࠊࠅߦߟ޿ߡߩ৻⠨ኤ㧙ᢎ⢒ቇㇱ ߦ߅޿ߡၭ߁ߴ߈ᢙቇ⊛⚻㛎ߣᢎ⢒⊛⚻㛎 ߣߩ㑐ㅪࠍᔨ㗡ߦ߅޿ߡ(ᄙ᭽ߥᢎ⢒ታ〣ߩ

តⓥ)㧙㧚ᢎ⑼ᢎ⢒ቇ⎇ⓥ࡮21,pp.231-258㧚

## ࠙࡞ࡈ࡜ࡓ,S㧚(2000)㧚Mathematica

ࡉ࠶ࠢ㧦 Mathematicaࡃ㧙࡚ࠫࡦ㧠㧚᧲੩ᦠ☋

Updating...

Updating...