• 検索結果がありません。

We obtain as orollaries similar results for the probability mea- sureswith someor nomomentsnite, andharaterizationsof on- stantmultiples ofumulantsasaÆnelyequivariantandonvolution- additive funtionals

N/A
N/A
Protected

Academic year: 2022

シェア "We obtain as orollaries similar results for the probability mea- sureswith someor nomomentsnite, andharaterizationsof on- stantmultiples ofumulantsasaÆnelyequivariantandonvolution- additive funtionals"

Copied!
22
0
0

読み込み中.... (全文を見る)

全文

(1)

What Are Cumulants ?

Dediated to Professor DietrihMorgenstern,

onthe oasion of hisseventy-fifth birthday

LutzMattner

Reeived: July5,1999

CommuniatedbyFriedrihGotze

Abstrat. LetP bethesetofallprobabilitymeasuresonRpossess-

ingmomentsofeveryorder. ConsiderP asasemigroupwithrespet

to onvolution. AftertopologizingP in anaturalway,wedetermine

all ontinuous homomorphisms of P into the unit irle and, as a

orollary, those into thereal line. The latterare preisely thenite

linear ombinationsof umulants, and from these allthe former are

obtainedviamultipliationbyiandexponentiation.

We obtain as orollaries similar results for the probability mea-

sureswith someor nomomentsnite, andharaterizationsof on-

stantmultiples ofumulantsasaÆnelyequivariantandonvolution-

additive funtionals. The \no moments"-ase yields a theorem of

Halasz. Otherwiseourresultsappeartobenewevenwhenspeialized

toyieldharaterizationsoftheexpetationorthevariane.

Ourbasitoolisarenementoftheonvolutionquotientrepresenta-

tiontheoremforsignedmeasuresofRuzsa&Szekely.

1991MathematisSubjetClassiation: 60E05,60E10,60-03.

Keywordsand Phrases: Additive funtional, harateristi funtion,

harater, onvolution, equivariane, expetation, Halasz, histori-

al note, homomorphism, mean, moment, multipliative funtional,

Ruzsa,semi-invariant,semiinvariant,semigroup,Szekely,variane.

(2)

1 Introdution,results,andeasy proofs

1.1 Aim. Cumulants are ertain funtionals of probability measures. This

paperattemptstoexplainmorepreiselywhattheyarebyharaterizingthem

throughtheirmostusefulproperties. Forsimpliity,onlytheone-dimensional

ase of probability measures onR is treated. There themost familiar exam-

ples of umulantsare theexpetation and the variane. Our resultsyield, in

partiular,newdesriptionsof therolesplayedbytheselattertwofuntionals

in probabilitytheory.

1.2 Guide. Thedenitionofumulantsisrealledin Subsetion1.4below,

asformula(4). Theusefulpropertiesofumulants,referredtoabove,are the

homomorphism property(5) and their transformationbehaviourunder aÆne

mappings, (14). The relation betweenumulants and momentsis realled in

Subsetion1.5.

Subsetion1.6introduestopologiesonthedomainsofdenitionoftheumu-

lants,withtheaimofformulatingregularityassumptionsinourtheoremsand

orollaries. That someregularityassumptions areatually neessary, atleast

in theresults1.8{1.12,isdemonstratedin 1.20.

Theorem 1.8, haraterizing the ontinuous haraters of the semigroup

Prob

1

(R) , is the main result of the present paper. Its natural forerunner

fromtheliterature,namelythetheoremofHalasz,isrealledin1.10belowas

aspeialaseofCorollary1.9.

Another orollary of Theorem 1.8, and perhaps the most interesting result

of this paper, is the haraterization of the nite linear ombinations of u-

mulants asthe ontinuous, R-valued, and onvolution-additivefuntionals of

probabilitymeasures,statedinTheorem1.11andCorollary1.12. Suhresults

wereonjetured byKemperman(1972). Byrestritingthe funtionalsto be

[0;1[-valued,wearriveataharaterizationofthevarianein1.14. [Arelated

resultofMartinDiaz(1977)isdisussedin 1.22.℄

Our next results, 1.17 and 1.18, are spezializations of 1.8 and 1.11 to sale

equivariantfuntionals,thedenitionofwhihbeingrealledin1.16.

Asafurtherorollary,weobtainin1.19aharaterizationoftheexpetationas

theonlynontrivialontinuousfuntionalhomomorphiwithrespettoadditive

andmultipliativeonvolutions.

HistorialandetymologialremarksonumulantsaregiveninSubsetion1.21.

Subsetion1.22disussessomefurtherreferenesrelatedto thepresentwork.

Easy proofs are given immediately after the statement of a result in Setion

1. Theonly diÆultproofof thispaper,needed forthe\only if"partof our

main result1.8, is the ontent of Setion 2. Its basi tehnial tool, rening

theonvolutionquotientrepresentationtheoremforsignedmeasuresofRuzsa

&Szekely(1983,1985,1988),issuppliedin Subsetion2.5.

(3)

1.3 Some notation andonventions. Thepositiveintegersaredenoted

byN, thenonnegativeonesbyN

0 .

If X is a set equipped with a -algebra A, we let Prob(X) denote the set

of all probability measures dened on A. The real line R is understood to

be equippedwith itsBorel -algebra. The onvolutionof P;Q2 Prob(R) is

denoted byPQ. Wewrite Æ

a

fortheDirameasure onentratedat a2R,

and Æ := Æ

0

for the one onentrated at zero. For the image measure of a

probability measure P under a measurable funtion f, we use the notation

fP. We write suppP for the support [= minimal losed set of probability

one℄ofaP 2Prob(R) .

Prob(R) willmainlybeonsideredasasemigroupwithrespettoonvolution.

Homomorphisms of a semigroup [below always a sub-semigroup of Prob(R) ℄

into themultipliativegroupTof omplexnumbersofabsolutevalueonewill

bealledharaters,homomorphismsinto theadditivegroupR will bealled

additive funtions.

1.4 Cumulants. Wepresentbelowtheusualintrodutionofumulantsand

their most important properties. For P 2 Prob(R) , let b

P denote its Fourier

transformorharateristifuntion,denedby

b

P(t) :=

Z

e itx

dP(x) (t2R): (1)

The most importantreason for onsidering Fouriertransforms of probability

measuresismultipliativitywithrespettoonvolution:

(P Q)b(t) = b

P(t) b

Q(t) (P;Q2Prob(R); t2R) : (2)

Letlog denotetheusuallogarithmdened on,say,fz2C : jz 1j<1g. Let

P 2Prob(R). Then b

P is ontinuouswith b

P(0)=1,sothat logÆ b

P is dened

in someP-dependentneighbourhoodofzero. Nowput

Prob

r

(R) :=

P 2Prob(R) : Z

jxj r

dP(x)<1

(r2N

0 ); (3)

andassumethatr2N andP 2Prob

r

(R). Then b

P andthuslogÆ b

P isr times

ontinuouslydierentiableintheneighbourhoodofzerointroduedabove,and

thenumber

r

(P) := i r

D r

logÆ b

P

(0) (4)

isalled therthumulant ofP. [Readerswonderingaboutthisstrangename

arereferredtoSubsetion1.21.℄ Itiseasytoshowthattheumulantsarereal-

valued funtionals. Their most important property, whih obviously follows

from(2) and(4),isadditivitywith respettoonvolution:

r

(P Q) =

r

(P)+

r

(Q) (r2N; P;Q2Prob

r

(R)) : (5)

(4)

Inotherwords: Foreahr2N, (Prob

r

(R );) isasemigrouponwhih

r isan

additivefuntion.

1.5 Examples,expressionintermsofmoments. Thetwomostfamiliar

examplesofumulantsarethemeanandthevariane 2

,sine

1

(P) = (P) :=

Z

xdP(x) (P 2Prob

1 (R ));

2

(P) = 2

(P) :=

Z

(x (P)) 2

dP(x) (P 2Prob

2 (R) ):

These formulas are speial ases of the relation between umulants and the

moments

r (P) :=

R

x r

dP(x) = i r

(D n

b

P)(0) (r 2N

0

;P 2Prob

r (R )):

Onepossibilityofexpressingthisrelationistousethereursion

r+1

= r

X

l=0

r

l

r l

l+1

(r2N

0

); (6)

whihiseasilyprovedusingtheLeibnizruleforthedierentiationofaprodut

andtherepresentationofthemomentsasderivatives: ForP 2Prob

r+1 (R ) put

' :=

b

P and := log', in a neighbourhood of zero, and ompute D r+1

' =

D r

('D )= P

r

l=0 r

l

(D r l

')(D l+1

),evaluatetheextremeleftandright

hand sides atzero, anddivide byi r+1

, to arriveat (6). Sinethe oeÆients

of

r+1 and

r+1

in (6)arebothone,itfollowsbyindution that

r

=

r

+ polynomialwithoutonstanttermin

1

;:::;

r 1

(r2N); (7)

andthatorrespondingrelationsholdwhenandareinterhanged. Various

expliitfomulasderivedfromtheserelationsandsomeexamplesofatualom-

putationsof umulantsmay be foundin Chapter 3ofKendall,Stuart &Ord

(1987). Wemerelynote heretwofurther examples,foronveniene rewritten

in termsofenteredmoments,

3

(P) = Z

(x (P)) 3

dP(x) (P 2Prob

3 (R ));

4

(P) = Z

(x (P)) 4

dP(x) 3 2

(P)

2

(P 2Prob

4 (R )):

As one might suspet on seeing these formulas, the variane

2

is the only

nonnegativeumulant. [Thisfatfollowseasilyfrom1.13below,asanbeseen

fromtheproofof1.14.℄

(5)

1.6 Topologies on some subsets of Prob(R). One of our aims is to

show that every \reasonable"homomorphism from (Prob

r

(R);) into (R;+)

is a linearombination of umulants of order at most r. This is theontent

of Corollary 1.12, where \reasonable"is speied to mean \ontinuous". To

this end we introdue here on eah Prob

r

(R ) a topology. In order to make

theontinuityassumptionin Corollary1.12weak,wehavetohooseastrong

topologyonProb

r

(R). Wetaketheoneinduedbytheweightedtotalvariation

metrid

r

dened by

d

r

(P;Q) :=

Z

(1+jxj r

)djP Qj(x) (P;Q2Prob

r

(R )): (8)

Wefurtheronsider

Prob

1

(R) :=

\

r2N

0 Prob

r (R);

whih is the largest set of probability measures on whih every umulant is

dened. WetopologizeProb

1

(R) bythefamilyofmetris(d

r :r2N

0 ).

1.7 Lemma. a)Eah

r jProb

r

(R) isontinuouswith respettod

r .

b) Letr 2N and 2℄0;1[. Then there existsasequene (P

n

) in Prob

1 (R )

with

lim

n!1 d

r 1 (P

n

;Æ) = 0; (9)

lim

n!1

l (P

n

) = 0 (l=1;:::;r 1); (10)

lim

n!1

r (P

n

) = : (11)

Proof. a) The funtionals (

l

:l =1;:::;r) are obviously ontinuouswith

respet to d

r

, and(7) showsin partiular that

r

is apolynomialfuntion of

them.

b) We may restrit attentionto those n 2 N with n r

1 and put P

n :=

(1 n r

)Æ +n r

Æ

n

. Then P

n

2 Prob

1

(R) , and d

r 1 (P

n

;Æ) =

n yields

(9). Bypart a), (9) implies (10). Finally, (11) follows from

l (P

n ) =n

l r

(l=1;:::;r) and(7).

1.8 Theorem (ontinuous haraters of Prob

1

(R )). A funtion

jProb

1

(R) isaontinuousharateri

(P)=exp(i X

l2N

l

l

(P)) (P 2Prob

1

(R)) (12)

holds for some nitely supported sequene of real numbers (

l

: l 2 N). The

latter, ifexistent, isuniquelydeterminedby .

(6)

Proof. Theproofof the\onlyif"partistheontentofSetion 2. The\if"

partfollowstriviallyfrom 1.7a)and(5).

Finally suppose that we have (12) and an analogous representation of in-

volvinganother nitely supported sequene (~

l

: l2 N). Then thesequene

(d

l ):=(

l

~

l

)yieldsananalogousrepresentationoftheonstantharater1.

Supposethatnotalld

l

vanish. Putr:=minfl:d

l

6=0gandapply1.7b)with

:= =jd

r

j. Then 1 = exp(i P

r

l=1 d

l

l (P

n

)) ! exp(i) = 1for n ! 1.

This ontraditionshowsthat wemusthaved

l

=0foreveryl2N, aswasto

beproved.

1.9 Corollary. Let r2N

0

. A funtion jProb

r

(R ) is aontinuous har-

ater i (12) holds with

l

= 0 for l > r, and with Prob

r

(R) in plae of

Prob

1 (R) .

Proof. Again,the\if"partfollowsfromfrom1.7a)and(5). Toprove\only

if": Let jProb

r

(R) be a ontinuous harater. Then, by 1.8, its restrition

jProb

1

(R) fulls (12) for some nitely supported sequene (

l

). Assume

that

l

6= 0 for some l > r. Put ~r := minfl2N :

l

6=0g. Choose (P

n )

aording to 1.7 b) with ~r in plae of r and with := =j

~ r

j. Then, sine

r < r,~ we have P

n

! Æ with respet to d

r

. On the other hand, we have

(P

n

)! 16=1=(Æ). This ontraditiontotheontinuityofshowsthat

we must have

l

= 0 for l > r. It follows that the right hand side of (12)

isdened andontinuousonProb

r

(R) . SineProb

1

(R ) isobviouslydensein

Prob

r

(R),thisimpliesthat(12)alsoholdswithProb

r

(R)inplaeofProb

1 (R) .

1.10 Theoremof Hal

asz. Thelastorollaryyieldsinpartiularatheorem

ofHalasz,presentedonpage132ofRuzsa&Szekely(1988),whihreads:

1isthe onlyharaterof Prob(R) ontinuouswith respetto weak

onvergene.

Infat,thespeialaser=0ofourCorollary1.9isslightlystronger,sineour

ontinuityassumptionreferstoastrongertopologyonProb(R).

1.11 Theorem (additive funtions on Prob

1

(R)). A funtion

jProb

1

(R) !R isontinuousand additive i

(P)= X

l2N

l

l

(P) (P 2Prob

1

(R)) (13)

holdsforsomenitelysupportedfamilyofrealnumbers(

l

:l2N). Thelatter,

if existent,isuniquely determined by.

(7)

Proof. The\if"partandtheuniquenessof(

l

)followsviamultipliationby

iandsubsequentexponentiationfromtheorrespondingstatementsin1.8.

Toprovethe\onlyif"part,letjProb

1

(R) !R beontinuousandadditive.

Put

(P) := exp(i(P)) (P 2Prob

1 (R)):

Then satisesthehypothesisof Theorem1.8,and heneanberepresented

asin(12). Thisimplies

(P) = (P)+ X

l

l

l

(P) (P 2Prob

1 (R)) ;

where jProb

1

(R) ! 2Z. Sine must be additive, (Æ) = 0. Sine

mustbeontinuousandProb

1

(R) isonvex,(Prob

1

(R))mustbeonneted.

[Here we have used the obviousfat that for P;Q 2 Prob

1

(R ) the funtion

[0;1℄3t7!tP+(1 t)Q2Prob

1

(R) isontinuous.℄ Thus =0.

1.12 Corollary. Let r 2 N

0

. A funtion jProb

r

(R ) !R is ontinuous

andadditive i(13)holdswith

l

=0for l>r andwith Prob

r

(R) in plaeof

Prob

1 (R) .

Proof. Dedue1.12from1.9,byarguingasintheproofof1.11. Alternatively,

dedue1.12from1.11byarguingasintheproofof1.9.

1.13 Lemma (umulantsof Bernoullidistributions). Forr2N, let

f

r

j[0;1℄!R bedenedby

f

r

(p) :=

r

((1 p)Æ

0 +pÆ

1

) (p2[0;1℄):

Then,for eahr,f

r

isapolynomial funtionofdegreerwithrsimplezerosin

[0;1℄.

Proof. Itisknown[forexample,fromKendall,Stuart&Ord(1987),exerise

5.1℄that

f

r+1

(p) = p(1 p)f 0

r

(p) (r2N; p2[0;1℄);

where theprimedenotes dierentiationwith respetto p. Sinef

1

(p)=pfor

p2 [0;1℄, thelaim follows byan indution argument, using Rolle'stheorem

andthefatthat f 0

r

hasat mostr 1zeros,ountingmultipliity.

1.14 A haraterization of the variane. Afuntion jProb

1 (R) !

[0;1[isontinuousandadditive i=

2

for some2[0;1[.

Proof. The \if" laim is trivial. To prove \only if", we may by Theorem

1.11startfromtherepresentation(13). InsertingthereP =Æ

a

witha2R,we

(8)

see thattheassumption 0fores

1

=0. Thus, exeptforthetrivialase

=0,wehave

(P)= r

X

l=2

l

l

(P) (P 2Prob

1 (R))

for some r 2 with

r

6= 0. Suppose now that r 3. Then we may, by

the lemma 1.13, hoose a Bernoulli distribution P

0

= (1 p)Æ

0 +pÆ

1 with

r

r (P

0

) < 0. It followsthat (P) < 0for P := (x 7! ax) P

0

with a > 0

suÆientlylarge,using(14)below. Thisontraditionprovesourlaim.

1.15 Affine equivariane of umulants. The seond most important

propertyoftheumulantsistheirbehaviourunderaÆnetransformations: For

r2N, P2Prob

r

(R) anda;b2R, wehave

r

((x7!ax+b)P) =

a

1

(P)+b (r=1);

a r

r

(P) (r2):

(14)

Inpartiular,eahumulantisaÆnelyequivariantinthesenseofthefollowing

denition and,byatrivialspeialization,alsosaleequivariant.

1.16 Definition (equivariane). a) Let X be a set and T be a set of

funtionsfromX intoX. Afuntion'jX isalledequivariant,withrespetto

T,ifwehavetheimpliation

x;y2X;'(x)='(y);T 2T =) '(T(x))='(T(y)): (15)

b)Fora;b2R deneT

a;b

jProb(R) !Prob(R) by

T

a;b

(P) := (x7!ax+b)P (P 2Prob(R))

and put T :=fT

a;b

:a;b2Rg. LetP Prob(R) satisfy theimpliation P 2

P;T 2T =) T(P)2P. Thenafuntion'jP isalledaÆnelyequivariantif

itisequivariantwithrespettoT,in thesenseofparta).

) Wedene afuntion 'jP tobesale equivariantifitsatisesthedenition

givenin b)above,but withb=0anda>0inthedenitionof T.

1.17 Theorem (equivariant ontinuous haraters of Prob

1 (R)).

A funtionjProb

1

(R ) isasaleequivariantontinuousharateri

(P) = exp(i

r

(P)) (P 2Prob

1

(R)) (16)

for somer2N andsome2R.

Proof. The \if" partis trivial. To prove\only if": Dene S

a

(P) :=(x 7!

ax) P for P 2 Prob(R) and a 2℄0;1[. For 2℄0;1[, let P

denote the

Poissondistributionwithexpetation. Then

l (S

a (P

)) = a l

(l2N; a;2℄0;1[): (17)

(9)

Now let jProb

1

(R) be a sale equivariant ontinuous harater. Applying

1.8, weget(12)forsomenitelysupported sequene(

l

:l2N) , andwehave

to showthatthereisat mostonel2N with

l

6=0. Using (17),(12)yieldsin

partiular

(S

a (P

)) = exp(ip(a)) (a;2℄0;1[) (18)

wherepisthepolynomialfuntiondened by

p(a) :=

X

l2N

l a

l

(a2C):

Now assume, to get a ontradition, that there are at least two l 2 N with

l

6=0. Thenforarbitrarya

1

;a

2

2℄0;1[witha

1 6=a

2

andarbitrary

1

;

2 6=0,

there existsanumberb2℄0;1[with

1 p(ba

1

)

2 p(ba

2

) 2= 2Z: (19)

[Proof: Assume withoutlossof generalitythat a

1

<a

2

. If ourlaim is false,

thentherationalfuntionC 3z7!R (z):=p(a

1 z)=p(a

2

z)isonstant. Butby

ourassumptiononp,%:=supfjzj:z2C; p(z)=0g>0. Inviewof 0<a

1

<

a

2

, itis obvious that R hasazero, namelyon theirle fjzj=%=a

1

g. Hene

R0andthusp0,aontradition.℄

Nowhoosespeiallya

1

;a

2

2℄0;1[witha

1 6=a

2

insuhawaythatp(a

1 )

p(a

2

)>0. Choose

1

;

2

2℄0;1[with

1 p(a

1

) =

2 p(a

2

); (20)

hooseb asin (19),and putQ

k :=S

a

k (P

k

) fork=1;2. Then (18)and (20)

yield (Q

1

) = (Q

2

), whereas(18) also yields (S

b (Q

k

)) = (S

ba

k (P

k )) =

exp(i

k p(ba

k

)) for k = 1;2, so that (19)implies (S

b (Q

1

)) 6= (S

b (Q

2 )), in

ontraditiontothesaleequivarianeof.

1.18 Theorem(saleequivariantadditivefuntionsonProb

1 (R)).

A funtionjProb

1

(R) !R isontinuous, additive,andsale equivariant, i

thereexistr2N and2R suhthat=

r .

Proof. Proeedasintheproofofthe\onlyif"partofTheorem1.11,butuse

equivarianeofand1.17inplaeof1.8.

1.19 A haraterization of the expetation. Notation: Inthis sub-

setiononly,wewritePQfortheusualonvolutionPQofP;Q2Prob(R) ,

and P Q for the multipliative onvolution of P;Q 2 Prob(R ), that is, the

distributionofXY withX;Y beingindependentrandomvariableswithdis-

tributionsP;Q.

(10)

Theorem. Let jProb

1

(R )!R beontinuous. Then wehave both

(PQ) = (P)+(Q); (21)

(P Q) = (P)(Q) (22)

for P;Q2Prob

1

(R ), ieither=

1

or =0.

Proof. The\if"partisobvious. Soassumethatisontinuousandsatises

(21)and (22). Byapplying(22) to Q=Æ

a

, for everya2℄0;1[, wesee that

issale equivariant. Hene (21)and Corollary1.18yield =

r

for some

2R andsomer2N. ChooseP 2Prob

1

(R) with

r

(P)6=0,forexampleP

=Poissondistributionwith parameter1. InsertthisP and Q=Æ

1

into (22),

use =

r

, anddivide by

r

(P). Theresultis = 2

r (Æ

1

). If r2,then

r (Æ

1

)=0,hene=0andthus=0. Ifr=1,then

r (Æ

1

)=1,heneeither

again=0and=0,or=1andthus=

1 .

1.20 \Counterexamples". Examplesa) andb)belowshowthattheon-

tinuityassumptionsin1.8{1.12annotbeomittedwithoutsubstitute. Both

a)andb)shouldberegardedaspathologial. Ontheotherhand,theexamples

in)showthatnotonly1.8{1.12,butalso1.14and,using(23),also1.17and

1.18reeivenon-pathologialounterexamplesifthe ontinuity assumptionis

dropped and if the domain of denition of the funtionals is taken to be to

small. Conerning 1.8 {1.12, we mayalso refer to exampled), suggestedto

me byI.Z.Ruzsa,where thedomainof denition ofouldbethoughtofas

beingnotmuhsmallerthanProb

1 (R) .

a) By the axiom of hoie, there exists a disontinuous additive funtion

fjR ! R. Now (P) := f((P)) denes a disontinuous additive funtion

jProb

1

(R) !R.

b)[Ruzsa&Szekely(1988),pp.122-123,2.3and2.4℄onstrut,usingtheaxiom

ofhoie, ahomomorphismfrom(Prob(R );) into(R;+) whihextends the

expetation

1

dened onthe subsemigroup Prob

1

(R) . They also show that

eah suh assumes negative values for some P with support in [0;1[. It

followsthattheonstrutedisadisontinuousadditivefuntionfromProb(R )

into R.

) Onthesemigroup

Prob

(R) := fP 2Prob(R) : suppP ompatg Prob

1 (R)

weobtainanadditiveandnonnegativefuntional,normalizedhereastosatisfy

additionallyonditionii)from1.22below,byeahofthefollowingdenitions:

(P) :=

1

2

(maxsuppP minsuppP) (P 2Prob

(R )); (23)

(P) :=

log b

P(i)+log b

P( i)

2logosi

(P 2Prob

(R) ): (24)

(11)

[In(24),weuseofoursethedenition (1)withC in plaeofR.℄

d)Considerthesemigroup

P :=

n

P 2Prob

1 (R) :

b

P holomorphinearzero o

Prob

1 (R):

Let(a

l

:l2N)beanysequeneofrealnumberssatisfyinga

l

=O("

l

),forevery

">0. Then

(P) :=

1

X

l=1 a

l

l!

l

(P) (P 2P) (25)

denes anadditivefuntion onP. [Tosee that theseries in (25)alwayson-

verges, observe that logÆ b

P is now holomorphi in some P-dependent neigh-

bourhood of zero, sothat its Taylorseries P

1

l=1

l

(P)(iz) l

=l! onvergesfor

jzjsuÆientlysmall.℄

1.21 Some early history and etymology. Cumulantswereapparently

rstintroduedbyT.N.Thiele[1838-1910℄underthenameof\half-invariants".

Hald (1981)desribes, onpages7-10, Thiele'sontributionsand theirinsuÆ-

ient aknowledgement by K. Pearson and R.A. Fisher. Aording to Hald,

umulants arerst dened in thebook Thiele (1889). [This I did nothek.

Hald's formula (4.1), laimed to be Thiele's denition, is, up to an obvious

misprint,thenowwell-knownreursion(6),determining

r+1

asapolynomial

in themoments

l

.℄ Inalaterandmoreaessibleversionofhis book,Thiele

(1903)essentiallygivesdenition(4). Hald(1998)ontainsamuhmoreom-

prehensiveearlyhistoryofumulants.

Later authors, suh as Craig (1931) and Wishart (1929), refer to the umu-

lantsas\semi-invariantsofThiele",whileFisher(1929-30),onpage200ofhis

paper,simplyallsthem\semi-invariants",withoutbotheringtonameThiele.

But Wishart and Fisher, who obviously new about eah others work before

publiation, prefer to use the new term \umulative moment funtions" in-

stead. The reason for adopting this term is hinted at in Fisher'spaper: On

page 199, he gives an interesting although perhaps not quite preise deni-

tion of rather general \moment funtions" of populations, roughly speaking

bypolynomialestimability,whih seemsat anyratetobeintendedtoinlude

polynomialfuntionsofnitely manyordinarymoments,andheneinparti-

ular umulants. On page 202, Fisherthen refers to a \umulativeproperty"

of the logarithm of the Laplae transform whih, expressed in terms of the

umulants, is just ondition(5). Thus the theadjetive \umulative" refers,

in this ontext, to ahomomorphism ondition. In partiular, it is not used

to distinguishaoneptrelatedtoprobabilitymeasuresfrom aorresponding

oneptrelatedtoprobabilitydensities,aswouldoftenbetheaseintheolder

statistialliterature.

(12)

Finally, \umulative moment funtion" was abbreviated to "umulant" by

Fisher & Wishart (1931-32) and Fisher (1932), with Hotelling (1933) laim-

ingtohavesuggestedthisname,whihquiklybeamethestandardoneinthe

englishlanguageliterature. Therstpubliationhavingtheword\umulant"

in itstitle seemstobethepaperbyCornish&Fisher(1937),whorepeatthe

denition, but already Haldane (1937), page 136, uses \umulants" without

denition orreferene.

Readersgenerallyinterestedinthehistoryofprobabilistiorstatistial terms

arereferredto David (1995,1998)asausefulstartingpoint.

1.22 Related work not disussed above. The following papers have

somerelationwiththepresentone.

Craig(1931)statesonpage160aforerunnerofourCorollary1.18. Wherewe

assumemereontinuityof,Craigassumesinpartiularthatisapolynomial

funtion of some nite number of moments

l

. His treatment is not quite

rigorous: Forexample,nodomainofdenitionofisspeied,hisonlusion

is=

r

forsomer[insteadoftheorretonlusion=

r

forsomerand

℄,andaproofisoeredonlyfor theasewhereisapolynomialfuntionof

1

;:::;

4 .

Savage(1971)haraterizesmomentsand moregeneralexpetations of expo-

nentialpolynomialsasfuntionalssatisfying,ontheonehand,onditionslike

(P Q)=T((P);(Q))withT unspeiedand, ontheotherhand,having

a representation (P) = R

fdP with f unspeied. His rst assumption is

moreliberalthanourhomomorphismassumptions,buthisseondassumption

isratherrestritive,exludingforexampleeveryumulant

r

withr2. Thus

theworkof Savageisinomparabletothepresentone.

Martin Diaz (1977), Teorema 4, states a haraterization of the vari-

ane whih may be formulated as follows. We temporarily put P :=

fP 2Prob(R) : suppP nite g.

Theorem (Martin Diaz)LetjP![0;1[andassume:

i) For everyn2N, the map

R n

(

p2℄0;1℄

n

: n

X

i=1 p

i

=1 )

3 (x;p)7!( n

X

i=1 p

i Æ

xi )

ispartially ontinuousinthe twovariables x andp.

ii) (Æ

1

)=0, ( 1

2 (Æ

1 +Æ

1 ))=1.

iii) If we put (X):= (P) for every random variable X with distribution

P2P,then

( n

X

i=1 X

i ) =

n

X

i=1 (X

i )

(13)

wheneverthe X

i

arepairwise independent random variables, on aom-

monprobability spae, withdistributionsbelonging toP.

Then =

2 .

Weobservethat theword\pairwise"rendersthethirdassumptionratheron-

ning. But without this word, a ounterexample would be obtained by re-

striting to P either from (23) or(24). These examplesmay be regarded

asnegativesolutionstotheproblemstatedinMartin Diaz(1977)onpage96,

whileourresult1.14mayberegardedasakindofpositivesolution.

Good (1979) speulates about the existene of a useful notion of \frational

umulants", perhaps to be dened via frational dierentiation of logÆ b

P in

analogyto(4). Suhadenition,ifpossible,shouldleadtoanadditivefuntion

on Prob

1

(R ), andTheorem 1.11ould betakenasan indiationthat itwill

notleadto anythingnewanduseful.

Heyer(1981)reviews,amongothertopis,axiomatiapproahestoexpetation

andvarianesforprobabilitymeasures onompatgroups,referringto earlier

publiations ofhimself andof Maksimov,in partiularMaksimov(1980). Al-

thoughsomewhatsimilar inspirit tothepresentpaper,thereis nooverlapin

theresultsobtained.

Charaterizations of the variane notreferringto the semigroupstruture of

Prob(R) havebeenprovided byBomsdorf(1974), by Gil Alvarez(1983),and

byKagan&Shepp(1998). Theformertwoaresomewhatsimilarto thehar-

aterizationoftheShannonentropybyFadeev'saxioms,aspresentedinRenyi

(1970),page548.

2 The main proof

2.1 Furthernotationandonventions. Theproofofthe\onlyif"part

of Theorem 1.8, given in 2.8 below, is prepared by the introdution of an

auxiliarytopologialvetorspaeHin2.2andtheidentiationofitsdualH 0

in2.3. WewillusesometoolsfromfuntionalandFourieranalysisasexplained

in Rudin(1991). Inpartiular, weassumeasknownthespaesC 1

(R) , D(R) ,

D 0

(R) with their usual topologies. Wedepart from theonventions ofRudin

(1991)inthathereatopologialvetorspaeisnotneessarilyassumedtobe

Hausdor.

Welet U denotethe setof allopensymmetrineighbourhoods of02R. For

U 2U,afuntionhjU !C isalledhermiteanif

h(t) = h( t) (t2U):

2.2 Thespae Hof germsofhermiteanC 1

funtions vanishingat

zero. Weonsider

X := fh2C 1

(R) : hhermitean; h(0)=0g

(14)

asatopologialvetorspaeoverR,withthetopologyinheritedfromtheusual

topologyofC 1

(R). Wefurtheronsiderthevetorsubspae

N := fh2X : 9U2U withhjU =0g

ofX,andformthequotienttopologialvetorspae

H := X=N:

For h 2 X, we write [h℄ for the equivalene lass H 2 H with h 2 H. It

easy to see, though for our purposes unneessary to hek, that N is not

losed, sothat H is not Hausdor. Sine C 1

(R) is metrizable, H is pseudo-

metrizable, and a sequene (H

j

: j 2 N) onverges to 0 2 H i there exist

h

j 2 H

j

with h

j

! 0 2 X. [Proof: The disussion in Setions 1.40, 1.41

of Rudin (1991)applieswith obvious hanges, neessitated by thenonlosed-

ness of our N. In partiular, if d is some tranlation-invariant metri for X,

the formula %([h

1

℄;[h

2

℄) := inffd(h

1 h

2

;g):g2Ng denes a translation-

invariantpseudo-metri%forH . Andif([h

j

℄):j2N) isasequeneinHwith

lim%([h

j

℄;[0℄)=0,wemayhoose g

j

2N withd(h

j

;g

j

)2%([h

j

℄;[0℄)+j 1

,

yielding

~

h

j :=h

j g

j 2[h

j

℄with

~

h

j

!0.℄

The value at zero of the derivativesD l

H(0) of aH 2 H , ouring below, is

dened intheobviousway.

2.3 ThedualH 0

ofH . AfuntionjHisanR-va lued,ontinuous,andR-

linearfuntionalithereexistsann2N

0

andanitesequeneofrealnumbers

(

l

:1ln)suhthat

(H) =

n

X

l=1

l i

l

(D l

H)(0) (H 2H ): (26)

Proof. The \if"laim is obviously true. Toprove\only if": Let jH! R

beontinuousandR-linear. DeneSjD(R) !Rby

S(') := ([

1

2

' '(0)+

' '(0)

℄) ('2D(R) );

where

(t):= ( t). ItisobviousthatSiswell-denedandR-valued, aswell

asontinuousandR-linear. ItfollowsthatthefuntionalTjD(R)!C dened

by

T(') := S(') iS(i') ('2D(R ))

isontinuousandC-linear,thatis,adistribution2 D 0

(R). Itiseasilyheked

that T has supportontained inf0g. Hene,byRudin (1991),Theorem 6.24

d) andTheorem 6.25,thereis ann2N

0

andasequeneofomplexnumbers

(b

l

: 0ln)suhthat

T(') = n

X

l=0 b

l D

l

'

(0) ('2D(R )):

(15)

Sine S =ReT, we getfor H =[h℄2 H , usingthe hermiteanpropertyof h

andh(0)=0,

(H) = S(h)

= ReT(h)

= n

X

l=1 Re(b

l D

l

h

(0))

= n

X

l=1 Re(b

l i

l

)i l

D l

h

(0);

andthus(26)with

l

=Re(b

l i

l

).

2.4 ConvergeneinProb

1

(R) . LetP beanelement ofand(P

j

)be anet

in Prob

1

(R). Then limP

j

=P,in the topology of Prob

1

(R), i limP

j

=P

with respettototal variation distaneand

lim

j Z

x l

dP

j (x) =

Z

x l

dP(x) (l2N): (27)

Proof. Letrstw beanynonnegativemeasurable funtion onameasurable

spaeX. LetP;Q2Prob(X)with R

wd(P+Q)<1,andxa>0. Then

Z

wdjP Qj Z

w(wa)djP Qj+ Z

w(w>a)d(P +Q)

= Z

w(wa)djP Qj+2 Z

w(w>a)dP

+ Z

wd(Q P) Z

w(wa)d(Q P)

2

Z

w(wa)djP Qj+2 Z

w(w>a)dP

+ Z

w dQ Z

w dP:

Nowlet(P

j

)beanetinProb(X)with R

wdP

j

<1foreveryj. Thepreeding

inequalityshows that lim R

wdjP P

j

j =0ifbothlim R

1djP P

j

j =0and

lim R

wdP

j

R

wdP. AppliedtoX =R andw(x)=1+x 2n

,foreahn2N,

the\if"partfollows. The\onlyif"partistrivial.

2.5 Quotients of harateristi funtions. Let

' 2 := f'2D(R ) : '(0)=1;'hermiteang:

a) ThereexistP;Q2Prob

1

(R ) with

' b

Q =

b

P: (28)

(16)

b) Let('

j

)be anetin withlim'

j

='inthe D(R)-topology . Then wemay

hoose P

j

;Q

j

2Prob

1

(R) with'

j b

Q

j

= b

P

j and

limP

j

=P; limQ

j

=Q inProb

1

(R): (29)

Remark. As said before in 1.2, this basi tool of the present paper is a

renementofatheoremofRuzsa&Szekely. Inpartiular,mostofthefollowing

proofofparta)isasin Ruzsa&Szekely(1988),pages126-127.

Proof. Wewillalulate in

M 1

(R) := setofallbounded omplexmeasuresonR;

whihiswellknowntobeaBanahalgebra,withonvolutionasmultiplia-

tionandnormkkdenedby

kk :=

Z

1djj (2M 1

(R) ); (30)

jj := totalvariationmeasureof:

Fora2M 1

(R), itsFouriertransformistheontinuousfuntionbdenedby

b (t) :=

Z

e itx

d(x) (t2R) :

WeassumeasknownpropertiesoftheFouriertransformasexplained,forex-

ample,inChapter7ofRudin(1991). AllelementsofM 1

(R) atuallyouring

belowwill infat belongto

M 1

1

(R ) :=

2M 1

(R) : Z

jxj l

djj(x)<1 (l2N

0 )

:

For2M 1

1

(R), wehaveb2C 1

(R).

a) Wehave'=bwith2M 1

1

(R) , real,(R ) =1. [ApplyTheorem7.7of

Rudin(1991).℄

Choose; 2 [0;1[andR2Prob

1

(R) with

k( Æ)R k = < (31)

and

R 2

R : (32)

[For example,ifR isanyentered normaldistribution,then (32)istruewith

=2 1=2

,andforRsuÆientlyat(31)istrueaswell. Alternatively,wemay

take =2 1

andfor R asuÆiently atuniformdistribution onaninterval

[ a;a℄.℄

(17)

Put

S :=

1

j( Æ)R j; (33)

Q := (1

)R

2

1

X

k =0 S

k

; (34)

P := Q: (35)

Sine S is asub-probability measurewith kSk=S(R) == <1,theseries

in (34)isonvergentin M 1

(R) , andQ2Prob(R). AlsoP(R) =1and,easily

veried,

(1

)

1

P = R

2

1

X

k =0 S

k

= R

2

+R 2

( Æ+S) 1

X

k =0 S

k

;

where, using(32)and(33),

R 2

( Æ+S) R(R( Æ)+S)

0:

Hene P0andthus P2Prob(R).

By0S 1

(jj+Æ)R ,S 2M 1

1

(R ). Hene b

S2C 1

(R). Sine(34)shows

that

b

Q(t) = (1

)(

b

R (t)) 2

(1 b

S(t)) 1

(t2R); (36)

and sine also b

R 2 C 1

(R), it follows that b

Q 2 C 1

(R ). Sine (35) implies

(28), b

P is C 1

aswell,at leastin someneighbourhoodof zero. Sine P;Qare

probabilitymeasures,itfollowsthatP;Q2Prob

1

(R) . [Compare,forexample,

Feller(1971),page528,problem15.℄

b) We ontinueto use the notationof the aboveproof of parta). Let, addi-

tionally,

j

denotetheelementofM 1

1

(R) with'

j

=b

j ,and

j

:= k(

j

Æ)R k:

By Theorem 7.7 of Rudin (1991), we have lim

j

= in the Shwartz spae

S(R ). Itfollowsthat

lim

j

= withrespetto thenorms kk

k

(k2N

0

); (37)

where

kk

k :=

Z

(1+jxj k

)djj(x) (k2N

0

; 2M 1

1 (R)) :

(18)

The partiular ase k = 0implies lim

j

= with respet to the norm kk

from (30), hene lim

j

= . We may and do assume that

j

< in what

follows. Put S

j :=

1

j(

j

Æ)R j,Q

j

:=(1 (

j

=))R 2

P

1

k =0 S

k

j ,and

P

j

=

j Q

j

. ThenQ

j

;P

j

2Prob

1

(R) with'

j b

Q

j

= b

P

j

,andwhat remainsto

beshownis(29).

By(37),

limS

j

=S withrespettothenorms kk

k

(k2N

0

): (38)

Using(38)andthedenitionofQ

j

;P

j

,wegetlimQ

j

=QandlimP

j

=Pwith

respettokk. From(38)wealsogetlim b

S

j

= b

SinC 1

(R). Sinewehave(36)

with

j

replaing, b

Q

j

replaing b

Q,and b

S

j

replaing b

S,wemayonludethat

lim b

Q

j

= b

Q in C 1

(R). By'

j b

P

j

= b

Q

j

,wededuelim b

P

j jU =

b

PjU in C 1

(U),

for someneighbourhoodU ofzero. Hene wehavein partiular(27)and the

orrespondingstatementfor(Q

j

),so thatwereah(29)via2.4.

2.6 Lemma. LetjProb

1

(R ) be aharater, not neessarily ontinuous. If

P

1

;P

2

;Q

1

;Q

2

2Prob

1

(R ), andif thereexistsanU 2U with

b

P

1 (t)

b

Q

2 (t) =

b

P

2 (t)

b

Q

1

(t) (t2U);

then

(P

1 )

(Q

1 )

= (P

2 )

(Q

2 )

: (39)

Proof. There exists an R 2 Prob

1

(R) with supp b

R U. Thus b

P

1 b

Q

2 b

R =

b

P

2 b

Q

1 b

Reverywhere,sothatwesuessivelyget

P

1 Q

2

R = P

2 Q

1 R ;

(P

1 )(Q

2

)(R ) = (P

2 )(Q

1 )(R );

andhene(39).

2.7 Fromtoalinearfuntional. LetjProb

1

(R) beaontinuous

harater. Then thereexistsa2H 0

with

(P) = exp(i(logÆ[

b

P℄)) (P 2Prob

1

(R) ): (40)

HerelogÆ[

b

P℄ofoursedenotestheelementofHontainingthefuntionsh2X

satisfying

h(t) = log b

P(t) (t2U)

forsomeU 2U withU n

t2R:j b

P(t) 1j<1 o

.

(19)

Proof. Followsfrom Steps1-5below.

Step 1: Constrution of a funtion XjH . Let H 2H . Then we may

deneX(H)2Tbytheonstrutionleadingto (42)below,andthisdenition

isindependent of thehoies ofh, U,!,P,Qmade alongthe way.

Proof. Chooseh2H. Dene 2C 1

(R) by

(t) := exp(h(t)) (t2R) : (41)

ChooseU 2U withompatlosureandhoose!2D(R) realandsymmetri

with!jU =1. Dene '2D(R) by

'(t) := ! :

Then'ishermiteanwith'(0)=1,andhenesatisestheassumptionsof2.5.

SowemayhooseP;Q2Prob

1

(R) satisfying(28),andput

X(H) :=

(P)

(Q)

: (42)

To show that this denition is independent of the hoies made along the

way, onsider two hoies (h

i

;U

i

;!

i

;P

i

;Q

i

), for i 2 f1;2g, yielding two val-

ues X

i

(H). There exists a V 2U with '

1 jV ='

2

jV. Hene (28)applied to

'

i

;P

i

;Q

i

implies b

P

1

= b

Q

1

= b

P

2

= b

Q

2

onU :=V \ft:'

1

(t)6=0g,sothatLemma

2.6yieldsX

1

(H)=X

2 (H).

Step 2: The relation between X and. For P 2Prob

1 (R),

(P) = X(logÆ[

b

P℄):

Proof. Changingnotation,letP

1

2Prob

1

(R). PutH :=logÆ[

b

P

1

℄. Referring

to Step 1 and its notation, let us denote one hoie for the omputation of

X(H) by (h;U;!;P

2

;Q

2

), with ( ;') aordinglydened. Then ' = b

P

1 in

some

~

U 2U. With Q

1

:= Æ it followsthat b

P

1 b

Q

2

= b

P

2 b

Q

1 in

~

U. Hene (42),

Lemma 2.6,and(Æ)=1,suessivelyyield

X(H) = (P

2 )

(Q

2 )

= (P

1 )

(Q

1 )

= (P

1 ):

Step3: ThefuntionXjH!TdenedinStep1isaharater,withrespet

toaddition inH .

Proof. Wehavetoprovethat

X(H

1 +H

2

) = X(H

1 )X(H

2

) (H

1

;H

2 2H ):

(20)

SoletH

1

;H

2

2H . Choose(U

i

;h

i

;V

i

;!

i

;P

i

;Q

i

)anddene (

i

;'

i

)asinStep

1toalulateX(H

i

)fori2f1;2g. Thenwemayusethehoie

(h

1 +h

2

;U

1

\U

2

; !

1 !

2

; P

1 P

2

;Q

1 Q

2 );

leadingto =

1

2

and'='

1 '

2

,toomputeX(H

1 +H

2

). Theresultis

X(H

1 +H

2

) = (P

1 P

2

)((Q

1 Q

2 ))

1

= (P

1 )(P

2 )((Q

1 )(Q

2 ))

1

= X(H

1 )X(H

2 ):

Step 4: Continuity. X isontinuous.

Proof. SineHispseudometrizable,itsuÆesto onsideranygivenonver-

gent sequene (H

j

:j 2 N), with limH

j

=H. There exist h2 H, h

j 2 H

j ,

suhthat

limh

j

= h in C 1

(R):

Startingfromthepresenth,hooseanddene,respetively, ,U,and! asin

Step 1 aroundequation (41). Analogously, dene

j

and then '

j

, using the

sameU and ! asfor , '. Thenlim'

j

='in D(R ). Now apply partb)of

2.5tohooseP;Q;P

j

;Q

j

withthepropertiesstatedthere. Then,usingStep1

andtheontinuityof,

X(H

j ) =

(Pj)

(Q

j )

! (P)

(Q)

= X(H):

Step 5: There existsa2H 0

with X =expÆ(i).

Proof. This is always true wheneverH is atopologial R-vetorspae with

dual H 0

,and XjHaontinuousharater, with respetto theadditivegroup

of H . Seesetion (23.32.a)on page370 of Hewitt &Ross (1979)for aproof

assuming, and using, that H is additionallyHausdor. Forthe general ase,

neededhere, applythespeialase totheHausdor quotientspae ofH , ob-

tainedbyidentifyingpointsh

1

;h

2

2Hih

2 h

1

belongstothelosureoff0g.

2.8 Proofofthe\onlyif"partofTheorem1.8. LetjProb

1 (R ) be

aontinuous harater. Then there exists alinearfuntional asin 2.7. By

2.3, has arepresentationasin (26). Inserting thisrepresentation into (40)

andapplyingthedenition (4)yields (12).

Aknowledgement. ThepresentworkwassupportedbyaHeisenberggrant

oftheDeutsheForshungsgemeinshaft. IthankH.A.David,A.Hald, J.H.B.

Kemperman,B.Roos,andI.Z.Ruzsaforhelpfulremarks.

(21)

Referenes

AnasteriskindiatesworkI havefounddisussedinothersoures,buthave

notseenin theoriginal.

Bomsdorf, E.(1974). Zur Charakterisierung von Lokations- und Disper-

sionsmaen.Metrika 21,223-229.

Cornish, E.A.&Fisher, R.A. (1937). Moments and umulants in the

speiationofdistributions.Rev. Inst.Int.Statist.4,1-14.

Craig, C.C.(1931). On a property of the semi-invariants of Thiele. Ann.

Math. Statist.2,154-164.

David,H.A. (1995). First (?) oureneofommon termsin mathematial

statistis.TheAmerianStatistiian49,121-133.

David,H.A. (1998). First(?) oureneofommontermsinprobabilityand

statistis-aseond list, with orretions.The Amerian Statistiian52,36-

40.

Feller,W. (1971). An Introdution to Probability Theory and ItsApplia-

tions. Vol.II,2nd. Ed.Wiley,N.Y.

Fisher, R.A.(1929-30). Momentsandprodutmomentsofsamplingdistri-

butions.Pro. LondonMath. So. 30,199-238.

*Fisher, R.A.(1932). Statistial Methods for Researh Workers. 4th. Ed.

OliverandBoyd,Edinburgh.

Fisher, R.A.& Wishart,J. (1931-32). Thederivationofthepattern for-

mulae of two-way partitions from those of simpler patterns. Pro. London

Math. So.(2)33,195-208.

Gil Alvarez, Mar

a Angeles (1983). Caraterizaionaxiomatiapara la

varianza.Trab.Estad.Invest.Oper.34,40-51.

Good, I.J.(1979). Frationalmomentsandumulants: someunsolvedprob-

lems.J. Statist. Comp. Simulation9,314-315.

Hald, A.(1981). T.N. Thiele'sontributions to statistis.Int. Statist. Re-

view49,1-20.

Hald, A.(1998). TheearlyhistoryoftheumulantsandtheGram-Charlier

series.Preprint,DepartmentofTheoretial Statistis,UniversityofCopen-

hagen.(25pages)

Haldane,J.B.S.(1937). The exat value of the moments of the distribu-

tion of 2

, used as a test of goodness of t, when expetations are small.

Biometrika29,133-143.CorretionnoteinBiometrika 31(1939),220.

Hewitt, E.&Ross, K.A.(1979). Abstrat Harmoni Analysis I, 2nd ed.

Springer,Berlin.

Heyer, H.(1981). Moments of probability measures on a group. Int. J.

Math. Si.4,231-249.

(22)

Hotelling, H. (1933). Review of Fisher(1932). J. Amer. Statist. Ass. 28,

374-375.

Kagan,A. &Shepp, L.A.(1998). Whythevariane? Statist. Probab. Let-

ters38,329-333.

Kemperman, J.H.B.(1972). ProblemP 92.Aeq. Math.8,172.

Kendall,M., Stuart, A.& Ord,J.K.(1987). Kendall's Advaned The-

oryof Statistis,Vol. 1,Distribution Theory.GriÆn,London.

Maksimov, V.M.(1980). Mathematial expetations for probability distri-

butionsonompatgroups.Math. Z.174,49-60.[MR82g:60020℄

MartinDiaz,Miguel (1977). Caraterizaiondelavarianza.Trab.Estad.

Invest.Oper.28,Nos.2and3,85-97.[MR58,#31513℄

R

enyi, A.(1970). Probability Theory. North-Holland, Amsterdam, and

AkademiaiKiado,Budapest.

Rudin,W. (1991). Funtional Analysis,2nd. Ed.MGraw-Hill,N.Y.

Ruzsa,I.Z.&

Sz

ekely,G.J. (1983). Convolutionquotientsofnonnegative

funtions.Mh. Math.95,235-239.

Ruzsa,I.Z.&

Sz

ekely,G.J. (1985). No distribution is prime. Z.

Wahrsheinlihkeitstheorie verw. Geb.70,263-269.

Ruzsa,I.Z.&

Sz

ekely,G.J. (1988). Algebrai Probability Theory. Wiley,

Chihester.

Savage,L.J. (1971). The harateristifuntion haraterizedand themo-

mentousnessof moments.In: Studidi probabilita, statistia eriera opera-

tiva inonoredi Giuseppe Pompilj, Tipograa OderisiEditrie,Gubbio, pp.

131-141.Reprintedin: TheWritingsofLeonardJimmieSavage,TheAmeri-

anStatistialAssoiationandTheInstituteofMathematialStatistis,pp.

615-625(1981).

*Thiele, T.N.(1889). Forelsninger over Almindelig Iagttagelseslre:

SandsynlighedsregningogmindsteKvadratersMethode.Reitzel,Kbenhavn.

Thiele,T.N. (1903). The theory of observations. C. &E. Layton,London.

Reprinted1931in: Ann. Math. Statist.2,165-308.

Wishart, J. (1929). A problem in ombinatorial analysis givingthe distri-

butionofertainmomentstatistis.Pro. LondonMath.So. 29,309-321.

LutzMattner

UniversitatHamburg

InstitutfurMathematisheStohastik

Bundesstr. 55

20146Hamburg

Germany

mattnermath.uni-hamburg.de

参照

関連したドキュメント

For the risk process in Theorem 3, we conducted a simulation study to demonstrate the relationships between the non-ruin probability, the initial capital and the revenue coefficient

In particular, for a separable class of probability measures, we first construct a quasi sure stochastic integral and then prove all classical results such as Kolmogrov

Using general ideas from Theorem 4 of [3] and the Schwarz symmetrization, we obtain the following theorem on radial symmetry in the case of p &gt; 1..

In the present investigation, we obtain some subordination and superordination results involving Dziok-Srivastava linear operator H m l [α 1 ] for certain normalized analytic

We show that the Chern{Connes character induces a natural transformation from the six term exact sequence in (lower) algebraic K { Theory to the periodic cyclic homology exact

From the local results and by Theorem 4.3 the phase portrait is symmetric, we obtain three possible global phase portraits, the ones given of Figure 11.. Subcase 1 Subcase 2

Particularly, if we take p = q in Theorem 2.4, Corollary 2.6, Theorem 2.8, The- orem 2.10 and Theorem 2.12, we can obtain the corresponding results of Corollary 2.2 in quotients

inter-universal Teichm¨ uller theory, punctured elliptic curve, number field, mono-complex, ´ etale theta function, 6-torsion points, height, explicit esti- mate, effective