• 検索結果がありません。

Some small finite groups of linear transformations and their rings of invariants and from which the automorphic forms belonging to congruence subgroups are determined (Algebraic Aspects of Coding Theory and Cryptography)

N/A
N/A
Protected

Academic year: 2021

シェア "Some small finite groups of linear transformations and their rings of invariants and from which the automorphic forms belonging to congruence subgroups are determined (Algebraic Aspects of Coding Theory and Cryptography)"

Copied!
11
0
0

読み込み中.... (全文を見る)

全文

(1)

83

Some

small finite groups of

linear

transformations

and

their rings

of

invariants and from which the automorphic

forms

belonging to

congruence

subgroups are determined

Michio

Ozeki

Department

of

Mathematical Sciences

Faculty

of

Science

Yamagata University

1-4-12, Koshirakawa-chou,

Yamagata

Japan

email address

:

ozeki@sci.kj.yarnagata-u.ac.jp

9.

Nov.

2004

1

Introduction

It is known

that from

a

certain

finite group

of linear transformations

and its

invariant

ring

one

can

derivc automorphic form

$\mathrm{s}$

.

However

so far

the

construction of

automorphic forms

is

mainly

focussed on

forms for subgroups of the full

modular group.

In the present

talk

we

try to

extend

the idea to

the construction of Jacobi

forms.

The

trial is only beginning. We want to

cover

as

far

as possible

cases,

but

here

are

small instances for that.

2

Finite

groups

of

linear

transformations

Let

$G_{1}$

be the

group generated

by the linear

transformations:

$(\begin{array}{ll} 00 1\end{array})$

,

$(\begin{array}{ll}1 00 i\end{array})$

,

$(\begin{array}{ll}0 i1 \bigcap_{-}\end{array})$

,

$(\begin{array}{ll}0 1i 0\end{array})$

.

The

group

$G_{1}$

acts

linearly

on

the

polynomial

ring

$\mathbb{C}[x,y]$

.

Molien series

$\Phi_{G_{1}}(t)$

of

the subring

$\mathbb{C}[x,y]^{G_{1}}$

of

$\mathbb{C}[x, y]$

invariant under

the

action

of

$G_{1}$

is computed to be

$\Phi_{G_{1}}(t)$

$=$

$\sum_{i}^{\infty}\dim((\mathbb{C}[x, y]^{G_{1}})_{i})t^{i}$

$=$

$\frac{1}{(1-t^{4})(1-t^{8})}$

.

Note:

The

group

$G_{1}$

can

be

regarded

as

Ch

$\iota \mathrm{e}$

group

of

invariance for

tl

le

weigh

$1\mathrm{t}$

enumerator

uf

the

class of

doubly

even

binary

self-orthogonal

codes containing

all

one

vector

(2)

For

instances,

the polynomial

$x^{4}+y^{4}$

corresponds to

the

code

with the

generator

matrix

(1, 1, 1,

1)

and

the polynomial

$x^{S}+14x^{4}y^{4}+y^{8}$

corresponds

to

the Hamming

[8,

4,

$4^{1}\rfloor$

code.

The

ring

$\mathbb{C}[x, y]^{G_{1}}$

is proved

to

be

$\mathbb{C}[x^{4}+y^{4}, x^{4}y^{4}]=\mathbb{C}[x^{4}+y^{4},x^{8}+14x^{4}y^{4}+y^{8}]$

.

But we do

not

know

such

interpretation

for

the

groups

$G_{2}$

and

$G_{3}$

below.

$G_{2}$

a

group generated

by

the linear

transformations:

$(\begin{array}{ll}i 00 1\end{array})$

,

$(\begin{array}{ll}1 0\backslash 0 i\end{array})$

.

$(\begin{array}{l}100-1\end{array})$

.

Molien

series

$\Phi_{G}.$

,

(t) of the

invariant

ring

$\mathbb{C}[x, y]^{G_{2}}$

is computed to be

$\Phi_{G_{2}}(t)$

$=$

$\frac{1}{(1-t^{4})^{2}}$

.

The

ring

$\mathbb{C}[x, y]^{G_{2}}$

is proved to

be

$\mathbb{C}\lceil.x^{4}$

,

$y^{4}$

].

$G_{3}$

: group

generated by

the linear transformations represented by the

matrices:

$(\begin{array}{lll}-1 0 0 1 \prime\end{array})$

,

Molien

series

$\Phi_{G_{3}}(t)$

of the

invariant ring

$\mathbb{C}[x_{7}y]^{G_{3}}$

is

computed to be

$\Phi_{G\epsilon_{\backslash }^{(t)}}$

$=$

$\frac{1}{(1-t^{2})^{2}}$

.

The

invariant

ring

$\mathbb{C}[x, y]^{G_{3}}$

of

$G_{3}$

is proved

to

be

$\mathbb{C}[x^{2}, y^{2}]$

.

One

observes

that

$G_{3}\subset G_{2}\subseteq G_{1}$

,

and

$\mathbb{C}[x, y]^{G_{S}}\supset \mathbb{C}[x, y]^{G_{2}}\supset \mathbb{C}[x,y]^{G_{1}}$

.

3

Jacobi’s theta

functions

3.1

Definition

Let

$\mathbb{H}=\{\tau|{\rm Im}\tau>0\}$

be

the

upper half

plane, and

$\tau$

be

a

variable

on

IH[

. Jacobi’s theta

function

$1\mathrm{S}$

are

defined

by

$\theta_{0}(\tau, z)$

$= \sum_{n\in \mathbb{Z}}(-1)^{n}e^{\pi in^{2}\tau+2\pi inz}$

$\theta_{1}(\tau, z)$

$=$

$\frac{1}{\mathrm{i}}\sum_{n\in \mathbb{Z}}(-1)^{n}e^{\pi i(n+1/2)^{2}\tau+\pi i\zeta 2n+1)z}$ $\theta_{2}(\tau, z)$

$= \sum_{n\in \mathbb{Z}}e^{\pi i(n+1/2\rangle^{2}\tau+\pi i(2n+1)z}$

$\theta_{3}(\tau,z)$

(3)

85

Next

we

put

$\varphi_{i}(\tau, z)$

$=$

$\theta_{i}(2\tau, 2z)$

,

$\varphi_{i}(\tau)$

$=$

$\theta_{i}(2\tau)=\theta_{i}(2\tau, 0)$

for

$0\leq i\leq 3$

.

3.2

Properties of Jacobi’s theta functions

We present

many

properties of

Jacobi’s theta functions that

are

reproduction

of well-known

formulas.

Proposition 1 It

holds that

$\varphi_{2}(-\frac{1}{\tau}, \frac{z}{\tau})$

$=$

$\sqrt{\frac{\tau}{\underline{9}i}}e^{2\pi iz/\tau}(\varphi_{3}(\tau, z)-\varphi_{2}(\tau, z))$

$\varphi_{3}(-, \frac{z}{\tau})’\}^{-}\underline{1}$

$=$

$\sqrt{-_{\mathrm{i}}^{\overline{J}}9}.e^{2\pi z/\tau}.(\varphi_{3}(\tau, z)+\varphi_{2}(\tau, z_{/}^{\backslash })$ $\varphi_{2}(-\frac{1}{\tau})$

$=$

$\mathrm{v}_{\overline{2\mathrm{i}}}^{\Gamma^{\tau}}(\varphi_{3}(\tau)-\varphi_{2}(\tau))$

$\varphi_{3}(-\frac{1}{\tau})$

$=$

$\sqrt{\frac{\hat{/}}{2i}}$

(

$\varphi_{3}(\tau)+$

W2

(r))

$\epsilon$

$=e^{-\pi i(z+\tau/4)}$

$\delta$ $=e^{-\pi i(_{\sim}\approx+\tau)}$

$\theta_{3}(\tau, z+\frac{1}{2})$

$=\theta_{0}(\tau, z)$

23

$(\tau_{7}z+\underline{.\frac{\tau}{)}})$ $=\epsilon\theta_{2}(\tau, z)$

03

$( \tau, z+\frac{\tau}{2}\frac{1}{2}+)$ $=i\epsilon\theta_{1(\mathcal{T}}’$

,

$z)$

$\theta_{3}(\tau, z+1)$

$=\theta_{3}(\tau, z)$

$\theta_{3}(\tau, z+\tau)$ $=\mathit{5}\theta_{3}(\tau, z)$

$\theta_{2_{\backslash }^{(_{\mathcal{T}.Z+\frac{1}{2})}}}$

,

$=$

$-\theta_{3}(\tau, z)$ $\theta_{2}\{\tau$

,

$z+ \frac{\tau}{2^{\backslash }})$ $=\epsilon\theta_{3}(\tau,$$z\grave{)}$

$\theta_{3}(\tau,$$z+ \frac{1}{?}.+\frac{1}{2}\grave{J}$

$=$

$-\mathrm{i}\epsilon\theta_{0}(\tau, z)$ $\theta_{2_{\backslash }^{(\tau,z+1)}}$

$=$

$-\theta_{2}(\tau, z)$ $\theta_{2}(\tau, z+\tau)$ $=\delta\theta_{2}(\tau, z)$

$\theta_{2}(\tau, z+1+\tau)$

$=$

$-\delta\theta_{2}(\tau, z)$

$\varphi_{3}(\tau, z+1)$

$=\varphi_{3}(\tau, z)$

$\varphi_{3}(\tau, z+\tau)$ $=\delta\varphi_{3}(\tau, z)$

(4)

4

Modular

group

and

the

congruence

subgroups

4.1

modular

groups

$(\mathrm{m}\mathrm{o}\mathrm{d} N)\}$

Let

$N$

be a positive integer. The principal

congruence

subgroup

$\Gamma(N)$

of level

$N$

of the

modular

group

$SL(\underline{?}, \mathbb{Z})$

is

defined to be

$\Gamma(N)=\{\sigma=(\begin{array}{ll}a bc d\end{array})$

$\in SL(2, \mathbb{Z})|$

$(\begin{array}{ll}a bc d\end{array})\equiv(\begin{array}{ll}1 00 1\end{array})$

Another

important

classes

of

congruence subgroups

are

$\Gamma_{0}(N)=\{\sigma=(\begin{array}{lll}a b c d \prime\end{array})$

$\in SL(2,\mathbb{Z})|c\equiv 0$

$(\mathrm{m}\mathrm{o}\mathrm{d} N)\}$

,

and

$\Gamma_{1}(N)=\{_{\mathrm{t}}\sigma$ $=(\begin{array}{ll}a bc d\end{array})$ $\in \mathrm{r}\mathrm{o}(2)\mathbb{Z})|a\equiv d\equiv 1$

(mod

$N$

),

$c\equiv 0$

(mod

$N$

)

$\}$

,

We

are

interested

in the

groups

$\mathrm{r}\mathrm{o}(2)$

,

$\Gamma_{0}(4)$

,

$\Gamma(2)$

,

and

$\mathrm{r}\mathrm{o}(4)\cap\Gamma(2)$

.

The picture below

describes

the relation

among

some

congruence subgroups.

Here

a

downward line implies

the

subgroup relation

with

the relative index attached.

$\Gamma\acute{(}1)=SL(2,\mathbb{Z})$

$|3$

index

$\Gamma_{0}(2)$

$|2$

$\Gamma(4)$

The

generators

of

some

of these

groups are

computed

to

be

$\Gamma(1)$

$=$

$\{$ $(\begin{array}{ll}1 10 1\end{array})$

$f$

$(\begin{array}{l}0-11\mathrm{O}\end{array})$$\}$

$\Gamma_{0}(2)$

$=$

$\{$$(\begin{array}{ll}1 10 1\end{array})$

,

$(\begin{array}{ll}1 -12 -1\end{array})$

,

$(\begin{array}{ll}-1 00 -1\end{array})$$\}$

(5)

87

$\Gamma_{0}(4)$

$=$

$\{$$(\begin{array}{ll}1 \mathrm{l}0 1\end{array})$

,

$(\begin{array}{l}1-14-3\end{array})$

,

$(\begin{array}{ll}-1 \mathrm{U}0 -1\end{array})$$\}$

$=$

$\{$$(\begin{array}{ll}1 10 \mathrm{l}\end{array})$

,

$(\begin{array}{ll}1 04 1\end{array})$

,

$(\begin{array}{ll}-1 00 -1\end{array})$$\}$

$\Gamma(2)$

$=$

$\{$$(\begin{array}{ll}1 2\backslash 0 1\end{array})$

,

$(\begin{array}{ll}1 02 1\end{array})$

,

$(\begin{array}{ll}-1 00 -1\end{array})$$\}$

$=$

$\{$$(\begin{array}{ll}1 0\underline{.)}1 \end{array})$

,

$(\begin{array}{l}-3-2\underline{?}1\end{array})$

$\}$

$(\begin{array}{ll}\vee-1 00 -1\end{array})$ $\}$

$\Gamma_{1}(4)\cap\Gamma(21,$

$=$

$\{$$(\begin{array}{l}3-28-5\end{array})$

,

$(\begin{array}{ll}1 04 1\end{array})$

.

$(\begin{array}{ll}-7 2-4 1\end{array})$$\}$

4.2

A

definition

of

modular forms

A holomorphic

function

$f(\tau)$

on

$\mathbb{H}$

is

called a modular

form

of

weight

$k$

for

a

group

$\Gamma\subset SL(2, \mathbb{Z})$

if

it satisfies

the

conditions:

(1)

$f( \frac{atau+b}{c\tau+d})=(c\tau+d)^{k}.f(\tau)$

for

$(\begin{array}{ll}a bc d\end{array})\in\Gamma$

,

and

(2)

holomorphic at each cusp of

$\Gamma$

.

We

denote

by

$M_{k}(\Gamma f$

the linear space of

modular

forms of weight

$k$

belonging to F.

4.3

A summary

of

known results

Proposition

2

We

have the following isomorphisms between the

rings

$\mathbb{C}[x, y]^{G_{1}}=\mathbb{C}[x^{4}+y^{4}, x^{4}y^{4}]$

$arrow iso$

.

$. \bigoplus_{k\in \mathbb{Z}_{>0}}M_{h}(\Gamma_{0}(_{\backslash }\underline{?}))$

$\cap$ $\cap$

$\mathbb{C}[x, y]^{G_{2}}=\mathbb{C}[x^{4}, y^{4}]$ $\underline{ieo.}$

$\bigoplus_{k\in \mathbb{Z}_{>0}}M_{h}(\Gamma_{0}(4))$

$\cap$ $\cap$

$\mathbb{C}[x, y]^{G_{3}}=\mathbb{C}[x^{2}, y^{2}]$ $arrow i\epsilon \mathit{0}$

.

$\bigoplus_{\mathrm{k}\in \mathbb{Z}_{>0}}M_{k}$

$(\Gamma_{0}(4)\cap \Gamma(2))$

,

where

the isomorphism is

realized

by sending

$x$

to

$\varphi_{3}(\tau)$

and

$y$

to

$\varphi_{2}(\tau)$

respectively.

These

are

not

new

results.

Actually

the first and second

lines

are due

to Maher[9],

and the

third line is due

to

Hiramatsu [8].

4.4

Yet

another group

Let

$G_{4}$

be

the

group

generated

by

a

linear

transformation

$(\begin{array}{ll}1 00 \dot{f}\end{array})$

. Then

it

can be

(6)

$\oplus_{k\in \mathbb{Z}}M_{k}$

(

$\Gamma_{0}(4)$

,

$1_{k}1$

,

by

substituting

$x=\varphi_{3}(\tau)$

and

$y=\varphi_{2}(\tau)$

,

where

$M_{k}(\Gamma_{0}(4))1_{k}$

)

is

a

linear

space

of modular for

ms discussed in

H.

Cohen

[5].

Cohen showed

that

$M_{k}(\Gamma_{0}(4), 1_{k})\cong \mathbb{C}[\varphi \mathrm{a}\zeta\tau),\mathcal{F}_{\mathrm{Z}}(\tau)]$

,

where

$\mathcal{F}_{2}(\tau)$ $= \frac{\eta 8(4\tau)}{\eta^{4}(2\tau)}$

with Dedekind’s eta

function

$\eta(\tau)\backslash$

.

We show

Proposition

3 It

holds

that

$\varphi_{2}^{4}(\tau)=9^{4}\lrcorner \mathcal{F}_{2}(\tau)$

.

A

proof

is

done

by

using

the infinite

product

expansions of both

$\varphi_{2}(\tau)$

and

$\eta(\tau)$

:

$\eta(\tau)$

$=$

$q^{\frac{1}{24}} \prod_{m=1}^{\infty}(1-q^{m})q=e^{2ni\tau}$

$\varphi_{2}(\tau)$

$=$

2

$q^{\frac{1}{4}} \prod_{m=1}^{\infty}(1-q^{2m})(_{\backslash }1+q^{2m})^{2}$

.

5

Diagonalized

groups

Let

$G_{1}\oplus G_{1}$

be the

group

generated by the

linear transformations:

$(\begin{array}{llll}i 0 0 00 1 0 00 0 i 00 0 0 1\end{array})$

,

$(\begin{array}{llll}1 0 0 00 i 0 00 0 1 0\mathrm{O} 0 0 i\end{array})$

,

$(\begin{array}{llll}\mathrm{O} i 0 01 0 0 00 0 0 i0 0 1 \mathrm{O}\end{array})$

,

$(\begin{array}{llll}0 1 0 0i 0 0 \mathrm{O}0 0 0 10 0 i 0\end{array})$

The

ring of invariants

for

$G_{1}$

@

$G_{1}$

is

denoted

by

$\mathcal{R}_{1}=\mathbb{C}[x, y, u_{\gamma}\prime v]^{G_{1}\oplus G_{1}}$

.

Molicn scries for

$G_{1}$

%

$G_{1}$

is

computed

to

bc

$\Phi_{G_{1}\oplus G_{1}}(t)=\frac{1+3t^{4}+13t^{8}+9t^{12}+6b^{1\overline{\mathrm{b}}}}{(1-t^{4})^{2}(1-t^{8})^{2}}$

.

Primary invariants

(

$\mathrm{i}.\mathrm{c}$

.

the

polynomials

implied

by

the

numerator of

$\Phi_{G_{1}\oplus G_{1}}(t)$

) of

$\mathcal{R}_{1}$

arc

given by

$x^{4}+y^{4}$

$u^{4}+v^{4}$

$x^{8}+y^{8}$

,

$u^{8}+v^{8}$

(7)

8

a

Secondary

invariants

(i.e. the

polynomials implied by

the

denom

inator

of

$\Phi_{G_{1}\oplus G_{1}}(t)$

)

are

given by

$a_{0}$

$=$

1,

$a_{4,2}$

$=x^{2}u^{2}+y^{2}v^{2}$

,

$a_{4,1}$

$=x^{3}\alpha+y^{3}v$

,

$a_{4_{\}}3}$

$=xu^{3\theta}+y\tau J$

,

$a_{8,4}$

$=x^{4}u^{4}+2x^{2}y^{2}u^{2}v^{2}+y^{4}v^{4}$

,

$b_{8,3}$

$=x^{5}u^{3}+x^{3}y^{2}uv^{2}+x^{2}y^{3}u^{2}v+y^{5}v^{3}$

,

$\mathrm{a}8)8$

$=$

$x^{3}u^{5}+x^{2}yu^{2}v^{3}+xy^{2}u^{3}v^{2}+y^{3}v^{5}$

,

$a_{8,2}$

$=x^{6}u^{2}+2x^{3}y^{3}uv+y^{6}v^{2}$

,

$a_{8,4}$

$=x^{4}u^{4}+x^{3}yuv^{3}+xy^{3}u^{3}v+y^{4}v^{4}$

,

$\mathrm{a}8|8$

$=x^{2}u^{6}+2xyu^{3}v^{3}+y^{2}v^{6}$

,

$a_{8_{1}4}$

$=x^{4}u^{4}+y^{4}v^{4}$

,

$b_{8,2}$

$=x^{4}y^{2}v^{2}+x^{2}y^{4}u^{2}$

,

$b_{8,6}$

$=x^{2}u^{2}v^{4}+y^{2}u^{4}v^{2}$

,

$a_{8,1}$

$=x^{4}y^{3}v+x^{3}y^{4}u$

,

$\mathrm{a}8|8$

$=x^{3}uv^{4}+y^{3}u^{4}v$

,

$a_{3,\theta}$

$=$

$x^{4}y\tau t^{3}+xy^{4}u^{3}$

,

$a_{8,7}$

$=xu^{3}v^{4}+yu^{4}v^{3}$

,

$a_{12,6}$

$=$

$x^{6}u^{6}+x^{4}y^{2}u^{4}v^{2}+x^{2}y^{4}u^{2}v^{4}+y^{6}v^{6}$

,

$a_{12,3}$

$=x^{6}y^{3}u^{2}v+x^{5}y^{4}u^{3}+x^{4}y^{5}v^{3}+x^{3}y^{6}uv^{2}$

,

$a_{12,7}$

$=x^{5}u^{3}v^{4}+x^{3}y^{2}u\prime u^{6}+x^{2}y^{3}u^{6}v+y^{5}u^{4}v^{3}$

,

$a_{12,5}$

$=x^{6}yu^{2}v^{3}+x^{4}y^{3}v^{\mathrm{S}}+x^{3}y^{4}u^{\mathrm{S}}+xy^{6}u^{3}v^{2}$

,

$b_{12,5}$

$=x^{3}u^{5}v^{4}+x^{2}yu^{6}v^{3}+xy^{2}u^{3}v^{6}+y^{3}u^{4}v^{5}$

,

$a_{12,5}$

$=x^{7}u^{5}+x^{4}y^{3}u^{4}v+x^{3}y^{4}uv^{4}+y^{7}v^{5}$

,

$b_{12,7}$

$=$

$x^{5}u^{3}v^{4}+x^{3}y^{2}u^{5}v^{2}+x^{2}y^{3}u^{2}v^{5}+y^{5}u^{4}v^{3}$

$b_{12.4},$

,

$=x^{7}yuv^{3}+x^{4}y^{4}u^{4}+x^{4}y^{4}v^{4}+xy’ u^{3}v$

,

$a_{12,8}$

$=x^{4}u^{4}v^{4}+x^{3}yu^{\mathrm{S}}v^{3}+xy^{3}u^{3}v^{5}+y^{4}u^{4}v^{4}$

,

$a_{16,8}$

$=x^{8}u^{8}+2x^{6}y^{2}u^{6}v^{2}+2x^{4}y^{4}u^{4}v^{4}+$

$2x^{2}y^{6}u^{2}v^{6}+y^{8}v^{8}$

,

$a_{16,9}$

$=x^{7}u^{6}\iota^{4}’+2x^{5}y^{2}u^{3}v^{6}+x^{4}y^{3}u^{8}v+$

$x^{3}y^{4}uv^{8}\neq 2x^{2}y^{5}u^{6}v^{3}+y^{7}u^{4}v^{5}$

,

$a_{16,7}$

$=x^{8}yu^{4}v^{3}+2x^{6}y^{3}u^{2}v^{5}+x^{5}y^{4}u^{7}+x^{4}y^{5}v^{7}$

$+2x^{3}y^{6}u^{5}v^{2}+xy^{8}u^{3}v^{4}$

,

$a_{16,6}$

$=x^{9}yu^{3}v^{3}+x^{7}y^{3}uv^{5}+x^{6}y^{4}u^{6}+x^{6}y^{4}u^{2}v^{4}$

$+x^{4}y^{6}u^{4}v^{2}+x^{4}y^{6}v^{6}+x^{3}y^{7}u^{5}v+xy^{9}u^{3}v^{3}$

,

$a_{1\mathrm{B},10}$

$=x^{6}u^{6}v^{4}+x^{5}yu^{7_{I}}v^{3}+x^{4}y^{2}u^{4}v^{6}+$

2

$x^{3}y^{3}u^{5}v^{5}+x^{2}y^{4}u^{6}v^{4}+xy^{5}u^{3}v^{7}+y^{6}u^{4}v^{6}$

,

$a_{16,8}$

$=x^{8}u^{4}v^{4}+x^{6}y^{2}u^{6}n^{2}+2x^{5}y^{3}u^{3}v^{5}\neq$

(8)

$2x^{3}y^{5}u^{5}v^{3}+x^{2}y^{6}u^{2}v^{6}+y^{8}u^{4}v^{4}$

Let

$G_{2}\oplus$

G2

be the

group

generated

by

the

linear

transformations:

$(\begin{array}{lll}i0 \mathrm{O} 00100 00i0 0001 \end{array})$

,

$(\begin{array}{lll}1 \mathrm{O} 000i00 001 0000i \end{array})$

.

The

ring

of

invariants for

$G_{2}\oplus G_{2}$

is denoted by

$\mathcal{R}_{2}=\mathbb{C}[x,y, u, v]^{G_{2}\oplus G_{2}}$

.

Molien series for

$G_{2}\oplus G_{2}$

is

$\Phi_{G_{2}\oplus G_{2}}(t)=\frac{1+6t^{4}+9t^{8}}{(1-t^{4})^{4}}$

.

$\mathrm{P}\mathrm{r}\mathrm{i}\mathrm{m}\mathrm{a}1^{\tau}\mathrm{y}\mathrm{I}\mathrm{n}\mathrm{v}\mathrm{a}\mathrm{r}\mathrm{i}\mathrm{a}\mathrm{n}\mathrm{t}\mathrm{s}$

of the

group

$G_{2}\oplus G_{2}$

arc

$c_{4,0}$

$=$

$x^{4}$

,

$d_{4,0}$

$=$

$y^{4}$

,

$c_{4,4}$

$=$

$u^{4}$

,

$d_{4,4}$

$=$

$v^{4}$

and secondary

invariants

of

$G_{2}\oplus G_{2}$

are

$c_{0,0}$

$=$

$1$

,

$c_{4,2}$

$=$

$x^{2}u^{2}$

,

$d_{4,2}$

$=$

$y^{2}v_{7}^{2}$ $c_{4,1}$

$=$

$x^{3}u$

,

$c_{4,3}$

$=$

$xu^{3}$

,

$d_{4,1}$

$=$

$y^{3}v$

,

$d_{4,3}$

$=$

$yv^{3}$

,

$c_{8,4}$

$=$

$x^{2}y^{2}u^{2}v^{2}$

,

$\mathrm{c}_{8,3}$

$=$

$x^{2}y^{3}u^{2}v$

,

$c_{8,5}$

$=$

$x^{2}yu^{2}v^{3}$

,

$d_{8,3}$

$=$

$x^{3}y^{\mathrm{q}}.uv^{2}$

,

$d_{8,5}$

$=$

$xy^{2}u^{3}v^{2}$

,

$c_{8,2}$

$=$

$x^{3}y^{3}uv$

,

$d_{8,4}$

$=$

$x^{3}yuv^{3}$

,

$e_{8,4}$

$=$

$xy^{3}u^{3}v$

,

$c_{8,6}$

$=$

$xyu^{3}v^{3}$

.

(9)

91

Let

$G_{3}\oplus G_{3}$

be

the group

generated by

the

linear

transformations;

(

$00$

0001

$\frac{00}{0}1$

0001

$\ovalbox{\tt\small REJECT}$

,

$\ovalbox{\tt\small REJECT}_{0}^{1}00\frac{0}{0,0’}10001-1000$

).

The

ring of

invariants for

$G_{3}\oplus G_{3}$

is

denoted

by

$\mathcal{R}_{3}=\mathbb{C}[x,y,u, v]^{G_{\}\oplus G\mathrm{a}}$

.

Molien

series

for

$G_{3}\oplus G_{3}$

is computed

to

be

$\Phi_{G_{3}\oplus G_{3}}(t)=\frac{1+2t^{2}+t^{4}}{(1-t^{2})^{4}}$

.

Prim

ary

invarian

ts

of

the

group are

given by;

$f_{2,0}$

$=x^{2}$

,

$g_{2,0}$

$=$

$y^{2}$

,

$f_{2,2}$

$=$

$u^{2}$

,

$g_{2_{1}2}$

$=v^{2}$

and secondary

invariants are

$f_{0,0}$

$=$

1,

$f_{2,1}$

$=$

$xu$

,

$g_{2,1}$

$=$

$yv$

,

$f_{4,2}$

$=$

xyuv

6

From

finite groups

to Jacobi

forms

6,1

Definition

of Jacobi

form

Let

$\Gamma$

be

a subgroup of

$SL(2_{1}\mathbb{Z})$

.

A holomorphic fun

Jacobi form of

weight

$k$

and

index

$m$

for a

group

$\Gamma \mathrm{x}$

(3)

$f( \frac{a\tau+b}{c\tau+d},$$\frac{z}{c\tau+d})=(c\tau+d)^{k}e^{2\pi\dot{\mathrm{a}}mcz/(\mathrm{c}\tau+d)}f(\tau,z)$

(or

$\{$

ction

$f(\tau, z)$

defined

on

$\mathbb{H}\mathrm{x}\mathbb{C}$

is

called a

$\mathbb{Z}^{2}$

if it

satisfies

$acdJb\backslash \in\Gamma$

,

and

(4)

$f(\tau,z+\lambda\tau+\mu)=e^{-2\pi m(\lambda^{2}+2\lambda z)}f(\tau,z)$

for any

$(\lambda, \mu).\in \mathbb{Z}^{2}$

.

For a

subgroup

$\Gamma$

of

$\mathrm{t}1_{1}\mathrm{e}$

modular group

we

let

$Jac(k, m,\Gamma \mathrm{x} \mathbb{Z}^{2})$

to

denote Jacobi forms of

(10)

6,2

A result

Proposition 4 We

have the

following injective isomorphisms berween the

rings

$\mathbb{C}[x, y, u,v]^{G_{1}\oplus G_{1}}$ $\mathrm{c}arrow$

$k\in \mathbb{Z}_{>0},m\geq 0\oplus Jac(k, m, \Gamma_{\mathrm{D}}(\underline{?})\mathrm{x} \mathbb{Z}^{2})$

$\cap$ $\cap$

$\mathbb{C}[x, y, u,\cdot v]^{G_{2}\oplus G_{2}}$ $\mapsto$

$k\in \mathbb{Z}_{>},m\geq 0\oplus_{0}Jac(k, m, \Gamma_{0}(4)\mathrm{x} \mathbb{Z}^{2})$

$\cap$ $\cap$

$\mathbb{C}[x,$

y, u,

$v]^{G\mathrm{a}\oplus G_{3}}$ $\prec$

$h\in \mathbb{Z}_{>0}\oplus$

Jac

$(\ ,$

m,

$(\Gamma_{0}(4)\cap\Gamma(2))\mathrm{x} \mathbb{Z}^{2})$

,

where

the isomorphism

is realized

by

sending

x

to

$\varphi_{3}(\tau\grave{)}fy$

to

$\varphi_{2}(\tau)$

,

u

to

$\varphi_{3}(\tau,$

z)

and v

to

$\varphi_{2}(\tau,$

z) respectively.

7

Jacobi forms associated with

$\Gamma_{0}(4)$

.

Let

$G_{4}\oplus G_{4}$

bc

the

group

generated

by

the

linear

transformation:

$(\begin{array}{lll}10 \mathrm{O} \mathrm{O}0i00 0010 000i \end{array})$

,

then we

know

that

$\mathbb{C}[x, y, u, v]^{G_{4}\oplus G_{4}}=\mathcal{R}_{2}$

%

$y^{2}v^{2}\mathcal{R}_{2}\oplus vy^{3}\mathcal{R}_{2}\oplus yv^{3}\mathcal{R}_{2}$

,

where

$\mathcal{R}_{2}=\mathbb{C}[x, y^{4}, u, v^{4}]$

.

To

$u$

we associate

$\varphi_{3}(\tau, z)$

, and

it

gives

Jacobi fo rms of weight

$\frac{1}{2}$

and index 1

for

$\Gamma_{0}(4)$

and

character

$1_{k}$

.

In

the

same

way

we

have

$v^{4}$ $\}arrow$ $\varphi_{2}(\tau, z)^{4}\mathrm{J}.\mathrm{a}$

c.obi form

$1\mathrm{S}$

of

weight

2

and

in dex 4

$y^{2}v^{2}$ $\vdasharrow$ $\varphi_{2}(\tau)^{2}\varphi_{2}(\tau, z)^{2}$

Jacobi forms

of weight 2 and index

2

$y^{3}v$ $\succarrow$ $\varphi_{2}(\tau)^{3}\varphi_{2}(\tau, z)$

Jacobi forms

of

weight 2 and

index

1

$yv^{3}$ $\vdash+$ $\varphi_{2}(\tau)\varphi_{2}(\tau_{\gamma}z)^{3}$

Jacobi forms

of weight

2 and index 3

For the

proof

of

these

statements

we need algebraic

properties of the automorphic

factor

of

the

Jacobi forms.

References

[1]

E.

Bannai,and M.

Ozeki,

Construction

of

Jacobi forms from certain combinatorial

polyno-mials,

Proc.

Japan

Academy

Ser.A

Vo1.72

$(199\mathrm{G}),12-$

15

[2] E.

Bannai,

M.

Koike, A.

Munemasa

and

J.

Sekiguchi,

Some

results

on

modular forms

-

subgroups

of the

modular

group

whose ring

of

modular

forms is

a

polynomial ring,

(11)

93

[3]

M.

Broue et M.

Enguehard,

Polynome

des

poids

de certains

codes et

fonction

theta

de

certains reseaux,

Ann.

seien.

Ec. Norm. Sup.

$4^{\mathrm{e}}$

serie,

t.5 (1972),

157-181.

[4] H. Cohen,

Sums

involving

the

values

at

negative

integers of

$\mathrm{L}$

-functions

of quadratic

char-acters,

Math. Ann. 217

(1975)

271-285

[5]

W.

Ebeling,

Lattices and

Codes, View eg

1994

[6] M.

Eichler

and D.

Zagier, The

Theory

of

Jacobi

Forms,

$\mathrm{B}\mathrm{i}\mathrm{r}^{1}\kappa$

h\"auser,

1985

[7]

T. Hiramatsu,

Introduction

to

higher

reciprocity laws,

in

Japanese,

Makino

Shoten, (1998)

[8] D.

P.

Maher Modular

forms from codes,

Can. J.

Math., 32 (1980)

40-58

[9]

M.

Ozeki,

On the notion

of

Jacobi polynomilas

for

codes,

Math.

Proc.

Cambridge Philos.

Soc. 121 (1997), 15- 30.

[10]

G.C. Shephard and

J.A. Todd, Finite unitary

reflection groups

,

Canad J.

Math.

5 (1953),

364-383

[11]

N.J.A.

Sloane,

Error-correcting codes

and

invariant

theory:

new

applications

of

a

参照

関連したドキュメント

First we use explicit lower bounds for the proportion of cyclic matrices in GL n (q) (obtained in [9, 14, 20]) to determine a lower bound for the maximum size ω(GL n (q)) of a set

Structured matrices, Matrix groups, Givens rotations, Householder reflections, Complex orthogonal, Symplectic, Complex symplectic, Conjugate symplectic, Real

John Baez, University of California, Riverside: baez@math.ucr.edu Michael Barr, McGill University: barr@triples.math.mcgill.ca Lawrence Breen, Universit´ e de Paris

It is shown that the space of invariant trilinear forms on smooth representations of a semisimple Lie group is finite dimensional if the group is a product of hyperbolic

It is shown that the space of invariant trilinear forms on smooth representations of a semisimple Lie group is finite dimensional if the group is a product of hyperbolic

We also show in 0.7 that Theorem 0.2 implies a new bound on the Fourier coefficients of automorphic functions in the case of nonuniform

We study several choice principles for systems of finite character and prove their equivalence to the Prime Ideal Theorem in ZF set theory without Axiom of Choice, among them

We see that simple ordered graphs without isolated vertices, with the ordered subgraph relation and with size being measured by the number of edges, form a binary class of