• 検索結果がありません。

Plane Algebraic Curves Drawn by the Isogonal Conjugate for a Triangle : Applications of a Drawing Tool and Mathematica-香川大学学術情報リポジトリ

N/A
N/A
Protected

Academic year: 2021

シェア "Plane Algebraic Curves Drawn by the Isogonal Conjugate for a Triangle : Applications of a Drawing Tool and Mathematica-香川大学学術情報リポジトリ"

Copied!
14
0
0

読み込み中.... (全文を見る)

全文

(1)

M。z?l.ac.£jlc.,瓦αga,gび,z&/Z,58(2008),1 −14

Plane Algebraic Curves Drawn

by the lsogonaI Conjugate

11)ra lriangle

Applications of a Drawing lTool and Mathematica

by (Received November 30, 2007) Abstrad

§1.1ntroduction

- 1− Kazunori FUJITA, Keisuke MATsUMOTo and Hiroo FUKAlsHI

   ln this paper we present a comPuter tool tor drawing a locus of the isogonal conjugate to a point for a triangle whichnlovesalong a distinguishedcurve.The drawing tool Provides many plane algebraic curves with simPle cxpressions.

   ln the sequel to [4]−[8],[17]our study aims to develop a drawing tool on a display for experimenta1 research on various curves using computers.

   ln elementary geometry we have five significant notions for a triangle; that is,the center of gravity,the center of an inscribed circle,the center of an escribed circle,the circumcenter and the orthocenter of a triangle. As a similar notion we have the isogonal conjugate to a point for a triangle.

   W'hich curve is drawn as a locus of the isogonal conjugate to a point for a triangle which moves under a certain condition? ln this study we limit ourselves to the case where a triangle is fixed while the point moves along a distinguishedcurve. Then our

   The last author was partially suppolted by Grant-in-Aid for Scientific Research (N0.19500761), the Ministry of Education, Culture,Sports, Science and Technology, Japan.

(2)

K.FUJITA,K.MATsUMOTo and H. FUKAlsHI

main concem

is to find various unknown

curves with simple algebraic expressions as a

locus of the isogonal conjugate to a point for a triangle.

   Forterminology of geometry throughout the paper,consult[2]−[3]and

[

151.

§2.A

program

for drawing a locus

   On a plane let us consider a given triangle △Å召C and a point ? din1rent from the vertices of the triangle.

   Reflect the lines connecting the vertices of △Å召C with jl)in the bisectors of the corresponding angles of the triangle. lttums out that three lines always intersect in a single point (or are parallelj.e.jntersects in the point of infinity oo),which we denote j)'.The point 7)'is called the jgg回 「c凹/昭αzEto 7)for△Å召C ; the map ψ:7)ら j)'is called the js卯皿 「c明/昭a治現.

   LetAG,z).B(−1,0),C(1, 0)be the vertices of a triangle,and j)(a,1')a point differet from the vertices. The point 7)″(χ,y)is determined as the intersection of two

straight lines 7)゛B alnd 7)″C given by

(*) 1 狸召 7)'C: y y

-雨+心−(1+s)y

(1+い(ト心)+ハ,

づ(1−g)+(レs柚

(1−い(レa)+に

(・+1),

O-1)

   M/hich curve is drawn as a locus of the isogonal conjugate 7)’toa point ? for △Å召C whichnlovesalong a distinguishedcurve ー?

(3)

Plane Algebraic Curves Drawn by the lsogonal Conjugate for a Triangle

  We

divide our operation of a drawing tool into the drawing part and the printing

part,

due to the circumstances of our computer machines.

PART ONE : ']Tb draw a locus of the isogonal col!jugate to a point for a given triangle. A program of our drawing tool for Case l of Theorem in §3 is written in visual Basic Ver. 6.0 by Microsoft Corporation and consists of the following fk)ur steps (see List l).

Step l. Set the coordinates axes and △Å召C in black.

Step 2. Set the initial position of a point 7)on curve 貿(in blue). Step 3. Plot the isogonal conjugate jP'in red.

Step 4. When one moves the point 7)continuously along the curve貿by the mouse。     the point」P’continuously draws a locus ,y with a solid line in red.

PART Two

: To process a bitmap file(bmp)bypひTEX

2 E

'

to exhibit it on another

display,and to print it.

OUTLINE

of the PROGRAM. Let

A(0,2).B(−1,0),C(1,0)andy:y=3.Where

a

point ?(zりノ)on貿is

selected by the mouse, then the isogonal conjugate 7)″G,y)to

jl)is determined by the equations (*)for Gμ)゜

  The

program

for drawing a locus y

we

will have

the curve

on a disPlay(Fig.1)

ぐ -15√百 -\IIノ/ (s,z)=(0,2).

of the point 7)'is given in List l. ln this case

ぐ −3− う/ I = 13 − 14 ζJ I 4 1

(4)

the dnpse.

ニー1,the肪Perbola

K.FUJITA,K.MATsUMOTo and H. FUKAlsHI

§3.Algebraie

curves obtained as a locus of the isogonal conjugate

  As a locus of the isogonal conjugate to a point for a given triangle we have various curves.ln this sectionwe exhibit some of them together with thecasesof plane algebraic curves with simple expressions whose graphs are not given in the standard texts of the subject[9]−[101,[121,[141,[161,[18]and[221.

Theorem. £α&げz/zりbZ/。w向μz/g訪,ujむ㎝n7622az,H,。涌z 「。 「,2sαlaasげ治g

isogonat conjugate l)’toa point P jor a triangle△Å召C w/zjdzz?zθvEsα1θz7gが1どczjr祀 ー。

Case l (Fig.1).

     Å(0,2),組−1,0),C(1,0).

     

ー:y=3,涜

ー,9zπz4&沁zg.

y ・ 1 ぐ 15√jT4 -28

ー:j十こ

1

・ ぬ φ 1

-う

3x十2 ぐ ︷j l

4 1 ″ ` J I

4 −

Case 2 (Fig.2).

    Å(0,1),組−1,0),C(1,0)

゜t,z/zEEI/1ρ認.

4 − 3 5 − 3

0,−2),C(1,0)

玉 4 − 3

Case 3 (Fig. 3).

    Å(0,2),組・

y: χ2十y’1,z/1Edr/ε

(x−1)2(8−柚

(5)

Plane Algebraic Curves Drawn by the lsogona1 Conjugate for a Triangle Case 4 (Fig.4).     Å(1,2),

組-

1 ー: y°χ2−1, ,0),C(1,0).  the parabola

y:

x2−政y−y−4y−1=0,the

hyperbola

Case 5 (Fig.5).

    Å(0,2),j(−1,0),C(1,0).

    

ー: y=χ2−3,哨り7απzゐθ1α.

    2ク: 4(?−1)2+(x2−3)y2−8(x2−1)y十2y4

− 5y3 =

Case 6 (Fig.6).

    Å(2,1),組0,0),

C(2,−1)

ー:(x−1)≒y2=1,

Case 7 (Fig.7

    Å(3,

    

ー:

y ・e j

jl ぐ - λ3 10−x z&dr&

,治

ーCj∬θ一げ1)jθdgs.

j(0,0),C(3,−1)

J−1)2十ゾニ1.the

circle

-Case 8 (Fig.8).

    Å(0,1),j

貿

Case 9 (Fig.9).

X2+

ll ./TX.

j(2x−5)

15−2λ7

ぞ十ゾ

-3?−9ぞ

Yノ

凭4

5 − 4

酉 一 今 一 う ラ ぐ   C 酉 -2’ I 2 う 0 2− 6×2y 十3ダ十2y3十4=0

(1(゜o),is given by the circle

−5− 1 − 2

4,が1Edr&?,

+3(2j−3)y

Å(0,2),j(−1,0),C(1,0)

ー: x=k,the

straightling.

2政2−5λly十2砂2−3肪−21:=0,がzEcθ㎡cjEdjθzz.

ln Fig. 9, the inverse image of the point of innnity,

(6)

K.FUJnA,K.MArsUMOTo and H. FUKAlsHI

Pmof. Let 7)(j,y)andj9'G,2y)

Case l.

Find the Groebner bases (see[11,[11])by

applying Mathematica

Ver 3.0by

W7olfram Research lnc・,to the following code

t v ・ φ =2 =3

f1:=(u+1+t*V)*mb-(t*(u+1)-V)

f2:=(1-u+t*V)*mc−(-t*(1-u)+V)

f3:ニy-mb*(x+1)

f4:=y-mc*(x-1)

GroebnerBasis[{f1,f2,f3,f4},{u,mb,mc,y,x}]

   Then we obtain the term

       −2十2χ2−

13y十フy2

in the listof the generating Groebner bases.Therefore,we

have

as an equation of jf

15√ロフ

 28

う/ + ぐ りj l

1 = 4 1 ζJ I 4 1

(7)

Plane Algebraic Curves Drawn by the lsogonaI Conjugate for a Triangle

References

[1]フWグW.Adams and R Loustaunau : / 、7zlrrり&aごzjθz□∂Gy蚕,z2gr&2jEs,Graduation Studies    in Math.,Vbl.3,Amer.Math.Soc.,Providence,1994.

[2]H. S. M・ Coxeter : ノ削177&lcljθnzθGEθ謂gzり’,2nd ed・, John xViley and Sons lnc・, New    York,1980.〔コクセター(銀林 浩・訳): 幾何学入門 第2版,明治図書,東京,

   1982.〕

[3]H.S.M.Coxeter and S. L.Greitzer : Ggθj?zgzりり?a心Ej,New Mathematical Library,    Number 6, School Mathematics Study Group, Random House, lnc.,New York, 1967.    〔コークスター,グレイツァー(寺阪英孝・訳): 幾何学再入門,SMSG双書,

   河出書房新社,束京,1970.〕

[4]K. Fujita and H. Fukaishi : Plane Algebraic CurvesDrawn by the Orthocenter of a Pedal    Triangle ̄Applications of a Drawing Tool and Mathematica, Ma?z. ac. £ゐc・,瓦昭αwα    び 「9函印私57(2007),51-72.

[5]K.Fqjita,A.Matsushima and H. Fukaishi : A Locus of the Orthocer!ter of a Triangle −    lnstruction in Geometry by a Moving Locus on a Computer, Ma?7.ac.£面c・,旭卯wα    び㎡w溺印77,55(2005),1-13.

[6]K.Fujita,A. Matsushima and H. Fukaishi : A Triangle with Three Distinguished Collinear Points lnstruction of Geometry by use of a Drawing Gamc on a DisPlay,    Mem.凡z,1.£血c.,瓦昭αwaび一w 「りり7,55(2005),25-41.

[7]K.F1!jita,A. Matsushima and H. Fukaishi : A Triangle with Distinguished Concyclic    Points ̄lnstruction of Geometry by use of a Drawing Game on a Display,λ&謂・JFiz‘].    &jz4c.,瓦αg,2wαび 「1ノε,・sj印77,56(2005),1-25.

[8]H.Fukaishi,K.R!jita and A. Matsushima : Alternative Geometric Proofs of Theorems    for Concyclic Points for a Triangle, ルfa?2.瓦zc.£jz4c.,jQgαwαび㎡wrsjりフノ,56    (2006),51-59.

[9]XV.Fulton : メUg,治rz2jcC£jrv6/W.A.Benjamin,New York, 1969.

[10]一松 信・他: 新数学事典,大阪書籍,大阪,1979.〔=S.Hitotumatu et al.: Shin-   S両1£z包-j7z四,凸saka-shoseki,1979.〕 [11]一松 信: 代数学入門 第三課,近代科学社,東京,1994.〔=S.Hitotumatu :    Mzrりj£4djθzzた,Åな&ra,777ε771j 「£ε∬∂zz,Kindai-kagaku-sha/lbky0,1994.〕 [12]飯高 茂: 平面曲線の幾何,共立出版,東京,2001.(=S.litaka : GEθz?zg吋げ    j)1αnECljry6,Kyoritsu-Shuppan,loky0,2001.〕 [13]石谷 茂: 数学ひとり旅,現代数学社,   Hitoritabi,Gendai-sngaku-sha, Kyoto, 1998.〕 京都,1998.〔= S.lshitani : S卵a㎞

[14]河田敬義: 代数曲線論入門,至文堂,東京,1975.〔=¥Kawada

: 7zla凶d,9n9

−7−

(8)

K.FUJITA,K.MArsUMOTo and H. FUKAlsHI

   Åな訪n2jむCz4rw 771εθり,Shibundo,Toky0,1975.〕

[15]小林幹雄: 初等幾何学,共立出版,1958.〔=M.Kobayashi: £凶2a畝り,G・・吻y,    Kyoritsu一Shuppan/lokyo, 1958.〕

[16]E.Kunz : カlz7?)dzjczjθzl r∂ ?1αzlE/UgEゐΓαj,? Cgrvgs,Birkhauser,Boston,2005.    (Translated from the original German by R. G.Belshoff.)

[17]A.Matsushima,K.R!jita and H. Fukaishi : A Locus of the Orthocenter of a Pedal    Triangle ̄lnstruction of Geometry by use of a Drawing Game on a Display, A&謂.凡zc.    Educ・,瓦αgαwα£ノ7yliwMj印弑57(2007),1-15.

[18]G.0rzech and M. 0rzech: 7)/αzl ーÅなεゐΓαjcC£4rw5,MarceIDekker, NewYork,1981. [19]D.Pedoe : GEθ謂Ezり。Dover Publ. lnc.,New York, 1970.

[20]坂井忠次:グラフと追跡,培風館,東京,1963.[=C.Sakai: Ggφ 「n咄函,

  Baifukan, lokyo, 1963.]

[21]Yvonne et Rend Sortais : £αG必剤ざ哨ε&,7Mα,1μど,Hermann,1987,〔=Tソルテー,   R.ソルテー(戸田アレクシ哲・訳): なぜ初等幾何は美しいか,東京出版,2002,〕

[22]R. J.Walker : Aな一m必Cgn゛Es, Springer“Verlag,New York, 1950

Kazunori FUJITA

Department of Mathematics, Faculty of Education, Kagawa university 1-1 Saiwai-cho, Takamatsu-shl,Kagawa,760-8522,JAPAN

£-sαjlaふ1ras: fujita@ed.kagawa-u.ac.jp

Keisuke xlATsUMOTO

Student of Master Course, Graduate School of Education, Kagawa university 1-1 Saiwai-cho, Takamatsu-shi,Kagawa, 760-8522, JAPAN

Hiroo FUKAlsHI

Department of Mathematics, Faculty of Education, Kagawa university 1-I Saiwai-choドlakamatsu-shi,Kagawa,760-8522,JAPAN

(9)

−9−

Fia.1 ‘i: y=3

Fig.3y

Plane Algebraic Curves Drawn by the lsogona1 Conjugate for a Triangle

15、/百  28 マリ/ χ2+y jダ:y2 2=1 (x−1)2(8 一 一 3x十2 ( J一 ぐ 槌 ↓3 − 14 15 − 14 マノー う =I Fig. 2 貿 y

Fig.4 y

  y

λ 2 ぐ =1 ダ ー

七づ

y=x2−1 y一趾y−ダー4y−1’0

(10)

Fig.5貿

  y

y 4

=χ 2 3

K.FUJITA,K.MATsUMOTo and H. FUKAlsHI

Fig. 6 (汐 (ぞ−1)2+(ぞ→)ダー8(x2−1)y+か4−y=0

G−1)2十ダ=1

ダ:y=  χ3 10−X

(11)

Plane Algebraic Curves Drawn by the lsogona1 Conjugate for a Triangle Fig.9 ‘i: x=灸    y: 2b;2−5xy+2紗2−3勿−2友=0   一 ︱ I   一

(12)

K.FUJITA,K.MAjTsUMOTo and H. FUKAlsHI

List 1. A program

for drawing

a locus

一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一    ・/・  ●r・   ● ●    一rl●      I  ・ ・・

Spe(ニifying statements of the general variables

Dim sx, sy,ex,ey As Double

Dim ax, ay, bx, by, cx, cy As Double Dim pi As Double Dim tb, tc As Double Dim k As lnteger S g S

Drawing the initialfigure

Private Sub Form_Activateo  Dim r, X,Y As Double  Forml。Line(sx,0)-(ex,0)  Forml.Line(0,sy)-(0,ey) sxn=lnt(sx):syn   ㎜ d ■

exn=lnt(ex):eyn

=lnt(sy) =lnt(ey) h=0.05 FOr j =sxn To exn  Forml.Line(i,−h)-( Next i   ! ・ − h) FOri=syn To eyn  Forml.Line(-h,i)-(h,i) Next i Forml.DrawWidth=2 Forml.Line(ax,ay)-(bx,by),VbBlack Forml.Line(bx,by)-((:x,cy),vbBlack Forml.Line(cx,cy)-(ax,ay),vbBlack Forml.DrawWidth=1 tb=A91(ax,aジ,bx,by,bx十1,by) t(二二A91(ax,ay, cx, cy,cx十1,cy)  Forml.Line(sx,3)-(ex,3),vbGreen  k=1 End Sub ! ・ ! !

-Setting the form, the coordinate axes and the initial values of the coordinates of each vertex of a trian9le

一 一 一 - 一 一 一

Private Sub Form_Loado  Forml.Top=500  Forml.Left=500

(13)

X As Single, Y As Sin9le)   一 り J I   一 Forml.Wjdth SX=−5,2 ex=5.2 wx=ex一SX

Plane Algebraic Curves Drawn by thelsogona1 Conjugate for a Triangle

-一 0.95 ゛ Screen.Width

wy=wx ゛Forml.ScaleHeight / Forml .ScaleWidth sy ' -0.32り/vy ey=0.68 ゛wy Forml.Scale(sx,ey)-(ex,sy) Forml.BackColor=vbWhite Forml.DrawWidth=1 pi=4 ゛Atn(1) ax 一 一 O: ay =2 bx=−1:b・  CX=1 End Sub 1 1 y=0 cy° 0

Action corresponding to the left button of mouse Private Sub Form_MouseDown(Button As lnteger  lfk=2 Then    k=1    ExitSub  End lf  Disp x,3  k=2 End Sub g S 6

,ShiftAs lnteger, XAs Sin9le,Y As Sin9le)

Action corresponding to the movement

of mouse

Private Su  lfk=1  Disp x, End Sub 1 g Ca ︲ ︲︲bT3 ICUI Form_MouseMove(Button As lnteger hen Exit Sub

ating the value of an an9le Private Function Agl(xa, ya, xb,yb,

= = ab C -XC, Sqr((xc − xb戸ヽ2十(yc − yb)ハ2) Sqr((xa−xc)ハ2十(ya − yc)ハ2) Sqr((xb − xa)ハ2十(yb − ya)ハ2) yc) 一 f ・−h 1/︶  ! t As lnteger,

lfa<0.00000010rc<0.0000001 Then Exit Function × lf − − 1 lf E (a∧2十c△2−b△2)/(2・a'c) −XA2<0.0000001 Then x>O Then t=0 lse

(14)

り t=pi  − −  End l Else f

K.FUnTA,K.MATsUMOTo and H, FUKAlsHI

 t=pi/2−Atn(X / Sqr(1−X△2)) End lf 」ニ lfj xa゛yb十xb゛yc十x(゛ya−xa゛yc−xb゛ya−xc゛yb <O Then t =-t  A91=t End Function g i l Presentjng h t f o 一

Private Sub Disp(px,  Forml.DrawWidth e isogonal conjugate -3  Forml.PSet(px,py),qBColor(9)  sb=A91(px,py,bx,by,cx,cy)  mb=Tan(tb − sb)  sc=A91(px,py,cx,cy,bx,by)  mc=Tan(tc − sc)  qx=(mbibx−m(ヅcx − by十cy)  qy=mb゛(qx − bx)十by  Forml.PSet(qx,qy),vbRed End Sub

Private Sub Ext_Clicko

 For x =ex To 20 ゛ex Step 0.1   Disp x,3  Nextx FOr x =2  Djs Next X px 03 ゛sxTo sx Step 0.1  For x =sx To ex Step 0.001   Dispx,3  Next x End Sub /(mb − mc)

Fig. 6 (汐

参照

関連したドキュメント

Finally, we give an example to show how the generalized zeta function can be applied to graphs to distinguish non-isomorphic graphs with the same Ihara-Selberg zeta

Following Speyer, we give a non-recursive formula for the bounded octahedron recurrence using perfect matchings.. Namely, we prove that the solution of the recur- rence at some

Nonlinear systems of the form 1.1 arise in many applications such as the discrete models of steady-state equations of reaction–diffusion equations see 1–6, the discrete analogue of

, 6, then L(7) 6= 0; the origin is a fine focus of maximum order seven, at most seven small amplitude limit cycles can be bifurcated from the origin.. Sufficient

It turns out that the symbol which is defined in a probabilistic way coincides with the analytic (in the sense of pseudo-differential operators) symbol for the class of Feller

The dual Delaunay triangulation associated to the same set A of sites is ob- tained by drawing a triangle edge between every pair of sites whose correspond- ing Voronoi regions

We give a Dehn–Nielsen type theorem for the homology cobordism group of homol- ogy cylinders by considering its action on the acyclic closure, which was defined by Levine in [12]

A set S of lines is universal for drawing planar graphs with n vertices if every planar graph G with n vertices can be drawn on S such that each vertex of G is drawn as a point on