• 検索結果がありません。

Studies on legume starches. II. Viscosity behaviors-香川大学学術情報リポジトリ

N/A
N/A
Protected

Academic year: 2021

シェア "Studies on legume starches. II. Viscosity behaviors-香川大学学術情報リポジトリ"

Copied!
8
0
0

読み込み中.... (全文を見る)

全文

(1)

STUDIES ON LEGUME STARCHES

I[Viscosity Behavior’S袷

Sin,itire.KAWAMURA(Laboratory ofBiologicalChemistry)and Hiroyasu FUKUBAや潔 (Received Apri12フ,ユ.957h)

Viscosityis one of the mostimportant phy∼icalproperties ofstarches董rom the viewpoint of practical

application aswellas董IOmSCientificinteIeStStarchesweIe preparedfromtypicalJapanesefoodlegumes bythemethoddescribed previouslybyKAWAMURA,TUBOI,and HUZII(3)lThey were studiedby the BRABENDER amylograph(12)at Faculty of Home Economics,OchanomizuUniveISity,TokyoTheintrinsic

viscosity and alkalilabilitynumber weremeasured at Fac111tyof Agriculture,Kagawa University

EXPERIMENTAL

Mat:eriats Used As the raw materialnine foodlegumes described previously were used.Some

legumes weIenOt aVailablein the course oflateIeXperiments,While some other garden varieties weIe

added.Thus for clearance sake the Latin,English,andJapanese names for thelegumes are givenin Tablel.In some cases potato starch was used as the standard sample for comparisonofthedataobtainedn

Tabユel,MaterialslユSed No Latin ロ ゴ(1J〝J=川JJJJJ−t、′いS〃ナナJ ユ、 Ⅵc孟α./如α ニ PトぎJ′〃J5打JJ■l、J川J\▼aト(け!、.、JJ5t1 3い タカα5βOJ祝.ざC如.γSα〝〃わ・S 4。 P‖ β胡れ殉S 5. P、び鎚Jgαγ哀s 5a‖ P.び祝Jg(Z㌢g.S foIma 5b. Pり ぴ〟Jg(Z7去S foIma 6.. Ⅵg乃α・SeS〃〝g♪βdαJオ5 6a Ⅴ.SβSす〟豆♪βdαJ査sfoT■ma 6b. Ⅴざe叩衰卵血沼S foIma 7 かoJオ(如5JαみJαむ ∈ C〃JJ〝‡I〝/上〝 g/〝(ブ川拍 9. 5どよgoJク∂壷椚乃九那.プ00 English potato broad bean SmOO抽pea adzukibean mtlng kidney bean (kintokibean) (nagauzura bean) asparagus bean(b) hyacinth bean sword bean Yokohama bean Japanese gγαgα∠伊♂Or∂αタ♂多Sγ♂ 5(け〝Iナナ(7/〃√ (,J7〟‘l αこJ†んf J叩山車 JJJg(Ⅵ・川〟川r 離恋わ翫−∠〝ge〝(a) 循αgα〝g伽γα一夏循gβ形(a) ふα・Sαg♂ g.γ戊㌢0た〝−ゞαざαgβ(C) αg%烏Z∴,ざα∫αgg(d) カ祝Zよ桝α、別β JJ〟′(川∼(川J√ ゐα一SS,γ∂沼α研β Notes:The number oflegumesis the samewith that describedin the previous paper’($),Where synonyms aIe listed

(a)Agardenvariety(Or foIm)ofingen・mame.(C)A garden variety mainlyuseda$greenVegetable (b)Cowpeais of the same genus (d)A garden variety mainlyl】Sed asdry cereal ★ Presented before the AnnualMeeting of Ag工iculturalChemicalSociety ofJapan.On Apri19,1957at

the Faculty of Agricultllre,University of Tokyo

(2)

39

Vol.9,No‖1(195フ)

Methods of Experiments

A.TheintYinSic viscoISit.y(5)”Potassium hydroxide solution(1N)was used as the dispersing agent

7he flow・time ofthis solution through an Ostwald viscometer of10 mlwas564,56.5,562(av..564)

SeCin the thermostat of 350CStarch solutionsinl N potassium hydroxide weze prepared at the

COnCentrations Ol,0..2,0小3,04,and O小5 g/100mland the flow−times through the ぅame viscometer Were meaSured。Theintr’insic viscosity,〔7〕,WaS Calculated graphically by the equations

〔り■〕=1imc→0(りsp/c) (ヱ)

and 〔ヮj=1im。→。(1nりrノC), (2)

Where cis concentrationin g/100ml,7r(relativeviscosity)=ワ/70,and7?Sp(specific viscosity)=(りP770) /7?。=りr Ml.7?and?70 are the viscosity coefficients or the flow−times of the solution and soIvent,IeS・ PeCtively(by neglecting the difference of the specific gravities of dilute soiutions)

B“The alkalilability numbeYThisis defined as the number of mlof O,lN sodium hydroxide

solution consumed bylg staICh by tIeatment at1000C forlhr.The determination was carried out by

the method repor・ted by SCHOCH andJENSEN(7/aS described by KOBAYASHI(1)and elHASHI(6) C”The BYabender amylogYaPhyh Three sets of tests were made by a BRABENDER amylograph

(1)In the preliminary test45g of aiI・dry starches was suspendedin 455g of water。Thoughthe true

COnCentrations were not the same,the amylograms were utteIly different for diffeIent StarChesThe

Samples used were the starches prepared froml.broad bean,2smooth pea,3adzukibean,4mung, 5.kidney bean,6asparagus bean,7hyacinth bean,8巾SWOrd bean,and 9.Yokohama bean

(2)The dispersions of90%starches were tested for l‖ broad bean,3.adzukibean,5bnagauzura bean, 6azytiroku・SaSage,フhyacinth bean,and 8.sword bean(3)Sinte some amylogIamS for 9,0% starches COuld not be obtained completely because of too high Viscosities,the dispersions of 60% starches were

tested小 The starches examined were obtained froml

broad bean,3.adzukibean,4..mung,5akintoki bean,5b.nagauzura bean,and6a zytiroku・SaSage

RESULTS AND DISCUSSION

Theintrinsicvis£OSitywasdeterminedtoseetheav− erage approximate size of the starch molecules.The extrapolation totheconcentrationzero was easier with the equation(2)(expressed with x)than with the equation(1)(expressedwith dots),aS Shown by

Figrl,Where data are pr・eSented for starches from O.pOtatO,lbroad bean,and 5bnagauzura bean as examples”The relative suitability of the equation (2)for・calculatingintrinsic viscosity(5)wasconfirm− ed fo工allthelegume starches examined(graphs for Other starches are omitted)

10 9 8 フ 6 5 4 3 2 1 0 0.1 02 03 0∩4 05 Fig.1.Intrinsic viscosity

(3)

Table2.Intrinsic viscosityand alkalilability numbe工 Alkalilability number KAWAMURA OHASHI(6)SUZUKI(9) 2.6 52 45−5 5.6 8.8 6.5−フ 8.2 6 −フ 66 6.4 3.5 Jntrinsic viscosity

_/\−

KAWAMURA()HAS‡ⅠⅠ(6) 265 2,58 194 1リ78 2い04 200 226 No Legumes O, Potato l‥ Broad bean 2い Pea 3, Adzukibean 4. Mung 5. Kidney bean 5a. Kintokibean 5b..Nagauzura bean 6‖ Asparagus bean 6a. Zy(1roku・SaSage 6bh Azuki・・SaSage フ. Hyacinth bean 8. Sword bean 188 5小○ 10.2 5.5・6 62 10uO 6‖2 3 −4 1.フ9 1フ1 1い60 215 2。11 1ニご 1日フ5 1.65 38 8り8 1ユ‥2 10 2

Theintrinsic viscosity thus obtainedisglVeninTable 2,WheIe the data 董or the alkalilability number are alsoincludedFig.2shows the relation betweenin・ trinsic viscosity and alkalilability numberThough not so strictly,aninverse relationship between these

〔り〕

⑳ 0

2,5

two data can be seen from Fig.2In general,leg・ ume starches as a groupshowedlowerintrinsic vis

cosity and higheralkalilability number than potato starch‖Thelegume starches may be regardedashav− inglower polymerization gradeComparison of 20

● 、」

● 3

◎ ユ

●・;

0 5a

starches of dif董erent orlgln CannOt be madeonlyfrom these two measurements、Comparisono董intrinqicvis・ cosities would be more valuable when homologous polymeric compounds a工e taken as the samplesIn this connection,nOt StaIChes but amyloses(straight・ chain molecules)should be examined

Amonglegume starches the approximate orderis

as f01lows: ◎ 6b 07 ◎ 8 ◎ 5b 15 0 2 4 6 8 10 12 aikalilab no

Fig.2.Intrinsic viscosity vs… alkalilability no

(i)the highestin viscosity and thelowestin alkalinumber…6a“zy8roku−SaSage,

(ii)highin viscosity andlowin alkalinumberl.broad bean,3.adzukibean,and4。mung, (iii)lowinviscosity andmediumto highinalkalinumber…5a。kintokibean and6b′aZuki−SaSage (iv)lowin viscosity and the highestin alkalinumber.∴71hyacinthbean,and

(V)thelowestin viscosity and highin alkalinumber・。.8sword bean and5bnagauzura bean In Table2,Values reported by OHASHI(6)and by SUZUKIand TAKETOMI(9)areincluded for some

starchesThe values forintIinsic viscosity are rather astonishingly agreeing,While the data for alkali

lability number are verylnCOnSistent‖SUZUKIand TAKETOMI(9)repoIted that the alkalilability number

(4)

Vol9,No1(195フ) 41 25 40 55 フ0 85 85 フ0 55 40 250C 0 10 20 30 40 50 60 フ0 80 90min Fig…3Brabenderamylogram oflegumestarchesat9,0% 92 50C

\ r

A B 〆 β〆・′ 一一〆 叫 ′′ 乞′′ ′一′ .至∵ . 、 ′一lll一■上l一11−−1 _ 〆一一 _−ヂ〆 〆〆・・ ̄ − 一 −−一一一一〆■一 25 40 55 70 85 85 フ0 55 40 25じC O lロ 20 30 40 50 60 フ〇 eO 90min Figい4・Brabenaer amylogram oflegume starches at6hO%

SUZUXIandTAKETOMr(9〉showedalkali・Viscogramsoflegumesta‡Chesbythemethodreportedprevi・

OuSly(8)rThechangeofviscositywascontinuouslyIeCOrdedbyaddingcausticalkalitostarchdispeISions

’rheauthorshavenotyetappliedthis method7nstead・the BRABENDERamylograms were ob−

tainedh They are heat−Viscogramsas called bySUZUKIand TAKETOMI(8)

TheBRABENDERamylogramsareshowninFigl3(9・・C%)andFig4(60%)・Fig‖5showstheamylo

(5)

temperatureIised,When the starch concentration wasIoweIed;the viscosity during heating as wellas

during cooling waslower,When the starch concentration waslowered

1

92−50C

25 40 55 フ0 85 85 フ0 55 40 250C

0 10 20 30 40 50 60 フ0 80 90min

Fig.5 BrabendeIamyiogram of adzuki−bean starch at6.0,フ.8,and9.0% The characteristic values of amylograms are glVenin Table3

It can be seen from Figs.3・5and Table3thatlegume starches may be classifiedinto two groups from the BRABENDER amylograms:

Group A〃Legume starches which show no great risein viqcosity during heating(from250to92.50 gradua11y at the rate ofl,50per min)and subsequent cooling(fIOm 92.5O to 250 simi1arly gradually)

They allgave steadily rising viscosity,thoughnot remarkably,duIing the course of heating and subse− quent coolingThelegumes glVlng the starches of this group arel小broad bean,21pea,and5”,5a・,5b kidney bean

GroupB.、Legume starches which show more o工1ess distinct risein viscosity by heating and subseql】ent

COOling.Thelegumes giving the starches of group B arein decreasing order of viscosity 6,,6a asparagus bean,9Yokohama bean,8‖ SWOrd bean,4.mung,3adzukibean,andフ”hyacinth bean Asparagus bean of zyOroku・SaSage Variety(N‘).6ah)gave the highest viscosity both at6IO and9.0%

As sated by rtOFSTEE and WTLuGENく2),‘‘the shape of the viscogram can be derived primaIily from the state of swelling of the starch grain,”(p.26)and=a high peak can be anindication of the ease withwhich the granules can be disintegrated”(p小9)”Th11Slegume starches of group A may have gant]1es Which can be disintegratedwith more difiiculty thanthose of group B

Chemicalinterpretation of the amylograms cannot yet be made,thoughsomeinvestigations are being made on amylose and amylopectin fractions oflegume starches.h this connectionit may be preliminarily

reported thatthe starches containing about20%amylose(l一broadbean,3。adzukibean,and4mung) givelower gelatinization temperatures(70−750at90%paste),Whilethe other starches presumably con−

tainingmore amylose(30・50%)(5a。kintokibean,15b。nagauZura bean,フ。hyacinth bean,and81SWOrd bean)give higher gelatinization temperatures(76−820at9rO%paste)・(T中e amylose conterltis based on

(6)

43 Vol“9,No.1(195フ) OS寸 ○トト S.︹めーS.∽∞ OC∞ のトーS.の∞ ○∞ト 宗門 S卜 SCT SST ﹂の 000T ︵誘∽ 000T S.寸卜!N∞ 000︷ SのC OMS O卜∽ ONT .dヨむ↑ ㌢ 軸已叫l000 如月︼nG S00ーS.の∞ ︹前の ∞00 8UT のトーS.∽∞ ︹前の 000T ︹迩∽ SN SN SN SN SN SN い.N心 SN S﹂卜 ○寸 SN SN SN SN .d⊆事ト SN S.S∞ SN い.m心 SN ﹂\−−■・−・・・し 已両せ占 こトい 宕ト .ゴ已n出国Q石河国司出国月計lの遥0︸雲のむ∈n叫むt JOの己巴切01h己再〟ち書付口.Cむl焉ト ぎ蔓営こ官︼n白 .d∈むト S.Nの S.Nの ×巧言 ︹誘S ぎ♪ ON∽ さト 8N ﹁︹OT S寸S コハ∽ ○∽ ロマ ∽卜 ○00 舅 亡六 nの卜 ○のS SHN ︵訪T SON S∽ P S.ののー∽∞ ヾ“ 寸00 S.Nの ∽.Nの S.心卜 の卜 N∞ S.Nの S.Nの S.Nの S.Nの S.の卜 S.Nの S.Nの S.︵訪 S.N∽ S.Nの S.Nの S.Nの .d∈む↑ ON 寸T 寸卜 のの TC 寸卜 N∽ ∽の ∽N 耳︹ TN SN SN ∽C TN N寸 OC OC U一∈ N 亡〓ヒ ︸のTむ月︸ ︸S一む月︺ ′−−−−1ノーー1 月m虐hむ占l︼β山扇 ぎ︼n?眉二ち乳亘s Sの ︹訴 醐 Sの SC Tの Cの のの 卜 T S ﹂心 NOT S寸 ∽C NN NOT 00∽ m00 S T 寸 トト N∞ S.トト ∽ト N∞ C卜 S.寸卜 S.トト の卜 ︵〇s.可卜 S.トト S.m∞ C卜 ∽.寸卜 S.〇卜 山.ベト S.T卜 ∽卜 S卜 ︵〇OC卜 pむph00むh の一汁 已l むS叫h︸のT む占︸貞0ぷ舞 扇.d∈むト S.の ○︰の 寸.卜 〇.の S.∽ 〇.の 〇.∽ 誠∵電 〇.の 〇.∽ 〇.∽ 誠∴副 T.卜 〇.∽ 〇.の の.卜 〇.∽ 卜.∽ 〇.の 〇.∽ 故 .已0已OU 莞ぷ巴nNn島内Z .qS 已dむ点ぷ0召−鍼 .再S 已dむq hむ已p−滅 .S 熟ざ謁申さ嘗⊆呈z .再¢ 已謡qのn切望邑の亘 .∽ 已再むq再∈再ぷ○忍OA .の 已票q雲雲Odhロ い卜 〇Z ∽む∈コ謬J 已應むq ぷnNp亘 .C dむd .N 已應由q p︼○芦S .∞ u和むq p帽○︼斡 .T 知己n苫 .守

(7)

experiments chiefly made by Minoru TADA of Faculty of %

80

Agriculture,Kagawa University,Whichwi11be reportedin near future)Thesefindings haveno correlation with the フO above two groups oflegume starches

YAMASAKIand UEDA(11)found that the amylase of 60

black aspergi11icolユ1d saccharify raw(uncooked)starches from cereals more easily than 工aW StarChes from tubers 50 UEDA suspected that the diffe工enCe might be attributable 40

to the difference of沌e shape of the amylograms:Cereal StarChes glVe amylogIamS Similar to those of the group A legume starches and ttlber starches to those of the g王Oup B 1egume starches.Thus UEDA(10)examinedlegume starches prepaIed by KAWAMURA to find possible relationもhip be・lO tween the two groups oflegume starchesinconnectionwith

the ease o董blackLaSpergi11iamylase on raw starches The result shownin Fig6indicates that there couid be found no such工elationship

0 20 40 60 80 100 120 140hI

Fig6.SacchaIification oflegume starches by black−aSpergilliamyiase.(10)

ACKNOlVLEDGMENT

Sincere thank$are due to Dr。Ziro NIKUNIof Osaka University,Whois the head of’the co6perative IeSearCh group o重 fundamentalstudies on th¢utilization ofstarches,SpOnSOred by the Ministry of Education,Some experiments were made by M王“Minoru TADA and Mr。KazuyukiKAGAWA of Faculty of Ag王icuiture,Kagawa UniveISity.The authors aIe grate壬ulto thei工 aSSistance.The authors wish to exprss thank董ulness also to MrSeinosuke UEDA,Who furnished them valuable data

givenin Fig6

REFERENCES (1)FUKUBA,H.(福場博供):On the BRA3EN−

DER amylograph−ViscogIapIlβ〟搾.ゞ♂良彦励g‘2烏〝 (Japan Analyt).4(61,4C6(1955)

(2)HOFSTEE,.J,WILLIGEN,A.H.A.de: StarchFoodstuff,Their Plasticity,Fluidity, and Consistency(ed.SCOTT BLAIR,GhW), Lp34,Amsterdam,North−Ho11and Publishing Company(1953)

(3)KAWAMURA.S(川村信一・郎),TUBOI,Y (壷井好),HUZJJ,T(藤井保):Studies on

legume starches”7Microscopic observation

On the granules of starches from someJapa・

neselegumes ′r♂Cゐβα〃..Åおgα∽αAgγCoJJ, 7(1),87(1955)(in English) (生)KOBAYASHI,T(小林恒夫):Denpun Ka− gaku(Starch Chemistry)(ed.ZNikuni(ニ国 二郎)),36l,Tokyo,Asaknra Syoten(1951) (5)KURO王WA,T(黒岩葦晃),WADA,Eh(和 田英一L):Nendo(Viscosity),Zikken Kagaku K6za(Lect11reS On Exper’imentalChemistry), 凱123−フ6,Tokyo,Maruzen(1956ト (6)OHASHl,K‖(大橋−・ニ),忍βSβα㌢Cゐβ甜JJ.ダαC 4㌢,Gり滋打磁心,(6),10フ(1956)(毎Japa・ nese) (7)SCHOCH,T”J,JENSEN,Ch C.:hld 月形g、、Cカβ∽..‥細雨‖励,12,531(194C)) (8SUZUKI,H.(鈴木晴男),TAKETOMI,N (武富 野):Amylo−alkali−Viscograph by a syn− Chronous・・mOtOr type rOtating cylinder viscom− eter.Effects of caustic alkaliupon the swel・ ling and gelatinization of va工ious starch gran・ uies.KOgyd Kagahu Zassi(J小 Chem.Soc Japan,indChem.Sect”),59,45(1956)(in Japanese)

(8)

45

Vol.9,Nol.1(195フ)

9) wN,山一一−:Physico−Chemicalpro・ (10)UEDA,S‖(i田誠之助):private communica・ perties ofstarchesfromsomeJapaneselegumes tion・・March8,195フ

Presented before the FallMeeting of Chem (11)YAMASAKI,l.(山崎何店),UEDA,Sl: Soc.Japan and allied societies at Waseda BullAgYChem.SoclJapan,19,48(1955) Univ,Tokyo,On November4,1956 (in English)

( 豆類 の澱粉の研究

Ⅱ 粘

川村信一郎,福 場 博 保埠

前報(8)に記したようにしてつくった豆類の澱粉につき極限粘度(5)と.アルカリ数(467)を求め,またBRABENDER のアミログラム(1・2)を求めた.用いた豆類の名称を第1衷に示した 極限粘度を求めるにほ式(Z)よりも式(2)のカが都合がよい(第1図)..極限粘度とアルカリ数とほ大体逆の関係 にある(第2図卜ジャガイ、モ澱粉に比べて豆罵の澱粉ほ極限粘度が低く,アルカリ数が大きい 鈴木,武富(8・9)ほアルカリブイスコグラムを・求めたが,ヒートヴイスコグラムの1一層であるBRABENDERのアミ ログラムは第3−5図のようであった.アミログラムの形は第一・に澱粉粒の膨潤の状態により定まり,粘度が高く出 るということは澱粉粒が崩壊し易いこと.を示す(2)小化学的性質との関係についてほ研究なつづけているが∴糊化温度 が低いものはアミローヌが刀%内外のもの(1ソラマメ,3小アズキ,4.リヨクー・ウ)であり,アミロースが多くて 30−50%と考えられるもの(5a.キントキインゲン,5bナガワズラインゲン,7フジマメ,8“ナタマメ)は糊化 温度が高い アミログラムから豆類澱粉を2群に分けることができる A群:250から92,50まで1分につき150の割合で加熱して,次に9250から250まで同様に冷却しても粘度がわず かずつ増加するに過ぎないもの(瀬粉粒が非筒に.くずれにくいもの) 1…ソラマメ,2・‥エンドク,5,5a,5b インゲンマメ B群:加熱によりある温度(糊化温度)で粘度が急に上昇し,この高粘度が次の加熱冷却の間維持されるもの(粘 度の大きいものから並べる)6,6a十六ササゲ,9ハツショウマ.メ,8.ナタマメ,4」リヨクトク,3いアズ キ,フ.フジマメ 上田(10)は黒麹アミラ−ゼによる生澱粉糖化作用がA群とB群とにより差があるのではないかと.考え実験したが, 明らかな差は得られなかった(第6図) ともかく豆類澱粉のアミログラムがA,Bの2群に.大別されることほ興味あることであろう この研究の経費の−・邪は文部省総合研究費(澱粉の利用に関する基礎的研究)に.より支払われた1代表者の大阪大 学二国二郎教授に感謝するまた実験に.ついてほ香川大学農学部多田稔助手および−葛i攻生香川和事君の助力を得た 九州大学農学部上円誠之助氏は貴重な実験箱果を提供された以上の諸氏に.深謝の憲を表する 要旨は195フ年4月9日東京大学農学部に.おける日本農芸化学会大会で発表した #お茶の水女子大学家政学部

参照

関連したドキュメント

In our paper we tried to characterize the automorphism group of all integral circulant graphs based on the idea that for some divisors d | n the classes modulo d permute under

Keywords: continuous time random walk, Brownian motion, collision time, skew Young tableaux, tandem queue.. AMS 2000 Subject Classification: Primary:

By the algorithm in [1] for drawing framed link descriptions of branched covers of Seifert surfaces, a half circle should be drawn in each 1–handle, and then these eight half

Answering a question of de la Harpe and Bridson in the Kourovka Notebook, we build the explicit embeddings of the additive group of rational numbers Q in a finitely generated group

In analogy with Aubin’s theorem for manifolds with quasi-positive Ricci curvature one can use the Ricci flow to show that any manifold with quasi-positive scalar curvature or

We give a Dehn–Nielsen type theorem for the homology cobordism group of homol- ogy cylinders by considering its action on the acyclic closure, which was defined by Levine in [12]

Our method of proof can also be used to recover the rational homotopy of L K(2) S 0 as well as the chromatic splitting conjecture at primes p > 3 [16]; we only need to use the

This paper presents an investigation into the mechanics of this specific problem and develops an analytical approach that accounts for the effects of geometrical and material data on