• 検索結果がありません。

彗星雲の起源と進化

N/A
N/A
Protected

Academic year: 2021

シェア "彗星雲の起源と進化"

Copied!
9
0
0

読み込み中.... (全文を見る)

全文

(1).

(2) . . 181ῌ8588 

(3)  2ῌ21ῌ1. e-mail: higuchia@th.nao.ac.jp.  

(4)  . !" #. $%& 2 '() !*+, (1)

(5) -.) (2) /0123) 456

(6) 789:;<=) >? @?ABC=D" E 1 FGHIJK )

(7) LM46

(8) N 5OP<QN)

(9)  RS TUV6

(10) 78WXY4Z[\!5ABC=D" E 2 FGHIJK ) /0123N6

(11) 78]^_`5ab) cd-.efJKgh:=) 6

(12) ij klm9:ABC=D" >?@?nopq rf!5 ) TUst*

(13) N4 uvwxyz{|!5}. ) 78~N€ AU ‚ƒ6

(14) uv 50 „d  †‡ˆ‰ŠN

(15) ‹ŒŽtƒ?k 9:!5} N+C=D". DNHhEFG9QO'. 0.     0.1. hgh 19 Q8 bD%,qT>hH. . Šv‹ŒHu'Žl. . !"#$. %& '()*+%,-./ 01234" 56 178 9:;<=> ?@A & BCDD%,EFG9HI+J 1). ND"#$& 0.2. . '9‘a08 ’9“”% ,•–#hyt,>?@A&. -KL@"M?N@A& 0'OPQ. ’9“”I0U—j˜X™9H•. RS9H:;T>?UVWX,>?@. –#hN08 'Rš 2 ›—œ?. AH8 YZO AU 5[\] J- ^. žT>Uyt,>?@A 56 27&. _ "`ab 1 c 5 d km7 

(16) e0fHg? UhibQO j'kl8 @hmAn8 9 H:;T>?UDoJ-%,pqAUD '"N@rs& DVtu9:;<. 1. 9HF3’9Ÿ "m0 ¡AU& 2. 9 "m0¡T>h’9L¢. v. £_ 8 * 5¤¥¦§¨L©9¨. wx0yth'z{|}~. ª«%,Ÿ7 H9

(17) e%,¬N. "#h & EFG9H,€U%,u. S­8 9%,®¯°±²³u´µ0. l‚g?lUD%,8 ƒ0. ¶·TrU& B0´µ¸¹ºX·Tr. „ >UDuU9:;<. U&. 2). ˆ#h' 1950 ‰D"A& 8. v†H‡. 6 3 '0uU’9»48 9  ¼. 2007 ‰ 1 ¼.

(18) 3. 1. ()*+,°±  V²³´µ ¶· ¸q¹ HP 0W. 0.3. ¢"£l . 

(19) . M:()*+,NO P 

(20)  QQP RSTPU T() *+, V ,W U TXYZ[0 \;@"]^_`J2  JMJ%: Q;2

(21) ()*+,NOa bcP U Td&e)ffghijkl

(22) J 3), 4) U T  d m n o T  < p    q rstuRSvwMMx:oy

(23) 8z ?; ,NO{|}(~ Q€ bc

(24)  ‚ 2 ƒ„NO ?: †J@‡ˆ"A‰Š. 2. ()*+,NO  . ‹)Œ02J Ž

(25) P  ‘p"@ ’

(26) P “<”•%

(27) [RS–—.   

(28)    (1)

(29)    AU . !"#$%&. p"@˜J2 . 1. 

(30) 

(31)  5). '()*+,-./%0 1  (2) '2   

(32) 3456 78. 9:;<. 1.1. 

(33) . P km ™š›œ Q

(34). ()*+,=>?;@" %02 . NO?;2  NO?; HžŸ . ()*+, AB CD3456 EF%. ¡P¢"£

(35) ?;. 0 G

(36) &@8<HI J@. ¤8F <

(37) @82  ¢. KL?;2 . "£¥¦P § (1)  ¨©  Vª¨©W (2) «¬­

(38) ®¯. º 100 ». º1¼. 9.

(39)    (3)

(40)  acan. ῌ a ῐ3 2 ῒ ΐ (1•e)mp ῍ ap ῑ. •6῎ P fit esc῔4”10 ῏. 

(41)   . ! " acan#3,000 AU $%.  (3) & '()*+  *. ,-. 4)! ./0&. (2). ῌ acan ῐ•1ῌ a ῐ5 ῒ ΐ ῎ ῏ ῒ ΐ ῍ ap ῑ ῍ ap ῑ. •5῎ P fit can῔1.2”10 ῏. 1(213(4 2

(42) . 5,6789:;:<=>. sin•1 i. ”(1•e)2 m2p sin•1 i. ! ?@". (3). &ABCD

(43) ,E789:;:<=F.   " a, e, i & ~ n    ( 

(44)   . .>. [AU]

(45) N

(46) WXY [rad] " ap, mp. >!. &(

(47)  [AU] 4 –(4 — ". . 1.2. (/0789:;:<=F .G HIJKL O. ! MN(. PQ

(48) ( 1 R O>E4. (4 &MN( 1/1,000 4 "!  a‘’ABCD‰Š˜ 4 ™>. ! . .a‘’& ABCD‰ŠCDš›. 0 ( 1 RST 3 UVKL (. "Aœo%"žŸ>E,. 

(49) 

(50) N

(51) WXY (. &

(52) N ,¡¢t

(53) &<.

(54)  4  5 R789:;:>. =>. ! MN(4 &Z4 > ([\. pN›Ž,¡ t. ]^A _`]a% []bcde 

(55) f.

(56) &(¦AQ1r~n. g &8hijL.

(57) .§E,tKL." p. ! O>E( 1 k. l8:mn

(58) ABCD>. ! 1 kl8:. ! vwˆ. £¤! ¥ p*ˆ&

(59)  ! (. *&(¨¦{n6E©ª>Et,. mno(p(q(. -,L. rs3tu Od]"vwxy>. <=& ((«¬­% eVK. ! vw>6z0 ( 1 kl8:m. V K: (®­% "[¯> 2 Uv. n{

(60) N 1 |LE,uxy. w°. >. ! vwˆpˆ(4. ± 90 %1°. ±O²¥³>E. ! vw"}"}6z0&

(61) . ~nB.$%>€‚ ƒ>. ! 1 „789:;: ,E

(62) .  1 AU † 100 R‡1,000 R (

(63) CD> ˆD> 1.3. !. 

(64) . ABCD‰Šr 1 kl8:mn† ( (1) vw (2)  (3) * 

(65)  ‹a can Œˆ P col, P esc, P can Œ78 9:;:HIŽA"3y>  a‘’“. •7 •2 •1 4/3 •1 i P fit col῔7”10 e ap mp sin. 10. ˜4. >! (1). ~n

(66) ¬(ˆ ! ~n´µ& e#0.7, i#0.05 rad, ap#5 AU, (4 #1 mp MN(4  1/ 1,000 ! ¶h·¸¹&O²ABCD‰ Š’ (1), (2), (3) a‘’™! º!»". 2007 ¼ 1 ».

(67)    

(68). 67 ; abTU.   . Q. .    acan . Ng†-.

(69) ". !. #$% 10 &'( )*+,-./. 0. @Š‰.-B3 ) ‹p. .    . ) [:/67. 45-67 . . 89:;<-=    6). 89>)?@2/.  89&'. =. 9A. @$/3 B/45 %  @- DEDF. 7C. 9 ῌ 2 V K 3. 89GH 2/. 10 &'. acan F. _. :; -. Q.3/.2 ‘0. ’“1. ”3 -= ’“1‘0-. 67. _ ,3 ) :. ;•–3 /.2 ‘0. ’“1. —3 ‚ ,3 2/ . acan. 2 n2;˜ 3“™. J -= ! 1 0.3 &,. Q.7-BK)š›.  2.  %-GH. 89J 2:;-   1 0.3 &,45-67. 1 2h$:;. LMNOPQ.R3.  @S. TU- V. $). 

(70) =W3   43 X:/-LMNOP ( Q.F Z [67. 4), 7).  % \] .  ^_/_` . abTU-. #e. -67 %;. "-. "cd 2I . h$i%$/ i% l&m( '-. Y!. fNg. jk=$)2. ?@. nop.   q( )TU-! '. r*st. 1). uv!p3. - ?@H+62I. K: . i%. jk> 5Iwx. 2yz{5- %)3  |} €. ~. $)_I;

(71) . 2 ‚ ,6ƒ„2/ J/ l @ &†o-3 ^_/_`. ".  @-. ’“ 2. „;:œ03 op; ž ab TU. K- -. scattered disk l45. cd 6lB3&m(. =29A 3 . 3. Œ.

(72)  DEDFp6.  ! 1=>I =289. . f.  7 _/_> 5I.  -. 23.  B3. $)2=2. sMŽM&m- 0.1 &, 20#/ . ! 1 0.3 &,. . ˆ‰B[43 . “"Ÿ–-Q.7 scattered disk  . . #$% —2.8 ‚. ,6#/ —3 ‚ )" l. 20.   8). 1.4. ῐΐ῎ῌ 4 ῑ῕῏ῌ῔ῒ῍. LMNOP . Q.G¡¢67. 7 d cd. -6£): @3 D $) ¦8. )I2. ˆ‰ ¤6¥. _ P §0Š+¨6.  -)Š  ^1 ’  9r©D :7/ª.3«;// “` - &, K¬. ῍. amax amin. ’. $)+¨6 P ns 2p ad a TK. - TK  °+3 ‘0. (4). ­®sM¯ amin, amax  ±/ ns ² . ’“1- -³9. 7C  ‘. 0 ! ´µ-=3<¶ =·¸¹N. 

(73)  62  

(74) =„. º=J9r1 n s ¬a —3/2 -±03. 2X_. 69). > 100 ». >1¼. ‡"'3 [:/. 11.

(75) %t 10 &ru6$15) 'vw. 8. q

(76) (bJxy)t%  

(77) 

(78) . 2.2. lm#n efJ

(79) z*+,1. c. 1O.% d2r r ){GM| 3 {4p Gr0 z r d t2. 5. M>MPMQP·?M*M H  ¸³

(80)  .  ²]¹_º» :5¥5

(81) 

(82) . :. 88 G. -.}. /& M|.  r. 23~

(83) L z. r  z q. lmD  0€"OX_‚. r0. 1-J 20,000 AU , 

(84)  efJlm#n. 4 . (5).  Cƒ %t „. TA 1 VWXY†6Oxy‡,.

(85)     . 8.  5 

(86) . Š‹_ŒX 1 VWXY†3Ž . 0.05 rad !"3 #  $% &'( 0.4 *. e). +, 0 -./0123. F){. 456$ 7 8 9$ -.% :;. -.%ˆ‰ :8 1 (5) 23225J. GM| ‘p Gr0 a2 sin2 iG 2a. ’(1{e2‘5e2 sin2 w). 

(87) < &'(=>?. (6). * @AB $%  5 @.  %11) 88 a, e, iG, w,. . CD 4  EFG$.     lmJ. H FI $J8K2.% % . !rslm# U4}& 1. LMNOJPQPH. (6) 5 1 “. RSOI $% 85.  QP.

(88) . 

(89)  2 R67Š‹. _ŒX 5 2 “lm#n. ”J8•. 6T PU

(90) VWX. *–&—˜5 $% 8•*–&™š. YTMZ& GT[\]^_ . J

(91) 9›†gh. =>. +,16)23 35% J lm#n. 2. 

(92)  10) 2.1. % d n. d. ef T3gh. ij EFk!"OF. 11) lm#n. lmD23efJ. . lm#.  

(93) . o lm#n . Flmp$Oq !rs z q# ;q 12. †gh O$ Ÿ%.†.  †¡*J

(94) ¢3O$8K2.% % †

(95) 1. `T5&a AU b  c. .  B+   M£¤/.  .

(96) . . WœW]ž. †gh. :5¥5¦§¨©ª?. M«X¬Š­&:T5 ?®;12) 88¯b $J°±]²\_. z ³´O. 

(97) z* z q <µ %  z* z q¶= F Lz)(1{e2)1/2 cos iG. (7). @¼A. 2007 B 1 ¼.

(98)    

(99)  .  A, B Ixyzu  .     .  {|"}I~I3.HI . (6)! " #$% &'!    . . Z ()*+Aij7€3. P.   ()*+,-,.  . 83 uO

(100) VAbx.   

(101) /()*+,. 7€ ‚"ƒ„?3. I20 

(102).  0123 45-,

(103) 67. Y   2ZCD*EF:;SK.  89:;<=>?3@0 A. "†SK X.Y ‡,-ˆ3u‰YŠ. B 6 " #$% 20,000 AU 67.    ()*+, CD* EF89:;=>=<@GHI JK. ‹ 1H   ŒHŽJKO 3L‘.’“30 "‰YŠ‹ 0=>=". (5) <,O”•=I–. ()*+, 0 F (A) 45 F (B)  LMN. h 1b&—0 <˜™GG „" M. JKO"PQ 2 R:;<@GHI. i=>=<67’“š›:;3œG. :;SK TUVAW" A B X.Y. .  . Z 7[JKO GH\. 2.3. ῐῒῌ῎ΐῑ῏῍.   ] ^()*+,! X._`. 7[wW7€žŸ›

(104) .. La:;VAbX.0 3.Y c.  „?.67’“<JK G 6. 3 B :;"  VAbdY()*e. 7 ‚"  #$% 100¡100,000 AU ¢. 7 f

(105) gh?3+AijHI0. £ #$% ¤3 ¥3¦123\. 

(106) Y  B :;"()*+,. G §¨©ª! «¬­ 67()*e. 90 F<k 3T5GHI0 

(107) Y 0. " 5 AU,  " 63 F ® . T5"  VA.l7 7m. O! CD*EF" 0 F P&! 3L‘\. n4531 :;3oIHpqrst. G  ()*+," 0 F

(108)  360 F9. PQu . ¯°±²3\G 012.67’“. 13).  v5

(109)  z w . B6. º 100 ». º1¼. (7)! GHI. ³7F 0.1 ´µ

(110) /pc3 ¶r´·(.  #$% 20,000 AU 67   50 ¸n89:; A B "JK()*+,¹X.Y †JK"PQ 13.

(111) 8. 7. ῑMN"#†!$%&'()& * lm?῍ [AU] @A  +, -./389: 0¬ 2 šx3456 /389: 0­ lm?῍ @A;E®™X Mlm?῍ 10,000 AU ®. (a) bˆ=?῍P 50 AU ŠW3ŒWŽ xῑ‘’ [›] †! 0 7 3 @¯ °±-. “” +,bˆ=? ῍ 5 AU. ²³†! ® (b) 1./3 @-.žŸ 7¡†! 0 7 3@¯ ´µ¶"#D·¸µ E. |}P~F3€yXP ‚ ῑf,ƒ„;6F; -.d ef,3kq"3 F†!PZ‡ 6p6X  8(a)  bˆ=?῍Pῑ῎‰ 0yy;.    ῏

(112) . 50 AU Š‹ ŒWŽx ῒ26.  . ῑ‘’ -. “”3@'•&*. 14). !"#$%&'()&*. :; -. “”P–6ῑ—3Œ.  +,-./ 01./ 2 +,-./345.  7  ῑ. WŽx 50 YH˜3-. “”P 2,000. 67/389:; <= 0>ῌ . AU ŠWῑ™^š 80› ŠWPῒ3. ?῍@A35 BCD;EF. œFy2PX  8(b)  +,. 50 GH;IJ2KL76MNO;P. -./ 01./ 3@-.žŸ 7¡. QR3STUVWPX 50 YHZ[2 1 . -. “”3@'•&*:; y. \]^_6`aO3bF"#c2. ¢:bˆ=?῍ƒ3-. “”P–F:.  -.def,ῑg'hif. +,£xF 50 YH˜3-. . ,3jkῐF; lmnFῑ. “”P 2,000 AU ŠWῑ;+,-./. JL-.deop6X q". 3@-.žŸ 7¡¤ 90 ¥36X. F6Frs;"#3t@uvPwx. . 12). yt@u ῑz{+,-.de 14. Q3 ¦§>ῌ¨2©6ªh«i ¹º»¼. 2007 H 1 ».

(113) 

(114)   . -† >  ‡. . !". t.Š"‹}ŒŽNR . # $%$&'()*+,. -† > FZ/ ‘/i@A. -.// #01.234. B>X’012#3 b. 0  56-789:. #/D/#03$%/-†. # ;    10

(115) <. > F“” (1) 4•/05–. =4>!"  50 ?330 5. 6 X’012i@/-—("wC. ?@AB0.. 1.# CD. ‘/˜” (2)  4 "-7. -. EFGHIHI/C4>.. X8’012i@#0˜™. 11). IB. 0 J,-. ˆ ‰ >. z@.  (3) X’012sTš.   K    / L M  > : N  O  . F 2,000 AU UVCI 50 ?U9/X12. #15)  50 ?6/  10

(116). /C0• K0 (4) J,. 3I LM>!"- FBPB. \]^ 0ῌ90 $l/OBHX12. < =4>!"6.C #. \]^-"2:;AB0 (5) . H  10

(117) 3I 1

(118) Q.  BHX/C0>›/<=C. RSR/LM>!"- 50 ?G/-. T>KC0 .. T 1,000 AU UV 80W UV X/Y. 01./C >. Z/ J,[\]^. 1.23 >. ?œž- t.‹}Œ ŽN@I3/ > C‹} Œ.-D.  O03 #C2s.  _63 ` .aC0!"

(119) . +DC=Ÿ4. # \]^ 0 /-. 03.. b.  cd"#eX.fg. (4)` A56 # ¡R. hX-i@AB jk . •#0>›/- 1¢B<=# 1B-. -!3C. C. 1.-234. jk ˜ _u. \]^ 0 3I 90 $l/OBH . £G¤  N 2¥¦§¨¥©~ª. m/%Mn1FOB o9pX.&q. -†0C # > ?œ-« -. CXi@AB01./C # .1r. b 

(120) ¬. > xDEƒ#0c.  \]^ 90  #C2s^t'. d"#eXCD­®X- #. ( z @# _u (7)`  0 !"-)v"wK.  F# ¯G° Eƒ#. aC # 1!" &.x*yR-. 0.w« ‡AHCD±²/­.  # \]^.()*-. ®I 0 £G-1BI­® 6. jk.  CXi@³´9±J#0C. 4  x*zywV{-|1 #. # o9pX12 >-«X.  \]^}~€-j +IC. µ¶AB0*. [‚Xi@AB01./C #. ³´9±J- Fµ¶X|·

(121) C. 3. ῍. ῌ. I¸2|·$@/K¹;C{0>›. ῎. .b. ;3K0 Xi@. ºL# /[3Ii@A. B0Xi@ƒ FBPB,„/# M 100 ». M1¼. 15.

(122) ῐ. ῏. Origin and Evolution of Comet Clouds. 

(123)     !"#$%&'()*+,-./0. Arika HIGUCHI Division of Theoretical Astronomy, National Astronomical Observatory of Japan, 2ῌ21ῌ1 Osawa, Mitaka, Tokyo 181ῌ8588, Japan. 12345678 9 86 :;<=>? @ABCDEDF  GHIJK. L23MNOP6QO6. R%STUVWXYZ6QO876[&Z4 5678 9. ῎῍ῑῌ 1) Dones L., Weissman P., Levison H. F., Duncan M., 2004, Comets II (Univ. Arizona, Tuscon) 153 2) Oort J. H., 1950, Bull. Astron. Inst. Netherlands 11, 91 3) Duncan M., Quinn T., Tremaine S., 1987, AJ 94, 1330 4) Dones L., Levison H. F., Duncan M., Weissman P., 2006, Icarus, in press 5) Higuchi A., Kokubo E., Mukai T., 2006, AJ 131, 1119 6) JK L 1998, \&@A>* ]^_)*`abc 7) Safronov V. S., 1972, IAU Circ., 45, 329 8) Levison H. F., Duncan M., 1997, Icarus 127, 13 9) Hayashi C., 1981, Prog. Theor. Phys. Suppl. 70, 35 10) Higuchi A., Kokubo E., Mukai T., Kinoshita H., 2006, AJ, submitted 11) Heisler J., Tremaine S., 1986, Irarus 65, 13 12) Kinoshita H., Nakai H., 1999, Celestial Mechanics and Dynamical Astronomy 75, 125 13) Kozai Y., 1962, AJ 67, 591 14) Holmberg J., Chris F., 2000, MNRAS 313, 209 15) Fernandez J. A., 1997, Icarus 129, 106. 16. Abstract : The Oort cloud (comet cloud) is a spherical comet reservoir surrounding a planetary system. We have investigated the comet cloud formation that consists of two dynamical stages of orbital evolution of planetesimals due to (1) planetary perturbation, and (2) the galactic tide. We investigated the first stage by using numerical calculations and obtained the probabilities of the fates of planetesimals as functions of the orbital parameters of the planets and planetesimals. We investigated the second stage by using the secular perturbation theory and showed the evolution of the structure of a comet cloud from a planetesimal disk. We found that (1) massive planets e#ectively produce comet cloud candidates by scattering and (2) many planetesimals with semimajor axes larger than 1,000 AU rise up their perihelion distances to the outside of the planetary region and become members of the Oort cloud in 5 Gyr.. de. 2007 f 1 d.

(124)

参照

関連したドキュメント

This shows that by considering some other conditions of local existence and local unicity of the implicit function instead of the conditions from Theorem 1, we can produce

Our aim is to show that their definition can be given in a larger context, namely for any algebraic number β &gt; 1, and that the theory of Puiseux provides a geometric origin to

For i= 1, 2 or 3, Models (Mi), subject to Assumptions (A1–5), (Bi) and Remark 2 with regular initial conditions converge to the Keller–Segel model (1) in their drift-diffusion

In the specific case of the α -stable branching process conditioned to be never extinct, we get that its genealogy is given, up to a random time change, by a Beta(2 − α, α −

In fact, l 1 -graphs are exactly those admitting a binary addressing such that, up to scale, the Hamming distance between the binary addresses of two nodes coincides with

Oscillatory Integrals, Weighted and Mixed Norm Inequalities, Global Smoothing and Decay, Time-dependent Schr¨ odinger Equation, Bessel functions, Weighted inter- polation

It is not a bad idea but it means that since a differential field automorphism of L|[x 0 ] is given by a birational transformation c 7→ ϕ(c) of the space of initial conditions, we

We use the monotonicity formula to show that blow up limits of the energy minimizing configurations must be cones, and thus that they are determined completely by their values on