• 検索結果がありません。

N-terminal Hydrophobic Amino Acids of Activating Transcription Factor 5 Protein Confer IL-1β-Induced Stabilization

N/A
N/A
Protected

Academic year: 2021

シェア "N-terminal Hydrophobic Amino Acids of Activating Transcription Factor 5 Protein Confer IL-1β-Induced Stabilization"

Copied!
5
0
0

読み込み中.... (全文を見る)

全文

(1)

氏 名 ( 本 籍 ) 阿部 貴則(栃木県) 学 位 の 種 類 博士(生命科学) 学 位 記 番 号 博 第91号 学位授与の日付 平成27年3月20日 学位授与の要件 学位規則第 5 条第 1 項該当

学 位 論 文 題 目 N-terminal Hydrophobic Amino Acids of Activating Transcription Factor 5 Protein Confer IL-1β-Induced Stabilization

論 文 審 査 委 員 (主査) 高橋 勇二 教授 田中 弘文 教授 柳 茂 教授 浅野 謙一 准教授

論文内容の要旨

Introduction

Activating transcription factor 5 (ATF5) is a stress-response transcription factor of the cAMP response element-binding protein/ATF family and cotains a basic leucine zipper (bZIP) domain. ATF5 regulates processes involved in cellular differentiation, the cell cycle, and apoptosis. Jared et al. reported that ATF5 mRNA is induced in LPS-treated macrophage. This suggests ATF5 involvement in the regulation of immune response. We have shown that ATF5 mRNA is regulated by it’s 5’ UTRα and phosphorylation of eukaryotic translation initiation factor 2α (eIF2α), and ATF5 protein is stabilized after CdCl2 and NaAsO2 exposure. Furthermore, we demonstrated that N-terminal amino acids contribute to the destabilization of the ATF5 protein in steady-state conditions and serve as stabilization domain in the stress response after CdCl2 or NaAsO2 exposure. However, the precise mechanism by which the N-terminal amino acids of ATF5 protein function as a destabilization domain or stress response stabilization domain remains to be elucidated.

Acute phase response (APR) is the earliest stage of the innate immune responses, which is characterized by fever and acute phase response proteins production. APR is triggered by various stimuli such as bacterial infection, tissue damage, or inflammatory cytokines including interleukin 1β (IL-1β), IL-6 and tumor necrosis factor-α secreted from immune cells such as neutrophil granulocytes or macrophages. Secretion of cytokines cause production of acute phase proteins (APPs) in liver. Previously, we have found that ATF5 might supress LPS-indused APP expression levels in the liver and functions as a negative regulator of APR.

In this study, we show that the N-terminal hydrophobic amino acids play an important role in the regulation of ATF5 protein expression in IL-1β-mediated immune response and that ATF5 is a negative regulator for IL-1β-induced expression of SAA1 and SAA2 in HepG2 cells.

(2)

Results

ATF5 protein is stabilized by IL-1β treatment

Treatment of HepG2 cells expressing 3×FLAG-ATF5 with IL-1β (0.1 ng/ml) increased ATF5 protein levels within 2 h and subsequently decreased (Fig. 1A). IL-1β also dose-dependently up-regulated ATF5 protein levels (Fig. 1B). To determine whether IL-1β regulated the stability of ATF5 protein, we monitored the levels of basal and IL-1β-induced ATF5 protein in HepG2 cells after treatment with the protein synthesis inhibitor cycloheximide. As shown in Fig. 1C, in untreated cells, ATF5 was degraded rapidly. But, treatment of cells with IL-1β stabilized the ATF5 protein. IL-1β treatment prolonged the half-life of ATF5 protein from 57 to 104 min. These results indicate that IL-1β increases the ATF5 protein levels, at least in part, by protein stabilization.

Figure 1. IL-1β increases ATF5 protein by enhancing it’s stability.

Stabilization of ATF5 by IL- it’s N-terminal hydrophobic amino acids

(3)

for more hydrophobic amino acids, isoleucine or valine (hydropathy indexes of 4.5 (Ile) and 4.2 (Val)), on expression plasmids (Fig. 2B). The M7 and M8 mutations did not increase ATF5 protein levels (Fig. 2C). We next examined the stress response of the ATF5 point mutants. Protein levels of the ATF5 wild type and ATF5-M1, M2, and M7 increased in the presence of IL-1β or CdCl2 (Fig. 2D). ATF5-M1 and ATF5-M2 increased with IL-1β but to a lesser extent than the ATF5 wild type and ATF5-M7 (Fig. 2D). These results indicated that the N-terminal hydrophobic amino acids is responsible for basal destabilization and for stabilization in response to IL-1β

Figure 2. The N-terminal domain rich in hydrophobic amino acids was responsible for ATF5 protein stabilization.

ATF5 N-terminal region function as a control of protein stabilization

We next confirmed the importance of strong hydrophobic amino acid residues in the N-terminus of ATF5 for basal and inducible protein stability using a transient transfection system to express the ATF5 N-terminal region (amino acids 1-21 or 1-100) fused to the N-terminus of GFP protein in HepG2 cells (Fig. 3). ATF5(1-21)-GFP expression was partially down-regulated compared with GFP alone, whereas ATF5(1-100)-GFP protein expression was severely inhibited. Furthermore, the down-regulation of ATF5(1-100)-GFP was reversed by substituting leucine or valine with alanine in the N-terminus of ATF5. Treatment of HepG2 cells expressing GFP or ATF5(1-100)M1-GFP with IL-1β did not change protein expression levels, whereas cells expressing ATF5(1-100)-GFP showed significantly increased protein levels under stress conditions. These results indicated that the ATF5 N-terminal region fused to N-terminus of GFP conferred instability and stress responsiveness to the chimeric protein. !" #" $" %" &" '" (" )" !" #" $" %" &" '" (" )" *" !" #" $" %" &" '!" '#" Wt M1M2 M3 M4M5 M6 M7M8 Wt M1 M2 M7 - + - + - + - + CdCl2 Wt M1 M2 M7 - + - + - + - + 3 FL

AG-ATF5 3 ATFFL5

AG-3 FL AG-ATF5 R e la tiv e A T F 5 pr ot ei n le ve ls R el at iv e A T F 5 pr ot ei n le ve ls R el at iv e A T F 5 pr ot ei n le ve ls 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 8 0 2 4 6 10 12 8 Wt M1 M2 M7 Foldinduction 1.4 2.0 2.8 - + - + - + - + Wt M1 M2 M7 2.3 1.5 1.6 2.2 - + - + - + - + CdCl2 Foldinduction Wt M1M2 M3 M4M5 M6 M7M8 1 10 20 27 Wt MSLLATLGLELDRALLPASGLGWLVDY・ ・ ・ M1 MSAAATAGAEADRAAAPASGAGWAADY・ ・ ・ M2 MSAAATLGLELDRALLPASGLGWLVDY・ ・ ・ M3 MSLLATAGLELDRALLPASGLGWLVDY・ ・ ・ M4 MSLLATLGAEADRALLPASGLGWLVDY・ ・ ・ M5 MSLLATLGLELDRAAAPASGLGWLVDY・ ・ ・ M6 MSLLATLGLELDRALLPASGAGWAADY・ ・ ・ M7 MSVVATLGLELDRALLPASGLGWLVDY・ ・ ・ M8 MSIIATLGLELDRALLPASGLGWLVDY・ ・ ・ ATF5 : MSLLATLGLELDRALLP Jnet : --HHHHHHHHHHHHH--L3 A 14 L7 L11 L4 L15 G8 D12 A5 L9 R13 T6 E10 R E S I D U E S P O LA R R E S ID U E S NONPOLA R A B C D E 1 5 10 15 Fig.4 3 FL AG-LUC 3 LUCFLAG- 3 LUCFL AG-2.8 !"###$ !%###$ #$ %###$ "###$ &###$ 1 10 20 27 Wt MSLLATLGLELDRALLPASGLGWLVDY・ ・ ・

M1 MSAAATAGAEADRAAAPASGAGWAADY・ ・ ・

M2 MSAAATLGLELDRALLPASGLGWLVDY・ ・ ・ M3 MSLLATAGLELDRALLPASGLGWLVDY・ ・ ・ M4 MSLLATLGAEADRALLPASGLGWLVDY・ ・ ・ M5 MSLLATLGLELDRAAAPASGLGWLVDY・ ・ ・ M6 MSLLATLGLELDRALLPASGAGWAADY・ ・ ・ M7 MSVVATLGLELDRALLPASGLGWLVDY・ ・ ・ M8 MSIIATLGLELDRALLPASGLGWLVDY・ ・ ・ Wt M1 M2 M3 M4 M5 M6 M7 M8 Wt M1 M2 M3 M4 M5 M6 M7 M8 Wt M1 M2 M7 Wt M1 M2 CdCl M7 - + - + - + - + - + - + - + - + Wt M1 M2 M7 Wt M1 M2 M7 - + - + - + - + - + - + - + - + sl e v el ni et or p 5 F T A e vit al e R sl e v el ni et or p 5 F T A e vit al e R sl e v el ni et or p 5 F T A e vit al e R 0 1 2 3 5 4 6 7 0 1 2 4 3 5 6 7 8 0 2 4 6 8 10 12

Fold induction 2.8 1.4 2.0 2.8 Fold induction 2.3 1.5 1.6 2.2 6000 4000 2000 0 -2000 -4000 190 200 210 220 230 240 250 Wavelength (nm) M o la r E ll ip ti c it y ( d e gc m 2d m o l-1) D E F A B C 1 10 20 27 Wt MSLLATLGLELDRALLPASGLGWLVDY M1 MSAAATAGAEADRAAAPASGAGWAADY M2 MSAAATLGLELDRALLPASGLGWLVDY M3 MSLLATAGLELDRALLPASGLGWLVDY M4 MSLLATLGAEADRALLPASGLGWLVDY M5 MSLLATLGLELDRAAAPASGLGWLVDY M6 MSLLATLGLELDRALLPASGAGWAADY M7 MSVVATLGLELDRALLPASGLGWLVDY M8 MSIIATLGLELDRALLPASGLGWLVDY 2 CdCl2 3 FLAG-ATF5 3 FLAG-LUC 3 FLAG-ATF5 3 FLAG-LUC 3 FLAG-ATF5 3 FLAG-LUC ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ !" #" $" %" &" '" (" )" !" #" $" %" &" '" (" )" *" !" #" $" %" &" '!" '#" Wt M1M2 M3 M4M5 M6 M7M8 Wt M1 M2 M7 - + - + - + - + CdCl2 Wt M1 M2 M7 - + - + - + - + 3 FL

AG-ATF5 3 ATFFL5

AG-3 FL AG-ATF5 R e la tiv e A T F 5 pr ot ei n le ve ls R el at iv e A T F 5 pr ot ei n le ve ls R el at iv e A T F 5 pr ot ei n le ve ls 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 8 0 2 4 6 10 12 8 Wt M1 M2 M7 Foldinduction 1.4 2.0 2.8 - + - + - + - + Wt M1 M2 M7 2.3 1.5 1.6 2.2 - + - + - + - + CdCl2 Foldinduction Wt M1M2 M3 M4M5 M6 M7M8 1 10 20 27 Wt MSLLATLGLELDRALLPASGLGWLVDY・ ・ ・ M1 MSAAATAGAEADRAAAPASGAGWAADY・ ・ ・ M2 MSAAATLGLELDRALLPASGLGWLVDY・ ・ ・ M3 MSLLATAGLELDRALLPASGLGWLVDY・ ・ ・ M4 MSLLATLGAEADRALLPASGLGWLVDY・ ・ ・ M5 MSLLATLGLELDRAAAPASGLGWLVDY・ ・ ・ M6 MSLLATLGLELDRALLPASGAGWAADY・ ・ ・ M7 MSVVATLGLELDRALLPASGLGWLVDY・ ・ ・ M8 MSIIATLGLELDRALLPASGLGWLVDY・ ・ ・ ATF5 : MSLLATLGLELDRALLP Jnet : --HHHHHHHHHHHHH--L3 A 14 L7 L11 L4 L15 G8 D12 A5 L9 R13 T6 E10 R E S I D U E S P O LA R R E S ID U E S NONPOLA R A B C D E 1 5 10 15 Fig.4 3 FL AG-LUC 3 LUCFLAG- 3 LUCFL AG-2.8 !"###$ !%###$ #$ %###$ "###$ &###$ 1 10 20 27 Wt MSLLATLGLELDRALLPASGLGWLVDY・ ・ ・

M1 MSAAATAGAEADRAAAPASGAGWAADY・ ・ ・

M2 MSAAATLGLELDRALLPASGLGWLVDY・ ・ ・ M3 MSLLATAGLELDRALLPASGLGWLVDY・ ・ ・ M4 MSLLATLGAEADRALLPASGLGWLVDY・ ・ ・ M5 MSLLATLGLELDRAAAPASGLGWLVDY・ ・ ・ M6 MSLLATLGLELDRALLPASGAGWAADY・ ・ ・ M7 MSVVATLGLELDRALLPASGLGWLVDY・ ・ ・ M8 MSIIATLGLELDRALLPASGLGWLVDY・ ・ ・ Wt M1 M2 M3 M4 M5 M6 M7 M8 Wt M1 M2 M3 M4 M5 M6 M7 M8 Wt M1 M2 M7 Wt M1 M2 CdCl M7 - + - + - + - + - + - + - + - + Wt M1 M2 M7 Wt M1 M2 M7 - + - + - + - + - + - + - + - + sl e v el ni et or p 5 F T A e vit al e R sl e v el ni et or p 5 F T A e vit al e R sl e v el ni et or p 5 F T A e vit al e R 0 1 2 3 5 4 6 7 0 1 2 4 3 5 6 7 8 0 2 4 6 8 10 12

Fold induction 2.8 1.4 2.0 2.8 Fold induction 2.3 1.5 1.6 2.2 6000 4000 2000 0 -2000 -4000 190 200 210 220 230 240 250 Wavelength (nm) M o la r E ll ip ti c it y ( d e gc m 2d m o l-1) D E F A B C 1 10 20 27 Wt MSLLATLGLELDRALLPASGLGWLVDY M1 MSAAATAGAEADRAAAPASGAGWAADY M2 MSAAATLGLELDRALLPASGLGWLVDY M3 MSLLATAGLELDRALLPASGLGWLVDY M4 MSLLATLGAEADRALLPASGLGWLVDY M5 MSLLATLGLELDRAAAPASGLGWLVDY M6 MSLLATLGLELDRALLPASGAGWAADY M7 MSVVATLGLELDRALLPASGLGWLVDY M8 MSIIATLGLELDRALLPASGLGWLVDY 2 CdCl2 3 FLAG-ATF5 3 FLAG-LUC 3 FLAG-ATF5 3 FLAG-LUC 3 FLAG-ATF5 3 FLAG-LUC ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ !"###$ !%###$ #$ %###$ "###$ 1 10 20 27 Wt MSLLATLGLELDRALLPASGLGWLVDY・ ・ ・ M1 MSAAATAGAEADRAAAPASGAGWAADY・ ・ ・

M2 MSAAATLGLELDRALLPASGLGWLVDY・ ・ ・ M3 MSLLATAGLELDRALLPASGLGWLVDY・ ・ ・ M4 MSLLATLGAEADRALLPASGLGWLVDY・ ・ ・ M5 MSLLATLGLELDRAAAPASGLGWLVDY・ ・ ・ M6 MSLLATLGLELDRALLPASGAGWAADY・ ・ ・ M7 MSVVATLGLELDRALLPASGLGWLVDY・ ・ ・ M8 MSIIATLGLELDRALLPASGLGWLVDY・ ・ ・ Wt M1 M2 M3 M4 M5 M6 M7 M8 Wt M1 M2 M3 M4 M5 M6 M7 M8 Wt M1 M2 IL-1β M7 Wt CdCl - + - + - + - + - + Wt M1 M2 M7 Wt - + - + - + - + -sl e v el ni et or p 5 F T A e vit al e R sl e v el ni et or p 5 F T A e vit al e R sl e v el ni et or p 5 F T A e vit al e R 0 1 2 3 5 4 6 7 0 1 2 4 3 5 6 7 8 0 2 4 6 8 10 12

Fold induction 2.8 1.4 2.0 2.8 Fold induction 2.3 4000 2000 0 -4000 190 200 D E F 1 10 20 27 Wt MSLLATLGLELDRALLPASGLGWLVDY M1 MSAAATAGAEADRAAAPASGAGWAADY M2 MSAAATLGLELDRALLPASGLGWLVDY M3 MSLLATAGLELDRALLPASGLGWLVDY M4 MSLLATLGAEADRALLPASGLGWLVDY M5 MSLLATLGLELDRAAAPASGLGWLVDY M6 MSLLATLGLELDRALLPASGAGWAADY M7 MSVVATLGLELDRALLPASGLGWLVDY M8 MSIIATLGLELDRALLPASGLGWLVDY IL-1β 2 CdCl2 3 FLAG-ATF5 3 FLAG-LUC 3 FLAG-ATF5 3 FLAG-LUC ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・

Molar Ellipticity (deg

cm 2dmol -1) -2000 !"###$ !%###$ #$ %###$ "###$ 6000 4000 2000 0 -4000 190 200

Molar Ellipticity (deg

(4)

Figure 3. Schematic of ATF5 N-terminal region-EGFP fusions.

ATF5 knockdown boosts IL-1β-induced SAA1 and SAA2 expression

A DNA microarray analysis using mRNAs from the livers of ATF5 knockout mice indicated that SAA1 and SAA2 mRNA expression levels increased with ATF5 gene deficiency. Thorn et al. reported that IL-1β induces SAA1 and SAA2 in HepG2 cells. We examined whether ATF5 knockdown influenced IL-1β-induced SAA1 and SAA2 mRNA expression in HepG2 cells. IL-1β significantly induced SAA1 and SAA2 mRNA 79-fold and 44-fold at 4 h. ATF5 knockdown boosted IL-1β-induction of SAA1 and SAA2 mRNA 141-fold and 94-fold at 4 h. These results support the notion that ATF5 is a negative regulator of IL-1β-induced SAA1 and SAA2 expressions in hepatoma cells, and suggest the importance of ATF5 in inflammation.

Discussion

In this study, we show that IL-1β increases the expression of ATF5 protein in HepG2 hepatoma cells in part by stabilizing the ATF5 protein. The N-terminal domain rich in hydrophobic amino acids predicted to form a hydrophobic network was responsible for destabilization in steady-state conditions and served as an IL-1β response domain. These results show that ATF5 N-terminal hydrophobic amino acid residues interact with a factor that controls protein stabilization via hydrophobic interactions, and it serves as the regulation of ATF5 protein expression. Therefore, we are working to identify the factors that regulate ATF5 stability through interaction ATF5 N-terminal region and reveal the mechanism for control of ATF5 protein stabilization.

Publication

Publication of the doctoral thesis

Abe T., Kojima M., Akanuma S., Iwashita H., Yamazaki T., Okuyama R., Ichikawa K., Umemura M., Nakano H., Takahashi S., Takahashi Y. N-terminal hydrophobic amino acids of activating transcription factor 5 (ATF5) protein confer interleukin 1β (IL-1β) -induced stabilization. J. Biol. Chem., 289:3888-900 (2014)

Other publication

(5)

審査結果の要旨

申請者は、ストレス応答性転写調節因子 Activating transcription factor (ATF) 5 の安

定性に関与する構造とアミノ酸配列特性に関して新たな知見を提供した。

ATF5 タンパク質の N 末端領域は、定常時には不安定化領域として、ストレス負荷条件下に

はタンパク質の安定化領域として機能する。しかしながら、ATF5 N 末端領域が不安定化領域、

または、ストレス応答性の安定化領域として機能する詳細なメカニズムは未解明である。

炎症をストレス要因として取り上げて、ヒト肝癌細胞 HepG2 細胞を用いて炎症性サイトカ

インの IL-1β添加が ATF5 の発現に与える影響を検証した。ATF5 発現プラスミドを導入した

HepG2 細胞を用いて、IL-1β添加により ATF5 タンパク質の発現量が経時的、用量依存的に上

昇することを認めた。また、このタンパク質発現量の上昇に IL-1β添加時の ATF5 タンパク

質の分解速度の低下が関与していることを明らかにした。

ROBETTA server を用いて ATF5 N 末端領域(1-27 アミノ酸残基)の 3 次構造を予測した結果、

N 末端領域は疎水性ネットワークを形成していることが予想された。N 末端領域 1-27 アミノ

酸残基に含まれる一部または全てのロイシン、バリンを疎水性度の低いアラニンに置換した

変異体、または疎水性度の高いバリン、イソロイシンに置換した変異体の発現プラスミドを

作製し、定常時または IL-1β添加時におけるこれらのタンパク質の発現レベルを観察した。

その結果、ATF5 N 末端領域の疎水性アミノ酸残基は、定常時の不安定化と IL-1β添加時の安

定化に重要であると推定された。

ATF5N 末端領域がタンパク質の不安定化に関わる普遍性を検討するため、GFP タンパク質の

N 末端側に ATF5 の N 末端領域を付加し、ATF5 の N 末端領域が GFP キメラタンパク質の発現量

へ与える影響を検討した。その結果、定常時において ATF5 N 末端領域は GFP キメラタンパク

質の発現レベルを抑制した。また、末端領域 1-27 アミノ酸残基にある全てのロイシンとバリ

ンをアラニンに変異することで、タンパク質の発現低下が抑制された。さらに IL-1β添加に

より GFP キメラタンパク質の発現が誘導され、この誘導には ATF5 N 末端領域の疎水性アミノ

酸残基が重要であることが分かった。これらのことから、ATF5 タンパク質の N 末端領域にあ

る疎水性アミノ酸残基は下流のタンパク質の発現を抑制するとともに IL-1β添加による発現

誘導を引き起こす機能があることが明らかとなった。

急性期応答タンパク質である serum amyloid A (SAA)1 と SAA2 の mRNA 発現量は IL-1β添

加により上昇することが知られている。そこで、IL-1β添加による SAA1、SAA2 の mRNA 上昇

に対する ATF5 ノックダウンの影響を調べた。その結果、IL-1βを添加した HepG2 細胞におい

て SAA1 と SAA2 mRNA の発現量が上昇した。それに対して ATF5 をノックダウンすると、これ

らの mRNA 量の上昇は更に増幅した。これらの事から、細胞内に蓄積した ATF5 タンパク質は

IL-1β添加による SAA1 と SAA2 の発現上昇を抑制することが示唆された。

Figure 1. IL-1β increases ATF5 protein by enhancing it’s stability.
Figure  2.  The  N-terminal  domain  rich  in  hydrophobic  amino  acids  was  responsible  for  ATF5  protein  stabilization
Figure 3. Schematic of ATF5 N-terminal region-EGFP fusions.

参照

関連したドキュメント

In humans, three types of TFF (TFF1–3) and their characteristic and co- ordinated distribution together with MUC mucin have been reported. That is, a combination of TFF1 with MUC5AC

The administration of BSA into the air pouch failed to induce KJ1-26 high Foxp3 + Treg-cell accumulation (Figure 1C), suggesting that a localized Ag at the induced

In this section, we prove the existence of the asymptotic velocity and state some of its properties. This velocity is going to play an essential role in the definition of the

We have found that the model can account for (1) antigen recognition, (2) an innate immune response (neutrophils and macrophages), (3) an adaptive immune response (T cells), 4)

Furthermore, the upper semicontinuity of the global attractor for a singularly perturbed phase-field model is proved in [12] (see also [11] for a logarithmic nonlinearity) for two

“Breuil-M´ezard conjecture and modularity lifting for potentially semistable deformations after

Then it follows immediately from a suitable version of “Hensel’s Lemma” [cf., e.g., the argument of [4], Lemma 2.1] that S may be obtained, as the notation suggests, as the m A

This problem becomes more interesting in the case of a fractional differential equation where it closely resembles a boundary value problem, in the sense that the initial value