• 検索結果がありません。

2014年度前期の期末試験 マクロ経済学(横浜国立大学・2015年度) Hiroshi Morita's Homepage

N/A
N/A
Protected

Academic year: 2018

シェア "2014年度前期の期末試験 マクロ経済学(横浜国立大学・2015年度) Hiroshi Morita's Homepage"

Copied!
7
0
0

読み込み中.... (全文を見る)

全文

(1)

マ ロ経済学 2014 年度前期 期 試験

担当 森田裕史

制限時間 90分 満点 1 点

問全 答え ㄦさい 解答 日 語 英語 こ

問題 2 点 記述式

ブヷダ ラ 型生産関数 � = � −� 規模 関 収穫一定 1次同次

あ こ を証明 ㄦさい

全要素生産性 TFP, Total Factor Productivity を計測 際 資 稼働率を

考慮 入 け う 問題 生 可能性 あ を説明 ㄦさい

消費 余暇 1期間 最適化モデル い 賃金 ㄥ昇 労働供給 対

う 効果を持 を説明 ㄦさい

リアルヷビ ネ ヷサイ ルモデル い 一時的 技術 ョッ 労働時間 生

産量を増加させ メ ニ ムを簡潔 説明 ㄦさい

リ ヸド 等価命題 何 あ を説明 ㄦさい

問題 20点 ロヸモデル

マ ロ経済全体 生産関数を以ㄦ う 仮定 ま

生産関数 = / /

経済全体 産出量 トッ 労働者数を表 いま

ここ 政府部門をモデル 導入 こ ま 結果 産出物 以ㄦ う

各主体 分割さ ま

GDP 恒等式 = �+ �+ �

ここ 各主体 分割さ 産出量 割合

消費 割合 = ( − � − �)�= .5�

投資 割合 = ��= . �

政府支出 割合 = �= . �

ま ま 資 以ㄦ 移式 従 蓄積さ いく ま

資 移式 �+ = − � + �

資 減耗率 � = .

ここ 技術進歩率や人口成長率 ロ 仮定 ま

一人当 生産関数 一人当 資 移式を求 ㄦさい

定常状態 け 一人当 資 トッ 産出量 消費 投資 及 政府支出

を求 ㄦさい

定常状態 け 消費水準 最大 黄金律 資 トッ 量 いく

(2)

ま ま こ 消費 いく ま

黄金律を達成 貯蓄率をいく 必要 あ ま

問題 30点 消費 異時点間 最適化問題

3期間生 合理的 個人 消費決定問題を考えま こ 個人 3期間を通 消費

得 生涯効用を最大化 う 各期 消費水準を決定 ま こ 個人 生涯効

用関数

生涯効用関数 � = � � + �� � + � � �

主観的割引率を表 いま

ま こ 個人 各期所得を け 第1期 第2期 所得 一部を貯蓄 次

期 持 越 こ ま さ 貯蓄 次 期 利子 付い 返

ま 各期 予算制約式

第1期 � = � + �

第2期 � + � = � + + � �

第3期 � = � + + � �

利子率を表 いま 以ㄦ 設問 答え ㄦさい

予算制約を ま 生涯を通 予算制約式を導出 ㄦさい

ラ ラン ュ乗数をλ い ラ ラン ュ関数を求 ㄦさい

1階条件を全 求 ㄦさい

第1期 第2期 消費 関 イラヸ方程式を求 ㄦさい

基 い イラヸ方程式 含意を説明 ㄦさい

時点効用関数 自然対数関数を仮定 u � = ln � 第 3 期 消費水

準 う ま

問題 点 ラム ヸモデル

最適成長モデル ラム ヸモデル を考えま こ 経済 企業 以ㄦ ブヷダ ラ

型生産関数 基 生産を行 い ま

生産関数 = �� � −�, < α <

ここ 産出量 資 トッ 労働時間を表 いま

一方 合理的 個人 生涯効用関数

生涯効用関数 � = ∑

( + �)ln �

�=

� > 時間 好率を表 各時点 予算制約

予算制約 �+ = ( + � − �) + �� �− �

� � レンタル料 賃金を 減耗率を表 いま

非ポン ヸ Non-Ponzi ヸム条件 横断条件 TVC を課 ま

(3)

Non-Ponzi �→∞lim

∏ ( + � + �)�−=

TVC �→∞lim

∏ ( + � + �)�−=

こ 問題 技術進歩率や人口成長率 ロ あ 仮定 ま

非ポン ヸ ヸム条件 横断条件 う 状況を排除 条件 あ

を説明 ㄦさい

企業 利潤最大化条件 資 レンタル料 賃金 関数

求 ㄦさい

結果 基 い ブヷダ ラ 型生産関数 い イラヸ 定理

成 立 こ を示 ㄦさい

以ㄦ 簡単化 個人 常 単位 労働を供給 仮定 ま =

こ 仮定 ㄦ 各時点 予算制約式 単純

予算制約 �+ = ( + � − �) + �− �

ま こ 個人 効用最大化問題を解く 動学ラ ラン ュ関数

= ∑ ( + �)ln �

�= + ∑�= ( + �)[ ( + � − �) + �− � �+ ]

書くこ ま

こ 動学ラ ラン ュ関数を解い 消費 イラヸ方程式を求 ㄦさい 計算

過程 示 ㄦさい

= �+ /� 関数 求 ㄦさい

予算制約式 = 資 移式を 表 ㄦさい

�� = 線を表 数式 = � = 線を表 数式 � =

求 ㄦさい

消費 資 関 位相図を縦軸 消費 横軸 資 を 図示

ㄦさい 図中 定常状態 鞍点経路 saddle path を記入 ㄦさい

第0期 経済 定常状態 あ � = � ま いま 第1期 技術革新

発生 恒久的 技術水準 � = � ㄥ昇 ま こ 動学

を位相図を用い 説明 ㄦさい

(4)

Macroeconomics first semester, 2014 Final test

Monday, July 28, 3rd class Hiroshi Morita Test time 90min, full mark 120 points

Answer all the following 4 problems. Answer all problems either in Japanese or in English.

Problem 1 points Descriptive question

Prove that that Cobb-Douglas type production function � = � −� has a property of “constant returns to scale linear homogeneity ”. Explain what kind of problem can be considered when estimating the

Total Factor Productivity without taking a rate of capacity utilization of capital stock into consideration.

Explain how the rise in wage influences labor supply in the framework of one-period optimal choice problem of consumption and leisure.

Explain briefly the mechanism to which a temporary technology shock makes hour worked and output increase in the framework of Real Business Cycle model.

Explain what the “Ricardian equivalence theorem” is.

Problem 2 points Solow growth model

The production function of whole macro economy is assumed as follows: Production

function =

/ / ,

where �, , denote whole economic output, capital stock, and the number of worker, respectively. Here, we introduce government sector into this model. As a result, output is distributed to each subject as follows:

GDP identity = �+ �+ �, -

and, the each ratio of output which is distributed to consumption, investment, and government spending is

Consumption = ( − � − �)�= .5�,

Investment = ��= . �, -

Gov. spending = �= . �. -

Moreover, capital accumulation equation is written as Capital

dynamics �+ = − � + �,

(5)

Depreciation

rate � = . .

- For simplicity, we assume that technology progress and population growth do not existed in this economy.

Derive per-capita production function and capital accumulation equation. Derive per-capita capital stock, output, consumption, investment, and

government spending in the steady state.

Derive the amount of capital stock and consumption level in a golden rule. Derive a saving rate � required to accomplish a golden rule.

Problem 3 points Optimal choice problem of inter-temporal consumption Consider the optimal consumption choice problem of rational agent who lives for three periods. At the first period, this agent decides each period consumption level to maximize her lifetime utility. The lifetime utility function is assumed as follows:

Lifetime utility � = � � + �� � + � � �

where � indicates the subjective discount rate.

This agent receives exogenous income in each period, and a part of income can be carried over to the next period as savings at the first and second period. Moreover, the agent can receive total sum of the capital and interest at the next period if she saves. Thus, the budget constraints are written as

1st period � = � + �

2nd period � + � = � + + � �

3rd period � = � + + � �

where � denote interest rate.

Derive the lifetime budget constraint.

Derive the Lagrange function by setting the Lagrange multiplier with �. Derive all of the first order conditions.

Derive the Euler equation with respect to consumption between the first and second period.

Explain the implication of the Euler equation based on the result of . Derive the consumption level at the third period if assuming the natural

logarithm as utility function � � = �� � .

Problem 4 points Ramsey model

Consider optimal growth model named Ramsey model. The representative firm in

(6)

this economy is assumed to have the following Cobb-Douglas type production function.

Production

function = �� �

−�, < α <

where �, , denote output, capital stock, and hours worked, respectively. On the other hand, the lifetime utility function of the rational agent who lives for infinite horizon is written as

Lifetime utility � = ∑ ( + �)

ln �

�=

- where � denotes time preference rate, and budget constraint at each period is

Budget

constraint �+ = ( + � − �) + �� �− �

- where � , � respectively indicate rental rate of capital stock and wage, and � denotes the depreciation rate. Additionally, we impose non-Ponzi game condition and Transversality condition as follows:

Non-Ponzi �→∞lim

∏ ( + � + �)�−=

TVC �→∞lim

∏ ( + � + �)�−=

Here, technology progress rate and population growth rate are assumed to be zero.

Explain what kinds of situations are eliminated by Non-Ponzi game condition and Transversality condition.

From the profit maximization problem of the firm, derive the rental rate of capital stock t and wage � as a function of , , and �.

Based on the result of , show that the Euler’s theorem is held in Cobb-Douglas type production function.

For simplicity, we assume that the agent always provides one unit labor supply below = . Under this assumption, the budget constraint simply becomes

Budget

constraint �+ = ( + � − �) + �− �.

- And, then the dynamics Lagrange function to solve the utility maximization problem of the rational agent is obtained as

= ∑ ( + �)ln �

�= + ∑�= ( + �)[ ( + � − �) + �− � �+ ]

(7)

By solving this dynamic Lagrange function, derive the Euler equation of consumption. please show me the calculation process.

Based on , and = , derive ��+ /� as a function of � and . Based on , budget constraint and = , express the capital accumulation equation by using only �, , and � not using � and � . Based on and , derive �� = locus = and � = locus

� = .

Based on , describe the phase diagram with regarding to consumption � and capital . In the phase diagram, x-axis and y-axis denotes capital and consumption, respectively. Moreover, point out the steady state and saddle path in the figure.

Assume that this economy was in the steady state and � = � at period 0. At period 1, the technology innovation happens and the level of technology permanently increases to � = � . Explain what occurs in the dynamics of and � by using the phase diagram.

参照

関連したドキュメント

The problem of determining (within the terms of the classical the- ory of elasticity) the distribution of stresses within an elastic half-space when it is deformed by a normal

In this paper, we study the generalized Keldys- Fichera boundary value problem which is a kind of new boundary conditions for a class of higher-order equations with

Under the basic assumption of convergence of the corresponding imbedded point processes in the plane to a Poisson process we establish that the optimal choice problem can

Kilbas; Conditions of the existence of a classical solution of a Cauchy type problem for the diffusion equation with the Riemann-Liouville partial derivative, Differential Equations,

Transirico, “Second order elliptic equations in weighted Sobolev spaces on unbounded domains,” Rendiconti della Accademia Nazionale delle Scienze detta dei XL.. Memorie di

It is known that if the Dirichlet problem for the Laplace equation is considered in a 2D domain bounded by sufficiently smooth closed curves, and if the function specified in the

Indeed, when using the method of integral representations, the two prob- lems; exterior problem (which has a unique solution) and the interior one (which has no unique solution for

There arises a question whether the following alternative holds: Given function f from W ( R 2 ), can the differentiation properties of the integral R f after changing the sign of