• 検索結果がありません。

wt%NMP as bore liquid at AG temperature of 80°C. However, an irregular,

ドキュメント内 TOKYO METROPOLITAN UN工VERSITY (ページ 123-131)

PSF90−80

with 70  wt%NMP as bore liquid at AG temperature of 80°C. However, an irregular,

lacerated structure was observed with 75 wt%NMP as bore liquid(PSF75−80)and with 80

wt%NMP as bore liquid(PSF80−80), with the degree of laceration becoming larger as NMP

concentration of bore liquid increased from 75 Wt%to 80 wt%.

      This phenomenon is analogous to the mechanism of an irregular,1acerated structure

forming on the inner surface as reported in Chapter 4. Whether a lacerated structure will be

formed on the inner surface or on the outer surface depends on whether a thin layer fbrms first

on one or the other surface in the AG and whether this thin layer has become so inductile that

it is tom apart as the nascent fiber extends under drawing tension. ln case of PSF70−80, a thin

layer on the inner surfac e formed before the outer surface in the A G after discharge from the

      CHAPTER s

Optima1 spinning coアzditionプわア〃1 ic1「(〜filtratわn〃2θ〃zbrane

spinneret due to the somewhat higher water concentration of the bore liquid, at 30 wt%, and

this thin layer could not extend under drawing tension without tearing apart.

      Therefbre, a lacerated structure was formed on the imer surface but not formed on the

outer surface. On the other hand, in case of NMP concentration of 80 wt%or above, a

lacerated structure was formed on the outer surface but not formed on the inner surface. This

meant that a thin layer which became inductile as the nascent hollow fiber extended under

drawing tension did not form on the inner surface, but such a layer did form on the outer

surface. This thin layer on outer surface, formed by water vapor in the A G, pulled apart as the

nascent hollow fiber extended, resulting in the lacerated structure. Uniquely, lacerated

structures were formed on both inner and outer surfaces of P S F75−80, in the intermediate state

between PSF70−80 and PSF80−80, as such inductile thin layers were formed on both surfaces.

      In the case of using 95 wt%㎜solution as bore liquid, pore structure of outer

surfac e changed dramatically as AG temperature was reduced from 80°C to 60°C,and then to

40°C.While pores with an average pore size of O.19μm were observed on the outer surface

when AG temperature was 60°C, no pores were observed on the outer surface when AG

temperature was 40°C. This result suggested that a thin layer did not form on the outer

surface in the AG when AG temperature was below 60°C. In this case, only liquid−1iquid

phase separation occurred in the AG and both surfaces were in a liquid state that enabled

relaxation under drawing tension.

      The PSF95−60 hollow−fiber MF membrane obtained in this study had a gradient

structure with an average pore size of O.19 Ptm in the region o f the outer surface and gradually

increasing pore size acro ss the thickness of the membrane wall toward the imer surface. pure

      CH 4PTER 5

()pli〃ia1 spinning conditionプわr〃2たπφ1かα∫ oη〃1θ〃ibrane

water permeate flux was about 1,3001・m一2・h一l at 100 kPa. Retention of T500 was O%and

that of O.037μm latex beads was almost 100%. Tensile strength at break was over 4.O MPa,

and tensile elongation at break was over 80%.

      The PSF95−80 hollow−fiber MF membrane obtained in this study had a similar

gradient structure with an average pore size of O.23 ptm on outer surface. Pure water permeate

flux was about 4,9001・m一2・h−l at 100 kPa. Retention of T500 was O%and that of O.137μm

latex beads was almost 100%. Tensile strength at break was over 4.O MPa, and the tensile

elongation at break was over 80%.

      These characteristics and performance且gures are suf丘cient fbr use in MF at the

practical level, and such membranes would be well suited for application in water treatment

and other fields.

5.5Conc}usion

      in this study, we selected PSF as membrane material and fbcused on the fabrication

method of practical hollow fiber MF membrane having a gradient structure, more speci丘cally,

afilter layer in the region of the outer surface and gradually increasing Pore size across the

       /

thickness of the membrane wall toward the imer surface. A 3−component dope composition

of PSF/NMP/PEG was used with 35 kD Mw of PEG as additive. NMP solution was selected

as bore liquid. The necessary NMP concentration of bore liquid and AG temperature in order

to obtain a practical PSF hollow fiber MF membrane having this gradient structure were

studied.

      Cπ41)TER s

Oρtimal spinning conditionfor〃microLfiltration〃membrane

      All the membranes made with AG temperature of 80°C, AG distance of 50㎜, and

bore liquid NMP concentration changing froM 70 wt%to 95 wt%at 5 wt%intervals, show

similar water permeate flux at around 5,0001・m−2・h−1, in the normal range fbr MF

performance. Pure water permeate flux of hollow一丘ber membrane s obtained with 95 Wt%

NMP solution as bore liquid at the same 50 inm AG distance and various AG temperatures

丘om 40°C to 80°C was affe cted by AG temperature, with flux increasing sharply with higher

AG temperature.

      The inner surface structure transformed dramatically as NMP conc entration of bore

liquid was changed. These inner surface structures can be classified into three categories

based on their appearance. The first of these categories is that of a lacerated appearance of

pore structures as seen with 70 wt%and 75 wt%NMP bore liquid, the second is that of a

circular pore structure as seen with 80 wt%,85 wt%, and 90 wt%NMP bore liquid, and the

third is that of a network structure as seen with 95 wt%NMP bore liquid.

       Formation of the lacerated apPearing Pore structure is considered to have been by the

mechanism described by Ohya et al.[1], being that the se structures result from the formation

of a very thin layer by water of the bore liquid after discharge from the spinneret, this layer

then l)eing partially ripped and pulled apart in the AG under drawing tension.

       Formation of the circular pore structure is considered to be the result of a weak

coagulation power of bore liquid with NMP concentration of 80 wt%or more, which was too

weak to solidify the inner surface, so that only nucleation and growth of polymer lean phase

by liquid−liquid phase separation occurred during residence in the AG

      Cl[L4PTER 5

の伽al S御痂g oo励 加。for〃1 o腰1かα 加〃7θ〃かane

        The network structure as seen with 95 wt%NMP bore liquid is considered to be the

result of membrane fbrmation occur血g only丘om the outer surface because the bore liquid is

in the solvent neutral state, neither inducing Phase separation and solidification nor dissolving

the dope.

       Regarding the outer surface, it was revealed that outer surface pore fbrmation was

affected by both AG temperature and NMP concentration of the bore liquid. Circular pores

were observed with 70 wt%NMP as bore liquid at AG temperature of 80°C. However, an

irregular, lacerated structure was observed with 75 wt%and 80 wt%NMP as bore liquid, with

the degree of laceration becoming larger as NMP concentration of bore liquid increased from

75・吼%to 80 v就%.

      This phenomenon is analogous to the mechanism of an irregular, lacerated structure

鉛rming on the㎞er sur魚c e. Whether a lacerated structure will be formed on the inner

surface or on the outer surface depends on whether a thin layer forms first on one or the other

surface in the Aq and whether this thin layer has become so inductile that it is torn apart as

the nascent fiber extends under drawing tension.

      Pore structure of the outer surface also transfbrmed dramaticalIy as AG temperature

was changed. This phenomenon is considered to result from the progress ofphase separation

      /

varying with the amount ofwater vapor in the AG as AG temperature is changed.

       It was fbund that a solvent neutral state was attainable by selecting 95 wt%NMP

solution as bore liquid with our temary dope system, and that it was possible to obtain the

desired gradient structure with membrane formation only from the outer surface. Pore size of

the filter later in the region of outer surface could be controlled by a(加sting AG temperature

       CHAPTER s

Opti〃ial spinning conditわnプわr〃z icrofiltration〃7e〃7brane

and/or AG humidity. In particular,

temperature to 60°C or more.

MF−1evel pores were obtained by setting the AG

       CllL4PTER 5

ρρ伽al sp伽加960磁≠加力7〃伽φ1かα oη〃le〃2ゐ7αηθ

5.5 References

[1]H.Ohya, S. Shiki and H. Kawakami, Fabrication study of polysulfbne hollow−fiber

micro且ltration membrane:Optimal dope vi scosity fbr nucleation and growth, J. Membrane.

Sci.,326(2009)293−302.

[2]D.W. Wallace, C. Staudt−Bickel, and W. J. Koros, Efficient development of effective

hollow fiber membranes fbr gas separation丘om novel polymers, J. Membrane. S ci.,278

(2006)92−104.

       CHAPTER 6

       Conclusions and血ture scope

       This chapter described conclusions and fUture scope of this study. A new method fbr

fabrication of PS/HF MF membranes with a gradient pore structure, based on non−solvent

induced phase separation(NIPS), and hlvestigate the effects of the fabrication conditions on

the membrane moq)hology and characteristics was studied. The gradient structure, with

increasing Pore size丘om outer to inner surface layers, is designed to enable extemal−pressure

filtration and thus obtain high一且ux water permeation.

       The characteri stics and performance of typical MIT membrane obtained in this study

are su伍cient fbr use in MF at the practical level, and such membranes would be well suited

fbr application in water treatment and other fields. This method would lead to a new

development in MF membrane tec㎞010gy which outstrips the water pe㎜eability of

conventional hollow−fiber MF membrane.

     CLL4PTER 6 ConclZts ions andfuture scope

6.1Conclusion

ドキュメント内 TOKYO METROPOLITAN UN工VERSITY (ページ 123-131)

関連したドキュメント